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Abstract. To send encrypted emails, users typically need to create and ex-
change keys which later should be manually authenticated, for instance, by
comparing long strings of characters. These tasks are cumbersome for the
average user. To make more accessible the use of encrypted email, a secure
email application named p ≡ p automates the key management operations;
p ≡ p still requires the users to carry out the verification, however, the au-
thentication process is simple: users have to compare familiar words instead of
strings of random characters, then the application shows the users what level
of trust they have achieved via colored visual indicators. Yet, users may not
execute the authentication ceremony as intended, p ≡ p’s trust rating may
be wrongly assigned, or both. To learn whether p ≡ p’s trust ratings (and the
corresponding visual indicators) are assigned consistently, we present a for-
mal security analysis of p ≡ p’s authentication ceremony. From the software
implementation in C, we derive the specifications of an abstract protocol for
public key distribution, encryption and trust establishment; then, we model
the protocol in a variant of the applied pi calculus and later formally verify
and validate specific privacy and authentication properties. We also discuss
alternative research directions that could enrich the analysis.

Keywords: formal verification · authentication protocols · software security
analysis · privacy-by-default · secure email · end-to-end encryption

1 Introduction

Despite the success of instant messaging (IM) applications, email prevails as the
principal means for written communication [21]; yet, communication over email re-
mains largely insecure nowadays [10]. Solutions for securing email have however been
proposed. For instance, OpenPGP [1] is arguably the most widely used email en-
cryption standard. Derived from the PGP software, it proposes the use of symmetric
and asymmetric cryptography plus data compression to encrypt communication, and
digital signatures for message authentication and integrity.

Unfortunately, severe usability drawbacks have been identified and highlighted in
the standard (e.g. [23]). Along with the need for users to understand at least general
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cryptographic concepts regarding encryption—which inevitably narrows down the
scope of the audience—the principal issue is the need for verifying the ownership of
public keys, i.e., that a public key claimed to be of an entity A does indeed belong to
A exclusively. Various approaches tackle this problem, e.g., fingerprint comparisons,
public key infrastructure, certificate authorities, and the notion of web of trust,
which involves individuals signing each other’s public keys, thus forming a chain
of certifications [24]. However, these approaches have encountered limited adoption
mostly due to usability or scalability issues [10].

Attempting to overcome OpenPGP’s usability issues related to trust establish-
ment, an open source commercial software, called p ≡ p (Sec. 3), proposes the use of
so called trustwords (detailed in Sec. 3.1) to carry out peer-to-peer entity authenti-
cation via an out-of-band channel—e.g., in-person, video-call. This approach argues
to introduce an improvement to usability and security of the PGP word list.

In this work we present a formal security analysis of the core protocols imple-
mented in p ≡ p, focusing particularly in authentication and privacy goals.

1.1 Contributions

First, we derive from the open source code the specifications of p ≡ p’s abstract
protocols for key distribution and trust establishment, and present them as Message
Sequence Charts (MSC). From now on, we will refer to this abstraction as the p ≡ p

protocol. This is the first detailed technical documentation of such protocol.
Second, we provide a symbolic formal security analysis of the p ≡ p protocol with

respect to authentication and privacy goals, under a Dolev-Yao threat model. The
analysis validates the security claims of p ≡ p and the correct assignment of privacy
ratings to messages.

2 Context and Approach

The application of formal methods for verifying that specific security properties hold
in cryptographic protocols in the presence of a certain adversary is a well-established
research area. Both the detection of flaws in a protocol (or, contrariwise, the proof
of security) and the nature of those flaws depend on different factors, such as the
verification approach and the phase of the system in which it takes place (e.g., design,
implementation, compilation). An introductory reference for the topic is [18].

A variety of tools and formalizations have been used to successfully analyze,
amongst others, authentication scenarios in real world and authentication standards
(e.g., [5,6,11]). Important flaws have been discovered even in well-established pro-
tocols years after their publication and while being used (e.g., [16]). Therefore and
because the design of protocols is by default an error-prone task, to effectively protect
a system, security protocols need to be not only carefully designed and rigorously
implemented but also strictly verified.

Here, we carry out a symbolic formal analysis of the p ≡ p protocol specification.
The symbolic approach assumes cryptographic primitives to work as perfect black
boxes and focuses on the description of the logic of the protocol, the interaction
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among participants and the exchange of messages [9]. The resulting models allow to
seek for attacks that rely on logical flaws in the protocol while taking advantage of
mature automated tools for protocol analysis (e.g., ProVerif [8], Tamarin [4]).

