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Abstract

A vertex subset 𝐼 of a graph 𝐺 is called a 𝑘-path vertex cover if every path on
𝑘 vertices in 𝐺 contains at least one vertex from 𝐼. The 𝑘-Path Vertex Cover
Reconfiguration (𝑘-PVCR) problem asks if one can transform one 𝑘-path vertex
cover into another via a sequence of 𝑘-path vertex covers where each intermediate
member is obtained from its predecessor by applying a given reconfiguration rule
exactly once. We investigate the computational complexity of 𝑘-PVCR from the
viewpoint of graph classes under the well-known reconfiguration rules: TS, TJ,
and TAR. The problem for 𝑘 = 2, known as the Vertex Cover Reconfiguration
(VCR) problem, has been well-studied in the literature. We show that certain
known hardness results for VCR on different graph classes can be extended for
𝑘-PVCR. In particular, we prove a complexity dichotomy for 𝑘-PVCR on general
graphs: on those whose maximum degree is three (and even planar), the problem
is PSPACE-complete, while on those whose maximum degree is two (i.e., paths
and cycles), the problem can be solved in polynomial time. Additionally, we also
design polynomial-time algorithms for 𝑘-PVCR on trees under each of TJ and
TAR. Moreover, on paths, cycles, and trees, we describe how one can construct a
reconfiguration sequence between two given 𝑘-path vertex covers in a yes-instance.
In particular, on paths, our constructed reconfiguration sequence is shortest.

1 Introduction
Recently, a collection of problems called Combinatorial Reconfiguration has been
extensively studied. Work in this research area specifically aims to model dynamic sit-
uations where one needs to transform one feasible solution of a computational problem
into another by locally changing a solution while keeping its feasibility along the way.
In a reconfiguration setting, two feasible solutions of a computational problem (e.g.,
Satisfiability, Independent Set, Vertex Cover, Dominating Set, etc.) are given,
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along with a reconfiguration rule that describes an adjacency relation between solutions.
A reconfiguration problem asks whether one feasible solution can be transformed into
the other via a sequence of adjacent feasible solutions where each intermediate member
is obtained from its predecessor by applying the given reconfiguration rule exactly once.
Such a sequence, if exists, is called a reconfiguration sequence. One may recall the
classic Rubik’s cube puzzle as an example of a reconfiguration problem, where each
configuration of the Rubik’s cube corresponds to a feasible solution, and two configura-
tions (solutions) are adjacent if one can be obtained from the other by rotating a face of
the cube by either 90, 180, or 270 degrees. The question is whether one can transform
an arbitrary configuration to the one where each face of the cube has only one color. For
an overview of this research area, readers are referred to the recent surveys [17, 25, 24].

1.1 𝑘-Path Vertex Cover Reconfiguration
Let 𝐺 = (𝑉, 𝐸) be a simple graph. A vertex cover of 𝐺 is a subset 𝐼 of 𝑉 where each
edge contains at least one vertex from 𝐼. The Vertex Cover (VC) problem, which asks
whether there is a vertex cover of 𝐺 whose size is at most some positive integer 𝑠, is
one of the classic NP-complete problems in the computational complexity theory [15].

Let 𝑘 ≥ 2 be a fixed positive integer. A subset 𝐼 of 𝑉 is called a 𝑘-path vertex cover
if every path on 𝑘 vertices in 𝐺 contains at least one vertex from 𝐼. The 𝑘-Path Vertex
Cover (𝑘-PVC) problem asks if there is a 𝑘-path vertex cover of𝐺 whose size is at most
some positive integer 𝑠. Motivated by the importance of a problem related to secure
communication in wireless sensor networks, Brešar et al. initiated the study of 𝑘-PVC
in [8] (as a generalized concept of vertex cover). It is known that 𝑘-PVC is NP-complete
for every 𝑘 ≥ 2 [1, 8]. Subsequent work regarding the maximum variant [23] and
weighted variant [9] of 𝑘-PVC has also been considered in the literature. Recently, the
study of 𝑘-PVC and related problems has gained a lot of attention from both theoretical
aspect [21, 26, 27] and practical application [3, 14].

In this paper, we initiate the study of 𝑘-PVC from the viewpoint of combinatorial
reconfiguration. Given two distinct 𝑘-path vertex covers 𝐼 and 𝐽 of a graph 𝐺 and a
single reconfiguration rule, the 𝑘-Path Vertex Cover Reconfiguration (𝑘-PVCR)
problem asks whether there is a reconfiguration sequence between 𝐼 and 𝐽. We study the
computational complexity of 𝑘-PVCR with respect to different graph classes under the
well-known reconfiguration rules: Token Sliding, Token Jumping, and Token Addition
or Removal. They are informally defined as follows. Imagine that a token is placed at
each vertex of a 𝑘-path vertex cover in 𝐺. For each of the following rules, a common
requirement is that the resulting token-set forms a 𝑘-path vertex cover of 𝐺.

• Token Sliding (TS): A TS-step involves moving a token on some vertex 𝑣 to one
of its unoccupied neighbors.

• Token Jumping (TJ): A TJ-step involves moving a token on 𝑣 to any unoccupied
vertex.

• Token Addition or Removal (TAR): A TAR-step involves either adding or re-
moving a single token such that the resulting token-set is of size at most given
positive integer 𝑢. We sometimes write “TAR(𝑢)” instead of “TAR” to emphasize
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the upper bound 𝑢 on the size of each token-set in a reconfiguration sequence
under TAR.

1.2 Related Work
The reoptimization framework is closely related to reconfiguration. Roughly speaking,
given an optimal solution of a problem instanceI, and some perturbations that changeI
into a new instanceI ′, a reoptimization problem aims to find an optimal solution for the
changed instance I ′. Recently, Kumar et al. [21] initiated the study of reoptimization
problems for (both weighted and unweighted) 𝑘-PVC with 𝑘 ≥ 3, extending some
known reoptimization paradigms for the well-known VC problem [2]. The perturbation
they considered in [21] is changing the input graph of the current instance by inserting
new vertices.

The Vertex Cover Reconfiguration (VCR) problem is one of the most well-
studied reconfiguration problems, from both classical and parameterized complexity
viewpoints (e.g., see [25] for a quick summary of known results). It is well-known
that if 𝐼 is a vertex cover of a graph 𝐺 = (𝑉, 𝐸) then 𝑉 \ 𝐼 is an independent set of
𝐺, i.e., a vertex subset whose members are pairwise non-adjacent. Consequently, from
classical complexity viewpoint, results of Independent Set Reconfiguration (ISR)
and Vertex Cover Reconfiguration are interchangeable.

We now mention some known complexity results of VCR (which are mostly in-
terchanged with ISR) for some graph classes. It is well-known that VCR is PSPACE-
complete under each of TS, TJ, and TAR for general graphs [18], planar graphs of max-
imum degree three [16, 19], perfect graphs [20], and bounded bandwidth graphs [28].
Even on bipartite graphs, VCR remains PSPACE-complete under TS, and NP-complete
under each of TJ and TAR [22]. On chordal graphs (and even on split graphs), VCR
is known to be PSPACE-complete under TS [4]. On the positive side, polynomial-time
algorithms have been designed for VCR on even-hole-free graphs (and therefore chordal
graphs) under each of TJ and TAR [20], on bipartite permutation graphs and bipartite
distance-hereditary graphs [13] under TS, on cographs [6, 20], claw-free graphs [7],
interval graphs [5, 20, 10], and trees [11, 20] under each of TS, TJ, and TAR.

1.3 Our Results
In this paper, we investigate the complexity of 𝑘-PVCR with respect to different input
graphs (see Figure 1). More precisely, we show that:

• Several hardness results for VCR remain true for 𝑘-PVCR. More precisely, we
show the PSPACE-completeness of 𝑘-PVCR on general graphs under each rule TS,
TJ, and TAR using a reduction from a variant of VCR. As our reduction preserves
some nice graph properties, we claim (as a consequence of our reduction) that
the hardness results for VCR on several graphs (namely planar graphs, bounded
bandwidth graphs, chordal graphs) can be converted into those for 𝑘-PVCR.
Using a reduction from the Nondeterministic Constraint Logic [16, 29],
we also show that 𝑘-PVCR remains PSPACE-complete even on planar graphs of
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Figure 1: Computational complexity of 𝑘-PVCR on some graph classes, under each of
TS, TJ, and TAR(𝑢). Each arrow from 𝐴 to 𝐵 means 𝐵 is a subclass of 𝐴.

bounded bandwidth and maximum degree three. (Our reduction from VCR does
not preserve the maximum degree.)

• On the positive side, we design polynomial-time algorithms for 𝑘-PVCR on some
restricted graph classes: trees (under each of TJ and TAR), paths and cycles (under
each of TS, TJ, and TAR). Our algorithms are constructive, i.e., we explicitly
show how a reconfiguration sequence can be constructed in a yes-instance. On
paths, we claim that our algorithm constructs a shortest reconfiguration sequence.
As a result, we obtain a complexity dichotomy for 𝑘-PVCR on (planar) graphs
with respect to their maximum degree.

2 Preliminaries
In this section, we define some useful notation and terminology. For standard concepts
on graphs, we refer readers to [12].

Let 𝐺 be a simple graph with vertex-set 𝑉 (𝐺) and edge-set 𝐸 (𝐺). For two vertices
𝑢, 𝑣, we denote by dist𝐺 (𝑢, 𝑣) the distance between 𝑢 and 𝑣 in 𝐺, i.e., the number of
edges in a shortest path between them. For a vertex 𝑣 ∈ 𝑉 (𝐺), we denote by 𝐺 − 𝑣 the
graph obtained from 𝐺 by removing the vertex 𝑣 and all incident edges. For two vertex
subsets 𝐼 and 𝐽, we denote by 𝐺 [𝐼Δ𝐽] the subgraph of 𝐺 induced by their symmetric
difference 𝐼Δ𝐽 = (𝐼 \ 𝐽) ∪ (𝐽 \ 𝐼). For a fixed integer 𝑘 ≥ 2, we say that a vertex 𝑣
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covers a 𝑘-path (i.e., a path on 𝑘 vertices) 𝑃𝑘 in 𝐺 if 𝑣 ∈ 𝑉 (𝑃𝑘 ). A vertex subset 𝐼 is
called a 𝑘-path vertex cover if every 𝑘-path in 𝐺 contains at least one vertex from 𝐼.
In other words, vertices of 𝐼 cover all 𝑘-paths in 𝐺. We denote by 𝜓𝑘 (𝐺) the size of
a minimum 𝑘-path vertex cover of 𝐺. Trivially, for 𝑛 ≥ 𝑘 ≥ 2, 𝜓𝑘 (𝑃𝑛) = b𝑛/𝑘c and
𝜓𝑘 (𝐶𝑛) = d𝑛/𝑘e for a path 𝑃𝑛 and a cycle 𝐶𝑛 on 𝑛 vertices.

Throughout this paper, we denote by (𝐺, 𝐼, 𝐽,R) an instance of 𝑘-PVCR under a
reconfiguration rule R ∈ {TJ, TS, TAR}, where 𝐼 and 𝐽 are two 𝑘-path vertex covers of𝐺.
We shall respectively call a reconfiguration sequence under each of TS, TJ, and TAR by
a TS-sequence, TJ-sequence, and TAR(𝑢)-sequence. Formally, let 𝑆 = 〈𝐼0, 𝐼1, . . . , 𝐼ℓ〉
be an ordered sequence of 𝑘-path vertex covers of 𝐺. The length of 𝑆 is defined as ℓ,
i.e., if 𝑆 is a reconfiguration sequence then its length is exactly the number of steps it
performs under the given reconfiguration rule. Imagine that a token is placed at each
vertex of a 𝑘-path vertex cover of𝐺. We may sometimes identify a token with the vertex
where it is placed and say “a token in a 𝑘-path vertex cover”, and therefore use the terms
“token-set” and “𝑘-path vertex cover” interchangeably. We say that 𝑆 is a TS-sequence
between two 𝑘-path vertex covers 𝐼0 and 𝐼ℓ if for each 𝑖 ∈ {0, . . . , ℓ − 1}, there exist
two vertices 𝑥𝑖 and 𝑦𝑖 such that 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥𝑖}, 𝐼𝑖+1 \ 𝐼𝑖 = {𝑦𝑖}, and 𝑥𝑖𝑦𝑖 ∈ 𝐸 (𝐺).
Roughly speaking, 𝐼𝑖+1 is obtained from 𝐼𝑖 by sliding the token placed on 𝑥𝑖 to 𝑦𝑖
along an edge 𝑥𝑖𝑦𝑖 . Similarly, we say that 𝑆 is a TJ-sequence between 𝐼0 and 𝐼ℓ if for
each 𝑖 ∈ {0, . . . , ℓ − 1}, there exist two vertices 𝑥𝑖 and 𝑦𝑖 such that 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥𝑖},
𝐼𝑖+1 \ 𝐼𝑖 = {𝑦𝑖}. Intuitively, 𝐼𝑖+1 is obtained from 𝐼𝑖 by jumping the token placed on
𝑥𝑖 to 𝑦𝑖 . Now, if max{|𝐼𝑖 | : 0 ≤ 𝑖 ≤ ℓ} ≤ 𝑢 for some positive integer 𝑢, and for
each 𝑖 ∈ {0, . . . , ℓ − 1}, there exists a vertex 𝑥𝑖 such that 𝐼𝑖Δ𝐼𝑖+1 = {𝑥𝑖} then we say
that 𝑆 is a TAR(𝑢)-sequence between 𝐼0 and 𝐼ℓ . Roughly speaking, 𝐼𝑖+1 is obtained
from 𝐼𝑖 by either adding a token to 𝑥𝑖 or removing a token from 𝑥𝑖 . If a TS-, TJ-, or
TAR(𝑢)-sequence between two 𝑘-path vertex covers 𝐼 and 𝐽 exists, we say that 𝐼 and 𝐽

are reconfigurable under TS, TJ, or TAR, respectively.
Using a similar argument as in [20, Theorem 1], we can prove the following useful

lemma.

Lemma 1. There exists a TJ-sequence of length ℓ between two 𝑘-path vertex covers
𝐼, 𝐽 of a graph 𝐺 with |𝐼 | = |𝐽 | = 𝑠 if and only if there exists a TAR(𝑠 + 1)-sequence of
length 2ℓ between them.

A reconfiguration sequence of minimum length is called a shortest reconfiguration
sequence. For a reconfiguration sequence 𝑆 = 〈𝐼0, 𝐼1, . . . , 𝐼𝑝〉, we denote by rev(𝑆) the
reverse of 𝑆, i.e., the reconfiguration sequence 〈𝐼𝑝 , . . . , 𝐼1, 𝐼0〉. For two reconfiguration
sequences 𝑆 = 〈𝐼0, 𝐼1, . . . , 𝐼𝑝〉 and 𝑆′ = 〈𝐼 ′0, 𝐼

′
1, . . . , 𝐼

′
𝑞〉 under the same reconfiguration

rule, if 𝐼𝑝 = 𝐼 ′0 then we say that they can be concatenated and define their concatenation
𝑆 ⊕ 𝑆′ as the reconfiguration sequence 〈𝐼0, 𝐼1, . . . , 𝐼𝑝 , 𝐼 ′1, . . . , 𝐼

′
𝑞〉. We assume for

convenience that if 𝑆′ is empty then 𝑆 ⊕ 𝑆′ = 𝑆′ ⊕ 𝑆 = 𝑆.
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3 Hardness Results
3.1 Reduction from Vertex Cover Reconfiguration
In this section, we prove the following theorem using a polynomial-time reduction from
VCR.

Theorem 2. 𝑘-PVCR is PSPACE-complete under each of TS, TJ, and TAR even when
the input graph is a planar graph of maximum degree four, or a bounded bandwidth
graph. Additionally, 𝑘-PVCR is PSPACE-complete under TS on chordal graphs.

The outline of our proof is as follows:

(1) In Lemma 3, using a reduction similar to that in [8], we show the PSPACE-
completeness of 𝑘-PVCR under TJ.

(2) In Lemma 4, we combine (1), the known results for VCR, and Lemma 1 to show
the hardness results on several graphs under each of TJ and TAR as mentioned in
Theorem 2.

(3) Finally, in Lemma 5, we show that the hardness results under TS hold via the
same reduction.

Lemma 3. 𝑘-PVCR is PSPACE-complete under TJ.

Proof. Given two distinct minimum 𝑘-path vertex covers 𝐼 and 𝐽 of a graph 𝐺 and a
single reconfiguration rule, the Minimum 𝑘-Path Vertex Cover Reconfiguration
(Min-𝑘-PVCR) problem asks whether there is a reconfiguration sequence between 𝐼

and 𝐽. For 𝑘 = 2, the Min-𝑘-PVCR problem is also known as Minimum Vertex Cover
Reconfiguration (Min-VCR).