Our work concerns remote human-to-human authentication, where human A

wants to be sure that human B is who he claims to be and vice versa—in p ≡ p, the
owner of a specific public key—, in a global communication scenario where A and
B might not know each other.

2.1 Methodology

At the time when we started studying the p ≡ p protocol there was not substantial
documentation regarding neither the protocol specifications nor the source code. In
consequence, the work presented here relies on the open source code of p ≡ p [19],
together with online documentation mainly for users [20]. Recently some internet
drafts have been released [15,14], which has helped clarifying our models.

Our security analysis consists of the following steps, which we detail in the rest
of the paper:

1. Extract the specifications of the key distribution and handshake protocols from
the available sources ([19,20]).

2. Describe the protocol in MSC notation.
3. Formalize in the applied pi calculus the MSC specifications of the previous step,

along with the attacker model.
4. Specify and formalize in the applied pi calculus the properties to be verified.
5. Verify the satisfiability of the properties formalized in 4, in the model resulting

from step 3.
6. Analyze and interpret the results of the verification.

We start by introducing the p ≡ p software and its relevant features in Section
3. Then, steps 1 and 2, which deal with specifying the p ≡ p protocol, are presented
in Section 4. In Section 5, we define the security properties related to privacy and
authentication that concern our analysis. Section 6 covers steps 3 and 4 of the
methodology, i.e., the formalization of the protocol and of the security properties
introduced informally in Section 5. The results of the execution of step 5 and the
analysis in step 6 are discussed in 6.4; we also discuss limitations of the analysis in
6.5. Further directions and conclusions are presented in the last Section.

3 Background: Pretty Easy Privacy (p ≡ p)

Pretty Easy Privacy (p ≡ p)1 is a software that claims to provide privacy-by-default
in email communications via end-to-end opportunistic encryption. Roughly, this
means that the software encrypts outgoing email messages without any interven-
tion from the user, whenever a secure or trusted public key of the intended receiver
is available.

p ≡ p attempts to automate tasks that would otherwise require specialized-
knowledge from non-expert users, while informing the user of the privacy rating

1 https://www.pep.security
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assigned to messages in an intuitive way. Hence, its more relevant features are: (1) a
fully automated process for the generation and management of encryption keys and
for the encryption of emails; (2) an algorithm to determine the strongest privacy
level that can be assigned to a message for a specific partner—this level is further
communicated to the user by colored visual icons; (3) a fully decentralized architec-
ture for key storage—this design decision eludes relying on possibly untrusted central
authorities by having the users perform the trust establishment task via out-of-band
channels.

p ≡ p is distributed as a standalone application for Android and as plugins for
desktop installations of some existing email clients, e.g., Outlook, Thunderbird. In
this work we consider a general abstraction of the p ≡ p protocols that represent
improvements to PGP by means of the features described above. Comparing and
discussing specific implementations is out of the scope of this paper.

3.1 p ≡ p Trustwords

Manual key-fingerprint comparison is a well-established method for entity authenti-
cation in messaging protocols; yet, the approach has been shown to perform poorly
for the intended goal (e.g., [12]). As a solution, in addition to hexadecimal num-
bers, PGP allows fingerprints to appear as a series of so-called “biometric words”,
which are phonetically different English words that intend to ease the comparison
for humans and to make it less prone to misunderstandings [2].

Trustwords in p ≡ p follow the same idea; they are natural language words map-
ping hexadecimal strings that are used to authenticate a peer after having exchanged
public keys in an opportunistic manner. In short, such hexadecimal strings represent
a combined fingerprint obtained by applying an XOR operation to the fingerprints
associated to the public keys being authenticated. Each block of 4 hex characters
of the combined fingerprint is mapped to a word in a predefined trustwords dictio-
nary. For instance, F482 E952 2F48 618B 01BC 31DC 5428 D7FA could be mapped
to kite house brother town juice school dice broken.

The main difference with the “biometric words” is the availability of trustwords
in different languages, which improves the security for non-English speakers, and
the use of longer words, which presumably increases the entropy as the dictionary is
larger and therefore the likelihood for phonetic collision is decreased [15]. Consider-
ations regarding the number of words in the dictionaries and the length of the words
themselves are discussed also in [15].