Clearly, since 𝑘-Path Vertex Cover is in NP [8], it follows from [18] that 𝑘-PVCR
is in PSPACE. Since 𝑘-PVCR is more general than Min-𝑘-PVCR, in order to show the
PSPACE-completeness of 𝑘-PVCR, it suffices to reduce from the Min-VCR problem
(which is known to be PSPACE-complete [18]) to the Min-𝑘-PVCR problem. More
precisely, given an instance (𝐺, 𝐼, 𝐽, TJ) of Min-VCR, we construct a corresponding
instance (𝐺 ′, 𝐼 ′, 𝐽 ′, TJ) of Min-𝑘-PVCR as follows. Let 𝐺 ′ be the graph obtained from
𝐺 by joining each vertex 𝑥 of 𝐺 to an endpoint of a new path 𝑃𝑥 on b(𝑘−1)/2c vertices.
We choose 𝐼 ′ = 𝐼 and 𝐽 ′ = 𝐽. Note that each vertex cover of 𝐺 is also a 𝑘-path vertex
cover of 𝐺 ′, Moreover, for any minimum 𝑘-path vertex cover 𝐼 ′ of 𝐺 ′, if 𝐼 ′ contains a
new vertex 𝑦 in a path 𝑃𝑥 for some vertex 𝑥 of 𝐺 then (𝐼 ′ \ {𝑦}) ∪ {𝑥} is also a minimum
𝑘-path vertex cover of 𝐺 ′, because any 𝑘-path covered by 𝑦 must also be covered by 𝑥.
Consequently, (𝐺 ′, 𝐼 ′, 𝐽 ′, TJ) is an instance of Min-𝑘-PVCR.

It is clear that this construction can be done in polynomial time. It remains to
show that (𝐺, 𝐼, 𝐽, TJ) is a yes-instance of Min-VCR if and only if (𝐺 ′, 𝐼 ′, 𝐽 ′, TJ) is a
yes-instance of Min-𝑘-PVCR.

Assume that (𝐺, 𝐼, 𝐽, TJ) is a yes-instance of Min-VCR, that is, there exists a
TJ-sequence 〈𝐼 = 𝐼0, 𝐼1, . . . , 𝐼𝑝 = 𝐽〉 between 𝐼 and 𝐽 in 𝐺. Clearly, for any 𝑖 ∈
{0, 1, . . . , 𝑝}, the set 𝐼𝑖 is also a minimum 𝑘-path vertex cover of 𝐺 ′. Then, 〈𝐼 =

𝐼0, 𝐼1, . . . , 𝐼𝑝 = 𝐽〉 is also a TJ-sequence between 𝐼 ′ = 𝐼 and 𝐽 ′ = 𝐽 in 𝐺 ′.
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Now, assume that (𝐺 ′, 𝐼 ′, 𝐽 ′, TJ) is a yes-instance of Min-𝑘-PVCR in 𝐺 ′, that is,
there exists a TJ-sequence 𝑆 = 〈𝐼 ′ = 𝐼 ′0, 𝐼

′
1, . . . , 𝐼

′
𝑞 = 𝐽 ′〉 between 𝐼 ′ = 𝐼 and 𝐽 ′ = 𝐽

in 𝐺 ′. We claim that (𝐺, 𝐼, 𝐽, TJ) is also a yes-instance by constructing a TJ-sequence
between 𝐼 and 𝐽 in𝐺. For 𝑖 ∈ {0, 1, . . . , 𝑞}, let 𝐼𝑖 = 𝐼 ′

𝑖
\⋃𝑥∈𝑉 (𝐺) 𝑉 (𝑃𝑥)∩⋃𝑥∈𝑉 (𝐺) {𝑥 :

𝐼 ′
𝑖
∩ 𝑉 (𝑃𝑥) ≠ ∅}. Intuitively, 𝐼𝑖 is obtained from 𝐼 ′

𝑖
by moving each token placed at

some new vertex in 𝑃𝑥 to 𝑥 itself. Since any 𝑘-path covered by some vertex in 𝑃𝑥 is
also covered by 𝑥, and each 𝐼 ′

𝑖
is minimum, such moves are well-defined. Clearly, each

𝐼𝑖 is a minimum vertex cover of 𝐺. For 𝑖 ∈ {0, 1, . . . , 𝑞−1}, let 𝑥 ′
𝑖
and 𝑦′

𝑖
be two distinct

vertices of 𝐺 ′ such that 𝐼 ′
𝑖
\ 𝐼 ′

𝑖+1 = {𝑥 ′
𝑖
} and 𝐼 ′

𝑖+1 \ 𝐼
′
𝑖
= {𝑦′

𝑖
}. Next, we will show that

𝐼𝑖+1 can be obtained from 𝐼𝑖 by performing at most one TJ-step in 𝐺.

• Case 1: 𝑥 ′
𝑖
∈ 𝑉 (𝐺) and 𝑦′

𝑖
∈ 𝑉 (𝐺). By definition, 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥 ′

𝑖
} and

𝐼𝑖+1 \ 𝐼𝑖 = {𝑦′𝑖 }.

• Case 2: 𝑥 ′
𝑖
∈ 𝑉 (𝐺) and 𝑦′

𝑖
∈ 𝑉 (𝐺 ′) \ 𝑉 (𝐺). Then, 𝑦′

𝑖
must belong to a new

path 𝑃𝑦 joined to some vertex 𝑦 ∈ 𝑉 (𝐺). By definition, 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥 ′
𝑖
} and

𝐼𝑖+1 \ 𝐼𝑖 = {𝑦}. Note that if 𝑥 ′
𝑖
= 𝑦, then 𝐼𝑖 = 𝐼𝑖+1, and we are done. Moreover,

as we consider minimum 𝑘-path vertex covers, 𝑦 ∉ 𝐼 ′
𝑖
\ {𝑥 ′

𝑖
} and therefore 𝑦 ∉ 𝐼𝑖;

otherwise, we cannot move the token on 𝑥 ′
𝑖

to 𝑦′
𝑖
.

• Case 3: 𝑥 ′
𝑖
∈ 𝑉 (𝐺 ′) \ 𝑉 (𝐺) and 𝑦′

𝑖
∈ 𝑉 (𝐺). As before, 𝑥 ′

𝑖
must belong to a

new path 𝑃𝑥 joined to some vertex 𝑥 ∈ 𝑉 (𝐺). By definition, 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥} and
𝐼𝑖+1 \ 𝐼𝑖 = {𝑦′𝑖 }. Note that if 𝑥 = 𝑦′

𝑖
, then 𝐼𝑖 = 𝐼𝑖+1.

• Case 4: 𝑥 ′
𝑖
∈ 𝑉 (𝐺 ′) \ 𝑉 (𝐺) and 𝑦′

𝑖
∈ 𝑉 (𝐺 ′) \ 𝑉 (𝐺). As before, 𝑥 ′

𝑖
(resp. 𝑦′

𝑖
)

must belong to a new path 𝑃𝑥 (resp. 𝑃𝑦) joined to some vertex 𝑥 ∈ 𝑉 (𝐺) (resp.
𝑦 ∈ 𝑉 (𝐺)). By definition, 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥} and 𝐼𝑖+1 \ 𝐼𝑖 = {𝑦}. Note that if 𝑥 = 𝑦,
then 𝐼𝑖 = 𝐼𝑖+1.

Clearly, the sequence obtained from 〈𝐼0, 𝐼1, . . . , 𝐼𝑞〉 by removing redundant vertex
covers (i.e., those equal to their predecessors) is a TJ-sequence in 𝐺 that reconfigures
𝐼 = 𝐼0 to 𝐽 = 𝐼𝑞 .

Lemma 4. 𝑘-PVCR is PSPACE-complete under each of TJ and TAR on planar graphs
of maximum degree four and bounded bandwidth.

Proof. As we mention in Section 1.2, it is known that VCR is PSPACE-complete under
each of TJ, and TAR for planar graphs of maximum degree three [19], and bounded
bandwidth graphs [28]. In fact, these results are also hold in the case MIN-VCR [19, 28].
It is not hard to see that in the reduction presented in the proof of Lemma 3, if the
input graph 𝐺 is one of the mentioned graphs, then so is the constructed graph 𝐺 ′.
(In fact the bandwidth of 𝐺 ′ is 𝑂 (𝑘). However, since we defined that 𝑘 is a fixed
integer, 𝐺 ′ is of bounded bandwidth.) The hardness results under TAR are followed by
combining the known results for Vertex Cover Reconfiguration, the above results,
and Lemma 1.

Lemma 5. 𝑘-PVCR is PSPACE-complete under TS on planar graphs of maximum degree
four and bounded bandwidth, and chordal graphs.
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Proof. It is not hard to see that in the reduction presented in the proof of Lemma 3, if
the input graph 𝐺 is one of the mentioned graphs, then so is the constructed graph 𝐺 ′.

It is sufficient to show that any TJ-sequence 𝑆 = 〈𝐼0, 𝐼1, . . . , 𝐼𝑞〉 between two
minimum 𝑘-path vertex covers 𝐼 = 𝐼0 and 𝐽 = 𝐼𝑞 of the constructed graph 𝐺 ′ can be
converted into a TS-sequence between them in 𝐺 ′.

First of all, if 𝐼𝑖 ⊆ 𝑉 (𝐺) for all 𝑖 ∈ {0, 1, . . . , 𝑞} then we claim that 𝑆 itself is indeed
a TS-sequence. More precisely, we show that for each 𝑖 ∈ {0, 1, . . . , 𝑞 − 1}, if 𝑥𝑖 and
𝑦𝑖 are two distinct vertices of 𝐺 such that 𝐼𝑖 \ 𝐼𝑖+1 = {𝑥𝑖} and 𝐼𝑖+1 \ 𝐼𝑖 = {𝑦𝑖} then
𝑥𝑖𝑦𝑖 ∈ 𝐸 (𝐺) ⊆ 𝐸 (𝐺 ′). Suppose to the contrary that 𝑦𝑖 is not adjacent to 𝑥𝑖 . We note
that each 𝐼𝑖 (𝑖 ∈ {0, 1, . . . , 𝑞}) is also a minimum vertex cover of 𝐺. Now, in order to
move the token on 𝑥𝑖 to 𝑦𝑖 for obtaining a new vertex cover 𝐼𝑖+1 of 𝐺, each edge of 𝐺
incident with 𝑥𝑖 must already be covered by its other endpoint; otherwise, moving 𝑥𝑖
to 𝑦𝑖 left some non-covered edge. However, this means that one can obtain a vertex
cover of smaller size by simply removing 𝑥𝑖 from 𝐼𝑖 , which contradicts the fact that 𝐼𝑖
is minimum. Therefore, 𝑦𝑖 must be a neighbor of 𝑥𝑖 .

Now, from the above reduction, we know that there is always a TJ-sequence 𝑆′

between two 𝑘-path vertex covers 𝐼 ′ = 𝐼 \⋃𝑥∈𝑉 (𝐺) 𝑉 (𝑃𝑥) ∩⋃𝑥∈𝑉 (𝐺) {𝑥 : 𝐼 ∩𝑉 (𝑃𝑥) ≠
∅} and 𝐽 ′ = 𝐽 \⋃𝑥∈𝑉 (𝐺) 𝑉 (𝑃𝑥) ∩⋃𝑥∈𝑉 (𝐺) {𝑥 : 𝐽 ∩𝑉 (𝑃𝑥) ≠ ∅}, where all members of
𝑆′ are subsets of 𝑉 (𝐺). Here 𝑃𝑥 denotes the new path joined to the vertex 𝑥 ∈ 𝑉 (𝐺).
As a result, 𝑆′ is also a TS-sequence in 𝐺 ′. To construct a TS-sequence between 𝐼 and
𝐽, it suffices to show that one can construct a TS-sequence 𝑆′′ between 𝐼 and 𝐼 ′ in 𝐺 ′.
In a similar manner, we will be able to construct a TS-sequence between 𝐽 and 𝐽 ′, and
a TS-sequence between 𝐼 and 𝐽 can be formed by simply reconfiguring 𝐼 to 𝐼 ′, then 𝐼 ′

to 𝐽 ′, and finally 𝐽 ′ to 𝐽. Let 𝑥 ∈ 𝑉 (𝐺) be such that 𝐼 ∩ 𝑉 (𝑃𝑥) = {𝑥 ′}. Since 𝐼 is a
minimum 𝑘-path vertex cover of𝐺 ′, we have 𝑥 ∉ 𝐼. We claim that 𝐼 can be reconfigured
to 𝐼 \ {𝑥 ′} ∪ {𝑥} using TS-steps. Let 𝑃 = 𝑣0𝑣1 . . . 𝑣ℓ (0 ≤ ℓ ≤ b(𝑘 − 1)/2c) be the
unique path in 𝐺 ′ joining 𝑣0 = 𝑥 and 𝑣ℓ = 𝑥 ′. Note that for each 𝑗 ∈ {1, . . . , ℓ}, any
𝑘-path covered by 𝑣 𝑗 is also covered by each vertex in {𝑣0, . . . , 𝑣 𝑗−1}. Moreover, as we
consider minimum 𝑘-path vertex covers, exactly one of 𝑣 𝑗 ( 𝑗 ∈ {0, 1, . . . , ℓ}) contains
a token. Hence, one can obtain 𝐼 \ {𝑥 ′} ∪ {𝑥} from 𝐼 by simply sliding the token on
𝑥 ′ ∈ 𝐼 to 𝑥 along the path 𝑃. Applying this process repeatedly for each 𝑥 ∈ 𝑉 (𝐺) where
𝐼 ∩𝑉 (𝑃𝑥) ≠ ∅, we obtain a TS-sequence in 𝐺 ′ between 𝐼 and 𝐼 ′.

Our proof of Theorem 2 is complete.

3.2 Reduction from Nondeterministic Constraint Logic
In Theorem 2, we show the PSPACE-completeness for planar graphs of maximum
degree four. Furthermore, using a reduction from the Nondeterministic Constraint
Logic [16, 29] (NCL, for short), we can improve this result as follows.

Theorem 6. 𝑘-PVCR remains PSPACE-complete under each of TS, TJ, and TAR even
on planar graphs of bounded bandwidth and maximum degree three.

In this section, we briefly define NCL and show the cases for TS and TJ, because
the case for TAR can be shown similar to the proof of Lemma 1. This result can
be obtained by constructing polynomial-time reductions from NCL—a well-known
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PSPACE-complete problem first introduced by Hearn and Demaine [16]. This problem
is often used to prove the computational hardness of puzzles and games, because a
reduction from this problem requires to construct only two types of gadgets, called and
and or gadgets.

3.2.1 Nondeterministic Constraint Logic

Now we define NCL problem [16]. An NCL “machine” is an undirected graph together
with an assignment of weights from {1, 2} to each edge of the graph. An (NCL)
configuration of this machine is an orientation (direction) of the edges such that the
sum of weights of in-coming arcs at each vertex is at least two. Figure 2(a) illustrates
a configuration of an NCL machine, where each weight-2 edge is depicted by a thick
(blue) line and each weight-1 edge by a thin (red) line. Then, two NCL configurations
are adjacent if they differ in a single edge direction. Given an NCL machine and its two
configurations, it is known to be PSPACE-complete to determine whether there exists a
sequence of adjacent NCL configurations which transforms one into the other [16].

An NCL machine is called an and/or constraint graph if it consists of only two
types of vertices, called “NCL and vertices” and “NCL or vertices” defined as follows:

• A vertex of degree three is called an NCL and vertex if its three incident edges
have weights 1, 1 and 2. (See Figure 2(b).) An NCL and vertex 𝑢 behaves as a
logical and, in the following sense: the weight-2 edge can be directed outward
for 𝑢 if and only if both two weight-1 edges are directed inward for 𝑢. Note that,
however, the weight-2 edge is not necessarily directed outward even when both
weight-1 edges are directed inward.

• A vertex of degree three is called an NCL or vertex if its three incident edges
have weights 2, 2 and 2. (See Figure 2(c).) An NCL or vertex 𝑣 behaves as a
logical or: one of the three edges can be directed outward for 𝑣 if and only if at
least one of the other two edges is directed inward for 𝑣.

It should be noted that, although it is natural to think of NCL and/or vertices as having
inputs and outputs, there is nothing enforcing this interpretation; especially for NCL or
vertices, the choice of input and output is entirely arbitrary because an NCL or vertex
is symmetric.

For example, the NCL machine in Figure 2(a) is an and/or constraint graph. From
now on, we call an and/or constraint graph simply an NCL machine, and call an edge

2
2

2 2

2
2

1
1

1

(a)

1 1

2

(b)

2 2

2

(c)

Figure 2: (a) A configuration of an NCL machine, (b) NCL and vertex, and (c) NCL
or vertex.
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in an NCL machine an NCL edge. NCL remains PSPACE-complete even if an input
NCL machine is planar and bounded bandwidth [29].