3.2 Trust Rating and Visual Indicators

In agreement with the privacy-by-default principle, p ≡ p assigns a specific privacy
rating to each email exchange. Such a rating is determined per message and per
identity depending on certain criteria and is shown to the users by colored icons in
the message. The ratings are:

– Mistrusted: the system has evidence that the communication partner is not
who (s)he claims to be, e.g., when the user explicitly mistrusts a peer.
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– Unknown/Unsecure/Unreliable (Unsecure): encryption/decryption of a
message cannot be properly executed, e.g., when the recipient does not use any
secure email solution. The message is sent in plain text.

– Secure: the user has a valid public key for the recipient, however it has not
been personally confirmed. The message is encrypted/decrypted.

– Trusted: the user has the recipient’s public key and it has been validated with
the peer. The message is encrypted/decrypted and authenticated.

3.3 Technical Specifications of p ≡ p

The core component of p ≡ p is pEpEngine, a library developed in C99 where the
automation of cryptographic functionalities (e.g., key generation) is implemented
relying on existing standards and tools for secure end-to-end encrypted communi-
cations (PGP, GnuPG). The p ≡ p protocols are built upon those functionalities,
therefore pEpEngine is the component from which we extracted the specifications
hereby presented.

Each installation of p ≡ p creates a local database of p ≡ p peers, their corre-
sponding keys and privacy ratings. Additionally, it creates a database from which the
trustwords for mutual authentication are retrieved; the trustwords database contains
the exact same data in all the distributions. To securely store private and public keys
in the devices, p ≡ p uses GnuPG2. A more detailed description of p ≡ p can be
found in [14].

4 The p ≡ p Protocol

In order to carry out a security analysis it is essential to clearly understand the logic
of the protocol, to know the cryptographic primitives used, the parties involved and
the messages exchanged between them. Our case study required us to obtain this
information mainly from the source code of p ≡ p.

Following the approach in [22], we executed the first step of the methodology
proposed here in Sec. 2.1 by reverse engineering a fragment of the source code files.
We then represented the output of such a process by means of MSC diagrams (step
2) which p ≡ p confirmed to be accurately representing their protocol.

Here, we present and describe such diagrams which correspond to our abstracted
version of the key distribution and authentication protocols used by p ≡ p to engage
in end-to-end private and authenticated communications.

In the rest of the paper, we will use skx and pkx to refer to secret and public
keys owned by agent x, respectively. As well, we use A and B to refer to honest
participants and M for the malicious agent trying to prevent the honest parties
from achieving the security goals.

4.1 Public key Distribution and Encrypted Communication

Let A and B be two partners that do not know each other’s public key. A installs
p ≡ p from scratch without having any cryptographic keys. She wants to privately

2 https://www.gnupg.org/
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communicate with B who is already a p ≡ p user owning a pair of keys (skB, pkB).
We denote the p ≡ p instances running in A’s and B’s devices as pEpA and pEpB
respectively.

So that the key distribution protocol (Fig. 1) can take place, when p ≡ p is
installed, pEpA generates a pair of keys (skA, pkA) for A (step 1). The protocol
starts when A sends a message m to B; pEpA creates an identity for B (2) and stores
his contact details (3); then, pEpA sends m as plain text along with pkA (4). When
pEpB receives the message, it displays m to B with the privacy rating Unsecure
(5); additionally, pEpB creates an identity for A (6) and stores her email address and
pkA (7); finally pEpB assigns the privacy rating Secure to A’s identity (8). When
B replies to A, pEpB attaches pkB to his response resp; this message is then signed
with B’s secret key skB (9) and encrypted using pkA (10). The signed and encrypted
message is sent to A (11); pEpB shows to B his message as Secure. At reception,
pEpA decrypts B’s message using skA (12); then it stores pkB as the public key of
B (13) and assigns to his identity the Secure rating (14). B’s response is finally
shown as Secure to A.

Note that the identifiers created for A and B do not need to coincide in pEpA and
pEpB, since they are only used by the corresponding p ≡ p instance. Also, pkA and
pkB sent in steps (4) and (11) are only attached to the first communication between
A and B or whenever they are updated.

The key distribution protocol allows making the communication secret to every-
one but the receiver, however, it does not guarantee that the receiver is the intended
person. Man-in-the-middle attacks are still possible, as we will discuss in Section
6.4.

4.2 Authentication and p ≡ p Privacy Rating Assignment

Trust establishment is achieved via the p ≡ p Handshake protocol (Fig. 2), which
consists in A and B comparing a list of trustwords via a communication channel
assumed to be secure and that needs to be used only once.

When A selects the option to perform a handshake with B (1), pEpA generates
a combined fingerprint based on applying an xor function to the fingerprints of A
and B (2). The resulting hexadecimal string is mapped onto words in the selected
language from the trustwords database (3) and displayed to A (4). The analogous
actions occur in pEpB when B selects the handshake option. Given that the trustwords
database is the same in all p ≡ p distributions, if pEpA and pEpB use the same input
parameters, i.e., the same public keys and thus the same fingerprints, the list of
trustwords generated by each p ≡ p instance must be the same.

The next step is the authentication, where A and B contact each other in a
way that they are sure to be talking with the real person, and compare the list of
trustwords displayed for each (5). If B confirms that the list of trustwords given by
A matches exactly the one shown in his device, A’s privacy rating is set to Trusted
(6); we call this case a successful handshake. Conversely, in an unsuccessful handshake
A’s rating is downgraded from Secure to Mistrusted (7). The analogous occurs in
A’s device with respect to B. The privacy rating assigned after a handshake remains
for all future exchanges with the communication partner.
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After a successful handshake, the communication between the identities that
performed the handshake is always encrypted and authenticated (8-12).

Remark that p ≡ p does not force users to perform the handshake protocol. The
email messages are always sent regardless of the security level, which is decided per
message and per recipient according to the recipient’s data available.

5 Security Properties

Our requirements for authentication match the definition of full agreement given
by Lowe in [17]. This definition subsumes aliveness, weak agreement, non-injective
agreement and injective agreement as defined in the same reference; broadly, it
requires the two participants to agree on all the essential data involved in the protocol
run, in our case, the public keys pkA and pkB and the email addresses.

Definition 1 (Full agreement, from [17]). A protocol guarantees to an initiator
A full agreement with a responder B on a set of data items ds if, whenever A com-
pletes a run of the protocol, apparently with responder B, then B has previously been
running the protocol, apparently with A, and B was acting as responder in his run,
and the two agents agreed on the data values corresponding to all the terms in ds,
and each such run of A corresponds to a unique run of B. Additionally, ds contains
all the atomic data items used in the protocol run.

Here we redefine this property in terms of p ≡ p and introduce informally other
properties in which we are interested.

Property 1 (Full agreement). A full agreement between A and B holds on pkA, pkB ,
emailA and emailB if, whenever A completes a successful handshake with B, then: B
has previously been running the protocol with A, the identity data of A is (emailA,
pkA) and the identity data of B is (emailB, pkB).

Recall that a successful handshake is only reached if B confirms that the trustwords
given by A match exactly those shown in his device, and vice versa; therefore, the
agreement on the trustwords is implicit in the definition.

Property 2 (Trust-by-Handshake). Trust-by-Handshake holds for B if whenever B

receives a message with privacy rating Trusted from A, then previously B executed
a successful handhsake with A.

Property 3 (Privacy-from-trusted). Privacy-from-trusted holds for B if, whenever B
receives a message m with a privacy rating Trusted from A, then A sent m to B

and m is encrypted with B’s public key.

Property 4 (Integrity-from-trusted). Integrity-from-trusted holds for B if, whenever
B receives a message m with a privacy rating Trusted form A, then A sent m to
B and m is signed with a valid signature of A.

Property 5 (MITM-detection). MITM-detection holds if whenever an unsuccessful
handshake between A and B occurs, then A had previously registered a key for B

that does not belong to him, vice versa, or both.

Property 6 (Confidentiality). Confidentiality holds if M cannot learn the content of
any message sent encrypted between A and B.
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6 Formal Security Analysis

A security analysis requires three elements: a protocol model, a set of security prop-
erties, and a threat model defining the capabilities of the adversary by which the
scope of the verification is framed.

We model the p ≡ p protocols in the applied pi calculus [3], a process calculus
suitable for describing and reasoning about security protocols in the symbolic ap-
proach. Participants are represented as processes and their message exchanges are
represented by terms sent over public or private channels. A so called equational
theory defines how the cryptographic operations occurring in the protocol relate
with each other, and how they can be applied to obtain equivalent terms.