3.2.2 Constructing gadgets

In our reduction, we construct two types of gadgets named and/or gadgets, which
correspond to NCL and/or vertices, respectively. Both and/or gadgets consist of
one main part and three connecting parts. Each connecting part corresponds to each
incident NCL edge of the corresponding vertex. Then we replace each of vertices in
the NCL machine with its corresponding gadget so that each pair of adjacent vertices
sharing their connecting parts.

Each connecting part is formed 𝑃2𝑘−2. Note that if we want to cover this path
with only one vertex, we must choose one of the two center vertices. In our reduction,
choosing one of the two vertices corresponds to inward direction, and the other one
corresponds to outward direction.

Now we explain the construction of the and gadget. Consider an NCL and vertex.
Figure 4(a) illustrates all valid orientations of the edges incident to an NCL and vertex.
Two boxes are joined by an edge if their orientations are adjacent. We construct our
and gadget so that it correctly simulates this reconfiguration graph in Fig. 4(a).

Figure 3(a) illustrates our and gadget for the case where 𝑘 = 3. The main part
of and gadget forms 𝑃𝑘 . Note that we must choose at least one of the vertices on
this part to obtain 𝑘-PVC. Then we connect one endpoint to two connecting parts
which corresponds to weight-1 edges, and connect the other endpoint to a connecting
part which corresponds to weight-2 edge. If at least one of the weight-1 edges is
directed outward, we must choose the endpoint of main part next to the connecting
part corresponding to the weight-1 edge to obtain 𝑘-PVC. On the other hand, if the
weight-2 edge is directed outward, we must choose the endpoint of main part next to
the connecting part corresponding to the weight-2 edge to obtain 𝑘-PVC. Fig. 4(b)
illustrates the reconfiguration graph for all 3-PVCs of the and gadget where we allow
to choose at most four vertices as 3-PVC. Each large dashed box surrounds all 3-PVCs
choosing the same vertices from their connecting part. Then we can see that these
3-PVCs are “internally connected,” that is, any two 3-PVCs in the same dashed box
are reconfigurable with each other without changing the vertices in connecting parts.
Furthermore, this gadget preserves the “external adjacency” in the following sense: if
we contract the 3-PVCs in the same dashed box in Fig. 4(b) into a single vertex, then the
resulting graph is exactly the graph depicted in Fig. 4(a). Therefore, we can conclude
that our and gadget correctly works as an NCL and vertex.

Next we explain the construction of or gadget. Figure 3(b) illustrates our or gadget
for the case where 𝑘 = 3. The main part of or gadget forms𝐶𝑘+1 (cycle consists of 𝑘 +1
vertices). Note that we must choose at least two of the vertices on this part to obtain
𝑘-PVC. Then we arbitrary choose three distinct vertices from this cycle and connect
them to three connecting parts one by one. If a weight-2 edge is directed outward,
we must choose the vertex in main part next to the connecting part corresponding to
the edge to obtain 𝑘-PVC. To verify that this or gadget correctly simulates an NCL
or vertex, it suffices to show that this gadget satisfies both the internal connectedness
and the external adjacency. Since this gadget has only 18 3-PVCs where we allow to
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(a) (b)

Figure 3: Gadgets for 3-PVCR. (a) The and gadget. (b) The or gadget. Each dashed
rectangle represents a connecting part. For each connecting part, choosing the black
vertex corresponds to inward direction, and the gray vertex corresponds to outward
direction.

choose at most five vertices as 3-PVC. Therefore, by same way to and gadget, we can
easily check these sufficient conditions. (See Fig. 5.)

3.2.3 Reduction

As we have explained before, we replace each of NCL and/or vertices with its cor-
responding gadget; let 𝐺 be the resulting graph. Recall that NCL remains PSPACE-
complete even if an input NCL machine is planar and bounded bandwidth [29]. Since
both our gadgets are planar, consist of only a constant number of edges, and of max-
imum degree three, the resulting graph 𝐺 is also planar, bounded bandwidth and of
maximum degree three. (In fact the number of edges in our gadget is 𝑂 (𝑘). However,
since we defined that 𝑘 is a fixed integer, it becomes constant.)

In addition, we construct two 𝑘-PVCs of 𝐺 which correspond to two given NCL
configurations of the NCL machine. Note that there are (in general, exponentially)
many 𝑘-PVCs which correspond to the same NCL configuration. However, by the
construction of the gadgets, no two distinct NCL configurations correspond to the same
𝑘-PVC of 𝐺. Therefore, we arbitrarily choose two 𝑘-PVCs of 𝐺 which correspond to
two given NCL configurations.

This completes the construction of our corresponding instance of 𝑘-PVCR. Clearly
the construction can be done in polynomial time.

3.2.4 Correctness

Let 𝐶𝐼 and 𝐶𝐽 be two given NCL configurations of the NCL machine. Let 𝐼 and 𝐽 be
two 𝑘-PVCs of 𝐺 which correspond to 𝐶𝐼 and 𝐶𝐽 , respectively. We now prove that
there exists a desired sequence of NCL configurations between 𝐶𝐼 and 𝐶𝐽 if and only
if there exists a reconfiguration sequence between 𝐼 and 𝐽.

We first prove the only-if direction. Suppose that there exists a desired sequence
𝑆 = 〈𝐶0, 𝐶1, . . . , 𝐶ℓ〉 of NCL configurations between 𝐶0 = 𝐶𝐼 and 𝐶ℓ = 𝐶𝐽 . Consider
any two adjacent NCL configurations 𝐶𝑖−1 and 𝐶𝑖 in the sequence. Then only one
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NCL edge 𝑣𝑤 changes its orientation between 𝐶𝑖−1 and 𝐶𝑖 . Notice that, since both 𝐶𝑖−1
and 𝐶𝑖 are valid NCL configurations, the NCL and/or vertices 𝑣 and 𝑤 have enough
in-coming NCL edges even without 𝑣𝑤. Recall that both and/or gadgets are internally
connected and preserve the external adjacency. Therefore, any reversal of an NCL edge
can be simulated by a reconfiguration sequence of 𝑘-PVCs of 𝐺, and hence there exists
a reconfiguration sequence between 𝐼 and 𝐽.

We now prove the if direction. Suppose that there exists a reconfiguration sequence
𝑆 = 〈𝐼0, 𝐼1, . . . , 𝐼ℓ〉 (𝐼0 = 𝐼 and 𝐼ℓ = 𝐽). Notice that, by the construction of gadgets,
any 𝑘-PVC of 𝐺 corresponds to a valid NCL configuration. Let 𝐶𝑖 be an NCL con-
figuration corresponds to 𝐼𝑖 , for 𝑖 ∈ {0, . . . , ℓ}. By deleting redundant orientations
from 𝐶0, 𝐶1, . . . , 𝐶ℓ if needed, we can obtain a sequence of valid adjacent orientations
between 𝐶𝐼 and 𝐶𝐽 .

This completes the proof of Theorem 6.

4 Polynomial-Time Algorithms
4.1 Trees
In this section, we show polynomial-time algorithms for 𝑘-PVCR on trees under each
of TJ and TAR. We first show a polynomial-time algorithm for the problem under TJ.
Then, using Lemma 1 and the above result, we show a polynomial-time algorithm for
the problem under TAR.

First, in order to solve the problem under TJ, we claim that for an instance (𝑇, 𝐼, 𝐽, TJ)
of 𝑘-PVCR on a tree 𝑇 , if |𝐼 | = |𝐽 |, one can construct in polynomial time a TJ-sequence
between 𝐼 and 𝐽. The idea is to construct a canonical 𝑘-path vertex cover 𝐼★ such that
both 𝐼 and 𝐽 can be reconfigured to 𝐼★ under TJ.

Before constructing 𝐼★, we prove the following lemma, which describes an useful
algorithm for partitioning a tree into subtrees satisfying certain conditions.

Lemma 7. Let 𝑇 be a tree on 𝑛 vertices rooted at a vertex 𝑟 . Assume that 𝜓𝑘 (𝑇) ≥ 1.
Then, in 𝑂 (𝑛) time, one can partition 𝑇 into 𝜓𝑘 (𝑇) subtrees 𝑇1 (𝑟), . . . , 𝑇𝜓𝑘 (𝑇 ) (𝑟) such
that for each 𝑖 ∈ {1, . . . , 𝜓𝑘 (𝑇)},

(i) Each 𝑘-path vertex cover 𝐼 satisfies 𝐼 ∩𝑉 (𝑇𝑖 (𝑟)) ≠ ∅.

(ii) There is a vertex that covers all 𝑘-paths in 𝑇𝑖 (𝑟).