6.1 Threat Model and Trust Assumptions

The initial assumption is that the participants have a genuine and correct distribu-
tion of the p ≡ p software (free of implementation flaws). To determine a relevant
attacker model we need to consider the decentralized architecture of p ≡ p. To an
attacker with access to the user’s device, not only the code but also the application
databases and the keys repository are available. M can thus have B trusting her by
simply modifying the corresponding record in the privacy ratings database, even if
a handshake was never performed. Modifications to the trustwords database would
also result in an attack, which although not threatening privacy, could prevent A

and B from establishing a valid trusted communication as Trusted. Therefore, we
restrict the threat model with the following assumptions:

1. p ≡ p users are honest participants and their devices are secure;
2. The adversary cannot modify exchanges over the trustwords channel;
3. The adversary has complete control over the network used to exchange emails

(Dolev-Yao attacker [13]);

These assumptions allow M to eavesdrop, remove, and modify emails exchanged
between A and B, as well as to send them messages of her choice; this includes
learning their public keys exchanged by email. M cannot however interfere with the
channel used to corroborate trustwords. Remark that this is a secondary channel such
as the phone or in-person, thus, not intended to replace the email communication
channel.

6.2 Modeling the p ≡ p Protocol

The p ≡ p protocol consists of the sequential execution of the key distribution and
the trust establishment protocols presented in Section 4.

A and B are represented by two processes, senderA and receiverB, whose pa-
rameters symbolize the knowledge that they have. To communicate with B, A needs
to know his contact details, which here we abstract with the type userId ; in turn, B
only needs to know his own id and his secret key. The actions for each participant
come from the diagrams in Figures 1 and 2. We run multiple instances of A as well
as of B, to simulate communication with multiple peers.
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For the exchange of emails we use a public channel; on the contrary, a private
channel models the trustwords’ validation channel. In order to prove confidentiality
of encrypted and authenticated communication, we introduce a private messagemssg
representing a message whose content is initially unknown to M; then, we model
A sending mssg to B via the public channel after a successful handshake between
them. Since B is trusted, mssg is sent signed and encrypted (steps 8-9, Fig. 2), and
thus, expected to remain unreadable by M at the end of the protocol.

According to the symbolic model assumption, our equational theory models a
perfect behavior of asymmetric encryption and digital signatures. These equations
capture the relationships allowed among the cryptographic primitives involved, de-
termining the ways in which any participant, the attacker included, can reduce terms.
Then, for M a message and SK a secret key:

adec(aenc(M , pubKey(SK )), SK ) = M (1)

verifSign(sign(M ,SK ), pubKey(SK )) = M (2)

getMssg(sign(M , SK )) = M (3)

Equation (1) expresses that a message M encrypted with a certain public key
can be decrypted with the corresponding secret key; moreover, this is the only way
to obtain M from a ciphertext since there is no other equation involving the aenc

primitive. Analogously, equation (2) returns M only if it was signed with the secret
key associated to the public key used for the verification. Equation (3) allows the
recovery of a message without verification of a digital signature and we introduce
it here to model the capability of M for learning messages without the need of
verifying the signature.

Additionally, we assume and model that users execute the comparison of trust-
words correctly, i.e., they confirm the trustwords in the system only when they match
in the real world and they reject them only in the contrary case. This assumption
implies also correctness of the trustwords generation function. We abstract finger-
prints as public keys since a PGP fingerprint is uniquely derived from a public key.
Then, for two public keys PK1 , PK2 , two trustwords listsW1,W2 and the trustwords
generation function trustwords :

trustwordsMatch(trustwords(PK1 ,PK2 ), trustwords(PK1 ,PK2 )) = true

trustwordsMatch(trustwords(PK1 ,PK2 ), trustwords(PK2 ,PK1 )) = true

otherwise trustwordsMatch(W1 ,W2 ) = false.

During its computations, M is allowed to apply all and only these primitives.
Additionally, she has access to all the messages exchanged via the public channels
and to any information declared as public. This models for instance M’s real-life
capability of generating the trustwords, which is possible because all the elements
are public knowledge: the source code of the function, the trustwords database, B’s
public key and A’s public key.
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6.3 Privacy and Authentication Properties of p ≡ p

We formalize the properties introduced in Section 5 as correspondence and reacha-
bility queries based on events. Correspondences have the form E =⇒ e1 ∧ ... ∧ en;
they model properties expressing: if an event E is executed, then events e1, ..., en
have been previously executed. Events mark important states reached by the proto-
col and do not affect the protocol’s behavior. Our properties are defined in terms of
the next events, where s and r represent two p ≡ p users:

– endHandshakeOk(s,r,pks,pkr,es,er): s and r completed a successful handshake
with the public keys and emails (pks, es) and (pkr, er) respectively.