Proof. To construct a partition 𝑃(𝑇) = {𝑇1 (𝑟), . . . , 𝑇𝜓𝑘 (𝑇 ) (𝑟)} of 𝑇 satisfying the de-
scribed conditions, we slightly modify the algorithm PVCPTree(𝑇, 𝑘) in [8] as follows.
A properly rooted subtree 𝑇𝑣 of 𝑇 is a subtree of 𝑇 induced by the vertex 𝑣 and all its
descendants (with respect to the root 𝑟) satisfying the following conditions

1. 𝑇𝑣 contains a 𝑘-path;

2. 𝑇𝑣 − 𝑣 does not contain a 𝑘-path.

The modified algorithm Partition(𝑇, 𝑘, 𝑟) systematically searches for a properly
rooted tree 𝑇𝑣 , decides whether 𝑇𝑣 belongs to a solution 𝑃(𝑇), and if so, adds 𝑇𝑣 to
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Algorithm 1: Partition(𝑇, 𝑘, 𝑟).
Input: A tree 𝑇 on 𝑛 vertices rooted at 𝑟 and a positive integer 𝑘;
Output: A partition 𝑃(𝑇) of 𝑇 into 𝜓𝑘 (T) subtrees;

1 𝑖 := 1;
2 while 𝑇 contains a properly rooted subtree 𝑇𝑣 do
3 if 𝑇 − 𝑇𝑣 contains a properly rooted subtree then
4 𝑇𝑖 (𝑟) := 𝑇𝑣 ;
5 𝑖 := 𝑖 + 1;
6 else
7 𝑇𝑖 (𝑟) := 𝑇 ;
8 𝑇 := 𝑇 − 𝑇𝑣 ;
9 𝑃(𝑇) = {𝑇1 (𝑟), . . . , 𝑇𝑖 (𝑟)};

10 return 𝑃(𝑇);

𝑃(𝑇), and removes 𝑇𝑣 from the input tree 𝑇 . To check if 𝑇 contains a properly rooted
subtree 𝑇𝑣 , one can start by assigning 𝑣 to a vertex of largest depth (i.e., distance from
𝑟) and verify if 𝑇𝑣 is properly rooted. If so, we return “yes”. Otherwise, we assign 𝑣 to
its parent and repeat, until a 𝑇𝑣 is found (returning “yes”) or there is nothing to check
(returning “no”).

From [8], it follows that Partition(𝑇, 𝑘, 𝑟) runs in 𝑂 (𝑛) time. From the con-
struction of 𝑃(𝑇), it is clear that (i) always holds. We show (ii) by induction on
𝜓𝑘 (𝑇).

For a tree𝑇 with𝜓𝑘 (𝑇) = 1, let𝑇𝑣 be a properly rooted subtree of𝑇 . Since any 𝑘-path
vertex cover of 𝑇 contains a vertex from 𝑇𝑣 , it follows that 𝜓𝑘 (𝑇 −𝑇𝑣) = 𝜓𝑘 (𝑇) − 1 = 0,
which implies that 𝑇 − 𝑇𝑣 does not contain any properly rooted subtree, and therefore
𝑃(𝑇) = {𝑇}. To see that (ii) holds, note that 𝑣 must cover all 𝑘-paths in𝑇𝑣 , and therefore
it also covers all 𝑘-paths in 𝑇 ; otherwise, 𝑇 − 𝑇𝑣 contains a 𝑘-path that is not covered
by 𝑣, and then must contain a properly rooted subtree, which is a contradiction.

Assume that (ii) holds for any tree 𝑇 with 𝜓𝑘 (𝑇) < 𝑐, for some constant 𝑐 > 1. For
a tree 𝑇 rooted at some vertex 𝑟 with 𝜓𝑘 (𝑇) = 𝑐, let 𝑇𝑣 be a properly rooted subtree of
𝑇 , where 𝑣 is some vertex of 𝑇 . From the algorithm Partition, it follows that 𝑣 must
cover all 𝑘-paths in 𝑇𝑣 = 𝑇1 (𝑟). Since 𝑐 > 1, the tree 𝑇 − 𝑇𝑣 contains a properly rooted
subtree. By inductive hypothesis, for each 𝑖 ∈ {2, 3, . . . , 𝜓𝑘 (𝑇)}, there is a vertex that
covers all 𝑘-paths in 𝑇𝑖 (𝑟). Therefore, (ii) holds for any tree 𝑇 with 𝜓𝑘 (𝑇) ≥ 1.

We are now ready to show the following theorem.

Theorem 8. For any instance (𝑇, 𝐼, 𝐽, TJ) of 𝑘-PVCR on a tree 𝑇 , 𝐼 and 𝐽 are recon-
figurable if and only if |𝐼 | = |𝐽 |. Moreover, a reconfiguration sequence between them, if
exists, can be constructed in 𝑂 (𝑛) time. Consequently, 𝑘-PVCR under TJ can be solved
in linear time on trees.

Proof. Clearly, if 𝐼 and 𝐽 are reconfigurable under TJ, they must be of the same size.
To prove this theorem, it suffices to show that for an instance (𝑇, 𝐼, 𝐽, TJ) of 𝑘-PVCR
on a tree 𝑇 , one can construct in polynomial time a TJ-sequence between 𝐼 and 𝐽.
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A minimum 𝑘-path vertex cover 𝐼𝑟 can be easily constructed in linear time by
modifying Partition as follows: Initially, 𝐼𝑟 = ∅. In each iteration of the while loop,
add to 𝐼𝑟 the vertex 𝑣 of the properly rooted subtree 𝑇𝑣 that is currently considering.
Such a vertex 𝑣 can be obtained from the process of checking if 𝑇 contains a properly
rooted subtree described in the proof of Lemma 7. Let 𝐼★ be any 𝑘-path vertex cover
of size |𝐼 | = |𝐽 | such that 𝐼𝑟 ⊆ 𝐼★. We claim that both 𝐼 and 𝐽 can be reconfigured
to 𝐼★ under TJ. As a result, a TJ-sequence between 𝐼 and 𝐽 can be constructed by
reconfiguring 𝐼 to 𝐼★, and then 𝐼★ to 𝐽.

We now show how to construct a TJ-sequence between 𝐼 and 𝐼★. Let 𝑃(𝑇) =
{𝑇1 (𝑟), . . . , 𝑇𝜓𝑘 (𝑇 ) (𝑟)} be a partition of 𝑇 resulting from the algorithm Partition and
let 𝐼0 = 𝐼. Intuitively, we will first “settle” the tokens in 𝐼𝑟 ⊆ 𝐼★ (Step 1), and then, as
the tokens in 𝐼𝑟 already cover all 𝑘-paths in 𝑇 , the remaining tokens in 𝐼★ \ 𝐼𝑟 can be
easily “settled” by jumping tokens one-by-one in arbitrary order (Step 2).

• Step 1: For each 𝑖 from 1 to 𝜓𝑘 (𝑇), let 𝑣𝑖 ∈ 𝐼𝑟 ∩𝑉 (𝑇𝑖 (𝑟)). If 𝑣𝑖 does not contain
a token in 𝐼𝑖−1, we jump a token from some vertex 𝑥𝑖 ∈ 𝐼𝑖−1 ∩ 𝑉 (𝑇𝑖 (𝑟)) to 𝑣𝑖 .
Otherwise, we do nothing. Let 𝐼𝑖 be the resulting set. Note that any 𝑘-path in 𝑇

covered by 𝑥𝑖 must also be covered by some 𝑣 𝑗 with 𝑗 ≤ 𝑖. A simple induction
shows that 𝐼𝑖 = 𝐼𝑖−1 \ {𝑥𝑖} ∪ {𝑣𝑖} forms a 𝑘-path vertex cover of 𝑇 .

• Step 2: For 𝑥 ∈ 𝐼𝜓𝑘 (𝑇 ) \ 𝐼★ and 𝑦 ∈ 𝐼★ \ 𝐼𝜓𝑘 (𝑇 ) , we simply jump the token on
𝑥 to 𝑦, and repeat the process with 𝐼𝜓𝑘 (𝑇 ) \ {𝑥} and 𝐼★ \ {𝑦} instead of 𝐼𝜓𝑘 (𝑇 )
and 𝐼★, respectively. Since 𝐼𝑟 ⊆ 𝐼𝜓𝑘 (𝑇 ) ∩ 𝐼★ is already a minimum 𝑘-path vertex
cover, any TJ-step described above results a 𝑘-path vertex cover of 𝑇 .

Since each token in 𝐼 is jumped at most once, the above construction can be done in
linear time. We have described how to construct a TJ-sequence from 𝐽 to 𝐼★. In a
similar manner, a TJ-sequence between 𝐽 and 𝐼★ can be constructed. Our proof of
Theorem 8 is complete.