– startHandshake(s,r): s starts a handshake via a second-channel with r
– userKey(s,pks): the agent s is the owner of the key pks
– userEmail(s,es): the agent s owns the email address es
– receiveGreen(r,s,m): r received the message m from s as Trusted
– receiverTrustsS(r,s): the contacted peer r sets the privacy rating of s asTrusted

after confirming that the trustwords match
– sendGreen(s,r,m): s sent the message m to r as Trusted
– decryptionFails(r,s,m): r cannot decrypt a message m from a trusted peer s
– signVerifFails(r,s,m): r cannot verify the signature attached to m as a valid

signature of s
– endHandshakeUnsucc(s,r,pks,pkr): s and r completed an unsuccessful handshake

with the public keys pks and pkr respectively.
– attacker(m): the adversary knows the content of the message m

Then, for a private message mssg and for all p ≡ p users a and b, messages m

and public keys ka, kb, pkA, pkB:

Full Agreement. For email addresses eA and eB,

endHandshakeOk (a, b, pkA, pkB , eA, eB) =⇒ startHandshake(a,b) ∧ startHandshake(b,a)

∧ userKey(a, pkA) ∧ userKey(b, pkB)

∧ userEmail(a, eA) ∧ userEmail(b, eB)

In our model the email address is abstracted as the identity itself, since we consider the
case of one account per user. Therefore, in the verification the userEmail predicates are
disregarded. We include them here for completeness.

Trust-by-Handshake.

receiveGreen(b, a,m) =⇒ receiverT rustsS(b, a)

This formula matches exactly the definition of Property 2.

Privacy-from-Trusted. For a message z,
(

receiveGreen(b, a, z) =⇒ sendGreen(a, b, z) ∧ z = aenc(m, pkB)

∧ userKey(b, pkB)
)

∧
(

decryptionFails(b, a,m) =⇒ ¬ sendGreen(a, b,m)
)

This formula is the conjunction of two correspondence assertions. The first one expresses
Property 3; the second correspondence enforces the first by saying that it cannot be other-
wise, i.e., when b receives a message m from a which for any reason cannot be decrypted—
e.g. m is not encrypted—, then a did not send m to b.
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Integrity-from-Trusted. For a message z and a secret key skA
(

receiveGreen(b, a, z) =⇒ sendGreen(a, b, z) ∧ z = aenc(sign(m,skA), kb)

∧ userKey(a, skA)
)

∧
(

signVerifFails(b, a,m) =⇒ ¬ sendGreen(a, b,m)
)

Analogous to the previous formula, in this one we express Property 4 and reinforce it by
proving that whenever the verification of the signature fails in message m, then a did not
send m.

MITM-detection.

endHandshakeUnsucc(a, b, ka, kb) =⇒ (userKey(a, pkA) ∧ pkA 6= ka) ∨

(userKey(b, pkB) ∧ pkB 6= kb)

This formula matches exactly the definition of Property 5.

Confidentiality. attacker is a built in predicate in ProVerif, which evaluates to TRUE if
by applying the derivation rules to the knowledge of the adversary, there exists a derivation
that results in mssg. Therefore, the protocol achieves confidentiality if

¬ attacker(mssg)

6.4 Verification Results and Analysis

In order to determine whether or not the protocol satisfies the specified security
properties we use ProVerif [8], an automatic symbolic cryptographic protocol verifier.
We executed the verification3 with ProVerif 2.0 on a standard PC (Intel i7 2.7GHz,
8GB RAM). The response time was immediate.

We analyzed three different models: of the key distribution protocol, of the trust
establishment protocol and of the key distribution followed by the trust establish-
ment (the p ≡ p protocol).

For the key distribution protocol, the results confirmed its vulnerability to MITM
attacks. The weakness resides in the exchange of public keys via a channel where
M has complete access. An attack proceeds as follows: M can intercept the initial
message from A to B and send him a new message attaching her own public key,
pkE , instead of A’s one. pEpB will then link M’s key with A’s email in step (7) of
Fig. 1, i.e., storeId(idAB , emailA, pkE ). When B replies, the message in step (10)
is encrypted with pkE , and thus M can intercept it again and decrypt it with her
secret key, therefore obtaining pkB attached. From this point, M can send encrypted
emails to B using A’s email address and she will be able to intercept and decrypt
the responses sent by B. In an analogous way, M can have A linking M’s public key
to B’s identity, by sending her pkE encrypted with pkA obtained by intercepting the
first message.