Consequently, combining Theorem 8 and Lemma 1, we have the following theorem.

Theorem 9. For any instance (𝑇, 𝐼, 𝐽, TAR(𝑢)) of 𝑘-PVCR on a tree 𝑇 , one can decide
if 𝐼 and 𝐽 are reconfigurable in polynomial time.

Proof. Clearly, if 𝑢 < max{|𝐼 |, |𝐽 |} or 𝑢 = 𝜓𝑘 (𝑇) then (𝑇, 𝐼, 𝐽, TAR(𝑢)) is a no-
instance, because either 𝐼 or 𝐽 cannot be modified by adding/removing tokens. We
now consider the case 𝑢 ≥ max{|𝐼 |, |𝐽 |} and 𝑢 > 𝜓𝑘 (𝑇). Note that if |𝐼 | < |𝐽 | then
we can add tokens to 𝐼 until the resulting 𝑘-path vertex cover is of size |𝐽 |, simply
because 𝑢 ≥ max{|𝐼 |, |𝐽 |}. As a result, we can assume without loss of generality
that |𝐼 | = |𝐽 | = 𝑠 for some constant 𝑠. By Theorem 8 and Lemma 1, it follows that
there always exists a TAR(𝑠 + 1)-sequence between 𝐼 and 𝐽. If 𝑠 + 1 ≤ 𝑢 then clearly
a TAR(𝑠 + 1)-sequence is also a TAR(𝑢)-sequence, and we are done. Assume that
𝑠 + 1 > 𝑢. Since 𝑢 ≥ 𝑠 and 𝑢 > 𝜓𝑘 (𝑇), it follows that 𝑢 = 𝑠 and both 𝐼 and 𝐽 are not
minimum. Now, we need to check if we can remove at least one token from 𝐼 (resp. 𝐽),
which can be done in polynomial time by checking each token one by one and verifying
whether its removal results a 𝑘-path vertex cover. If this is possible for both 𝐼 and 𝐽, we
remove exactly one token from 𝐼 (resp. 𝐽) to obtain a new 𝑘-path vertex cover 𝐼 ′ (resp.
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𝐽 ′) of size 𝑠 − 1. By Lemma 1, there exists a TAR(𝑢)-sequence between 𝐼 ′ and 𝐽 ′, and
combining this sequence with the previous removal steps gives us a TAR(𝑢)-sequence
between 𝐼 and 𝐽. Otherwise, we can conclude that the given instance is a no-instance,
because the first step of reconfiguring (either from 𝐼 to 𝐽 or vice versa) is to remove
some token (since 𝑢 = 𝑠, adding a token is not possible).

4.2 Paths and Cycles
Here, we describe polynomial-time algorithms for 𝑘-PVCR on paths and cycles. As
paths and cycles are the only (planar) graphs of maximum degree two, by combining
Theorem 6 and our results, we have a complexity dichotomy of 𝑘-PVCR on (planar)
graphs. Additionally, on paths, we claim that one can construct a shortest reconfig-
uration sequence between any two given 𝑘-path vertex covers (if exists) under each
reconfiguration rule TS, TJ, and TAR.

4.2.1 𝑘-PVCR on Paths

By Theorems 8 and 9, clearly 𝑘-PVCR on paths can be solved in polynomial time under
each of TJ and TAR. In this section, we slightly improve this result by showing that one
can construct a shortest reconfiguration sequence between two 𝑘-path vertex covers on
a path not only under each of TJ and TAR but also under TS.

Given an instance (𝑃, 𝐼, 𝐽, TJ) of 𝑘-PVCR where |𝐼 | = |𝐽 | = 𝑠, one can construct a
shortest TJ-sequence between 𝐼 and 𝐽. Suppose that vertices in 𝐼 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑠 } and
𝐽 = {𝑣 𝑗1 , . . . , 𝑣 𝑗𝑠 } are ordered such that 1 ≤ 𝑖1 < · · · < 𝑖𝑠 ≤ 𝑛 and 1 ≤ 𝑗1 < · · · < 𝑗𝑠 ≤
𝑛. In each step of the algorithm, we move a token on the “rightmost” vertex 𝑣𝑖𝑝 ∈ 𝐼 \𝐽 to
the “rightmost” vertex 𝑣 𝑗𝑝 ∈ 𝐽 \ 𝐼 if 𝑖𝑝 > 𝑗𝑝 or vice-versa otherwise, for 𝑝 ∈ {1, . . . , 𝑠}.
As a reconfiguration sequence is reversible, one can easily form a TJ-sequence between
𝐼 and 𝐽. Note that each step of the algorithm reduces |𝐼Δ𝐽 |/2 by exactly one. Finally,
we obtain a shortest TJ-sequence between 𝐼 and 𝐽 of length exactly |𝐼Δ𝐽 |/2.

Theorem 10. Given an instance (𝑃, 𝐼, 𝐽, TJ) of 𝑘-PVCR on a path 𝑃, the 𝑘-path vertex
covers 𝐼 and 𝐽 are reconfigurable if and only if |𝐼 | = |𝐽 |. Moreover, we can compute a
shortest reconfiguration sequence in 𝑂 (𝑛) time.

Proof. Let 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑛 be a given path. In the following, we use the expression
rightmost instead of using “with the largest index”. Algorithm 2 describes an algorithm
PVCRPathTJ(𝑃, 𝐼, 𝐽) for 𝑘-PVCR on paths under TJ.

Clearly, if 𝐼 and 𝐽 are reconfigurable under TJ then they are of the same size.
It remains to show the if direction. To this end, we show that PVCRPathTJ(𝑃, 𝐼, 𝐽)
correctly constructs a TJ-sequence between two 𝑘-path vertex covers 𝐼, 𝐽 of the same
size. In each iteration of the while loop, when 𝑣𝑖 ∈ 𝐼, we confirm that if we move
a token from 𝑣𝑖 to 𝑣 𝑗 , the resulting token-set still keeps 𝑘-path vertex cover property.
In other words, the constructed sequence 𝑆𝐼 is indeed a TJ-sequence. Suppose to the
contrary that moving the token on 𝑣𝑖 to the left (i.e., to the direction in which the indices
get smaller) results in some non-covered 𝑘-path, say 𝑄 = 𝑣ℓ𝑣ℓ+1 . . . 𝑣ℓ+𝑘−1, where
ℓ ≤ 𝑖 ≤ ℓ + 𝑘 − 1 and 𝑗 + 1 ≤ ℓ ≤ 𝑛− 𝑘 + 1. Since 𝐽 is a 𝑘-path vertex cover, there must
be some vertex 𝑣ℓ′ ∈ 𝐽 for ℓ ≤ ℓ′ ≤ ℓ + 𝑘 − 1. Also, since 𝑣𝑖 ∈ 𝐼 \ 𝐽, ℓ′ ≠ 𝑖. If ℓ′ < 𝑖,
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Algorithm 2: PVCRPathTJ(𝑃, 𝐼, 𝐽)
Input: A path 𝑃 of 𝑛 vertices, initial token-set 𝐼, and target token-set 𝐽;
Output: A reconfiguration sequence 𝑆;

1 Let 𝑆, 𝑆𝐼 , 𝑆𝐽 be reconfiguration sequences, and initialize them by ∅;
2 while 𝐼Δ𝐽 ≠ ∅ do
3 𝑣𝑖 ← the rightmost vertex in 𝑃[𝐼Δ𝐽];
4 if 𝑣𝑖 ∈ 𝐼 then
5 Find the rightmost token 𝑣 𝑗 in 𝐽 \ 𝐼 (here 𝑗 < 𝑖);
6 𝑆𝐼 := 𝑆𝐼 ⊕ 〈𝐼, 𝐼 \ {𝑣𝑖} ∪ {𝑣 𝑗 }〉;
7 𝐼 := 𝐼 \ {𝑣𝑖} ∪ {𝑣 𝑗 };
8 if 𝑣𝑖 ∈ 𝐽 then
9 Find the rightmost token 𝑣 𝑗 in 𝐼 \ 𝐽 (here 𝑗 < 𝑖);

10 𝑆𝐽 := 𝑆𝐽 ⊕ 〈𝐽, 𝐽 \ {𝑣𝑖} ∪ {𝑣 𝑗 }〉;
11 𝐽 := 𝐽 \ {𝑣𝑖} ∪ {𝑣 𝑗 };
12 𝑆 := 𝑆𝐼 ⊕ rev(𝑆𝐽 );
13 return 𝑆;

then 𝑣ℓ′ ∈ 𝐼; otherwise, 𝑣 𝑗 ∈ 𝐽 \ 𝐼 is not rightmost. If ℓ′ > 𝑖, then 𝑣ℓ′ ∈ 𝐼; otherwise,
𝑣𝑖 is not rightmost in 𝑃[𝐼Δ𝐽]. Therefore 𝑣ℓ′ ∈ 𝐽 ∩ 𝐼 always covers 𝑃, a contradiction.
In a similar manner, one can also verify that 𝑆𝐽 is indeed a TJ-sequence. Let 𝐼 ′ be the
𝑘-path vertex cover obtained when the condition of the while loop is violated. Clearly,
𝑆𝐼 (resp. 𝑆𝐽 ) reconfigures 𝐼 (resp. 𝐽) to 𝐼 ′. Therefore, 𝑆 = 𝑆𝐼 ⊕ rev(𝑆𝐽 ) reconfigures
𝐼 to 𝐽.