Regarding the trust establishment protocol, encryption and authentication hold
since the trustwords comparison never mismatches due to the assumptions of the
peer devices being secure and of a previous key distribution successfully executed.

3 https://www.dropbox.com/s/ste22xe2zfj9bnt/fullPepProtocol.pv?dl=0
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The subsequent analysis of the p ≡ p protocol determined that the
six properties (full agreement, trust-by-handshake, privacy-from-trusted, integrity-
from-trusted, MITM-detection and confidentiality) are satisfied.

Regarding unsuccessful handshakes, even if A has the correct public key of B, the
handshake will fail if B has a key of A that does not correspond to her. Both partners
will mistrust each other because the communication with those keys is threatened,
however, once a peer is mistrusted, by p ≡ p design such a privacy rating can not
be reverted. This might be an issue, for instance if in the future A and B meet in
person and exchange their public keys; they can then perform the handshake and B

would be able to trust A, but A would not be able to trust B in her device. In this
case though, M misleading A to mistrust the intended partner is closer to a Denial
of Service (DoS) attack but does not represent a threat to privacy.

We conclude that the execution of the p ≡ p protocol fulfills the claimed
security goals, i.e., after a successful handshake there is no undetectable way forM
to modify the exchanges between A and B, given that every message between them
is always sent encrypted and signed with the corresponding keys. As a consequence,
the privacy, authentication and integrity of the messages is preserved. Also, entity
authentication is achieved by the p ≡ p trust establishment protocol. These results
depend on the assumptions of p ≡ p residing in a secure environment, of a secure
second channel for the trustwords comparison and of p ≡ p users owning a single
instance of p ≡ p with a single email account.

6.5 Limitations

This analysis focuses solely on the technical specification of the key distribution and
handshake protocols. Social attacks such as impersonation or phishing are however
still possible; for instance M can create a fake email account related to A’s name
and then use it to send B an email attaching M’s public key and contact details. If
B has never met A, a handshake via trustwords comparison with M would succeed
given that both partners are indeed executing the protocol, but the human B thinks
that he is interacting with the human A.

The assumption of perfect cryptography implies that we consider the libraries
implementing cryptographic operations to be correct. Implementation flaws in p ≡ p

and side-channel attacks are not considered either; however, we highlight the require-
ment for the software to ensure that the trustwords database provided contains ex-
actly the same data in all the distributions, to prevent introducing false mismatches
during the trustwords generation.

7 Concluding Remarks

We executed a symbolic security analysis of the specifications of p ≡ p protocols for
key distribution and authentication, validating the exchange of authenticated
end-to-end encrypted email between two p ≡ p trusted peers. Here, we
conclude by discussing some points that we have considered to extend this analysis
in the future.
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How humans behave when comparing trustwords is not considered in this work;
yet, incorrect input from users, such as mistrusting a trusted peer or vice-versa,
might introduce security flaws. These situations happen, for instance, when users
verify only the first two words of the list or when they click the trustwords confirma-
tion button without comparing the trustwords. A formal model of human errors in
human-to-machine authentication protocols is proposed in [7]; adapting such an ap-
proach to studying further the mentioned scenarios could give insights into how flaws
introduced by users can be prevented. Understanding the causes and frequency of
incorrect behavior requires a different kind of analysis mainly in the scope of usable
security.

Another direction speculates whether solutions for automating security in IM
can be applied in the context of email, as messaging protocols—e.g. Signal—achieve
stronger security properties, such as forward secrecy. The underlying reason prevent-
ing p ≡ p from adopting similar approaches, hence upgrading security guarantees
while depending less on the user, relies on the use of central servers; for instance,
Signal uses a proprietary server as a deposit for ephemeral keys involved in the
protocol. This is in opposition with the decentralized paradigm adopted in p ≡ p’s
design, decision supported by the idea that “the winner (i.e. the attacker) always
takes all in centralized designs”.
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Fig. 1. p ≡ p Key Distribution Protocol
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Fig. 2. p ≡ p Handshake Protocol for authentication
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