Next, we claim that 𝑆 is shortest. Note that any TJ-sequence between 𝐼 and 𝐽 uses
at least |𝐼Δ𝐽 |/2 TJ-steps. Moreover, in PVCRPathTJ(𝑃, 𝐼, 𝐽), we move tokens exactly
|𝐼Δ𝐽 |/2 times: in each iteration, exactly one token (either from 𝐼 \ 𝐽 or 𝐽 \ 𝐼) is moved,
and then the size of 𝐼Δ𝐽 decreases by 2. Therefore, 𝑆 is shortest. Consequently, the
running time is 𝑂 (𝑛).

By Theorem 10 and Lemma 1, we obtain the following result on 𝑘-PVCR on a path
𝑃 under TAR.

Theorem 11. For any instance (𝑃, 𝐼, 𝐽, TAR(𝑢)) of 𝑘-PVCR on a path 𝑃 on 𝑛 vertices,
one can decide if 𝐼 and 𝐽 are reconfigurable in linear time.

Proof. A similar approach as in the proof of Theorem 9 can be applied. Note that in
the case 𝑠 = 𝑢, where 𝑠 = |𝐼 | = |𝐽 |, we have to check if we can remove at least one
token from 𝐼 (resp. 𝐽) is as follows. Given a path 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑛, let us assume that
𝐼 = {𝑣𝑖1 , 𝑣𝑖2 , . . . , 𝑣𝑖𝑠 } where 1 ≤ 𝑖1 < 𝑖2 < · · · < 𝑖𝑠 ≤ 𝑛. In order to check if a token on 𝑢

can be removed, assuming 𝑢 = 𝑣𝑖 𝑗 for some 𝑗 such that 1 ≤ 𝑗 ≤ 𝑠, we do as follows. (1)
If 𝑗 ∈ {2, . . . , 𝑠 − 1}, then check if dist𝐺 (𝑣𝑖 𝑗−1 , 𝑣𝑖 𝑗+1 ) ≤ 𝑘 , and (2) if 𝑗 = 1, then check
if dist𝐺 (𝑣1, 𝑣𝑖 𝑗 ) ≤ 𝑘 − 1, and (3) if 𝑗 = 𝑠, then check if dist𝐺 (𝑣𝑖 𝑗 , 𝑣𝑛) ≤ 𝑘 − 1. Indeed,
this can be done in 𝑂 (𝑛) time: for each token, one needs 𝑂 (1) time for checking if the
resulting set obtained by removing 𝑢 is still a 𝑘-path vertex cover. The correctness of
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Function 3: Push(𝑃, 𝐼, 𝑖, 𝑗)
Input: A path 𝑃 = 𝑣1 . . . 𝑣𝑛, a 𝑘-path vertex cover 𝐼, and two indices 𝑖 and 𝑗

with 1 ≤ 𝑖 < 𝑗 ≤ 𝑖 + 𝑘 ≤ 𝑛;
Output: A sequence 𝑆 of TS-steps that moves the token on 𝑣𝑖 to 𝑣 𝑗 ;

1 𝑆 = ∅;
2 while 𝑖 ≠ 𝑗 do
3 if 𝑣𝑖+1 ∈ 𝐼 then
4 𝑆 := 𝑆 ⊕ Push(𝑃, 𝐼, 𝑖 + 1, 𝑖 + 2); // Both 𝑆 and 𝐼 are updated
5 𝑆 := 𝑆 ⊕ 〈𝐼, 𝐼 \ {𝑣𝑖} ∪ {𝑣𝑖+1}〉;
6 𝐼 := 𝐼 \ {𝑣𝑖} ∪ {𝑣𝑖+1};
7 𝑖 := 𝑖 + 1;
8 return 𝑆;

this checking easily follows from the definition of 𝑘-path vertex cover. One can see that
similar things can be done for 𝐽.

Now we sketch the idea for solving the problem under TS in polynomial time. Given
an instance (𝑃, 𝐼, 𝐽, TS) of 𝑘-PVCR where |𝐼 | = |𝐽 | = 𝑠, one can construct a shortest
TS-sequence between 𝐼 and 𝐽. Suppose that vertices in 𝐼 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑠 } and 𝐽 =

{𝑣 𝑗1 , . . . , 𝑣 𝑗𝑠 } are ordered such that 1 ≤ 𝑖1 < · · · < 𝑖𝑠 ≤ 𝑛 and 1 ≤ 𝑗1 < · · · < 𝑗𝑠 ≤ 𝑛.
Our goal is to construct a shortest TS-sequence (of length

∑𝑠
𝑝=1 dist𝑃 (𝑣𝑖𝑝 , 𝑣 𝑗𝑝 )) that

repeatedly slides the token on the “leftmost” vertex 𝑣𝑖𝑝 ∈ 𝐼 to the “leftmost” vertex
𝑣 𝑗𝑝 ∈ 𝐽 if 𝑖𝑝 < 𝑗𝑝 or vice-versa otherwise, for 𝑝 ∈ {1, . . . , 𝑠}.

The key point is, in certain conditions, one can construct in polynomial time a
function Push(𝑃, 𝐼, 𝑖, 𝑗) (Function 3) whose task is to output a TS-sequence that moves
the token placed at some vertex 𝑣𝑖 of the 𝑘-path vertex cover 𝐼 to vertex 𝑣 𝑗 in a given
path 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑛, where 1 ≤ 𝑖 < 𝑗 ≤ 𝑖 + 𝑘 ≤ 𝑛. Roughly speaking, Push(𝑃, 𝐼, 𝑖, 𝑗)
slides the token 𝑡 on 𝑣𝑖 toward 𝑣 𝑗 along the path 𝑃𝑖 𝑗 = 𝑣𝑖𝑣𝑖+1 . . . 𝑣 𝑗 until either 𝑡 ends
up at 𝑣 𝑗 or there is some index 𝑝 ∈ {𝑖, . . . , 𝑗 − 1} where 𝑡 is already placed at 𝑣𝑝
but cannot immediately move to 𝑣𝑝+1 because there is already some token 𝑡 ′ placed
there. In the latter case, one can recursively call Push to slide 𝑡 ′ from 𝑣𝑝+1 to 𝑣𝑝+2 and
therefore enabling 𝑡 (which is currently placed at 𝑣𝑝) to slide to 𝑣𝑝+1. Now, the same
situation happens again with 𝑡 and 𝑡 ′, and the resolving procedure can be done in the
same manner as before. This process stops when 𝑡 is finally placed at 𝑣 𝑗 .

The following lemma says that if certain conditions are satisfied, the output of
Push(𝑃, 𝐼, 𝑖, 𝑗) is indeed a TS-sequence that reconfigures the 𝑘-path vertex cover 𝐼 to
some other 𝑘-path vertex cover of 𝑃.

Lemma 12. Let 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑛 be a path on 𝑛 vertices, and let 𝐼 be a 𝑘-path vertex
cover of 𝑃. Let 𝑖 ∈ {1, . . . , 𝑛} be such that either 𝑖 ≤ 𝑘 + 1 or {𝑣𝑖−1, . . . , 𝑣𝑖−𝑘 } ∩
𝐼 ≠ ∅. If {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝} ⊆ 𝐼 and 𝑣𝑖+𝑝+1 ∉ 𝐼 for some integer 𝑝 satisfying
0 ≤ 𝑝 ≤ 𝑛 − 𝑖 − 1, then there exists a TS-sequence in 𝑃 that reconfigures 𝐼 to
𝐼 \ {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝} ∪ {𝑣𝑖+1, . . . , 𝑣𝑖+𝑝+1}. Consequently, if the assumption is satisfied,
the output of Push(𝑃, 𝐼, 𝑖, 𝑗) is indeed a TS-sequence in 𝑃 that reconfigures 𝐼 to some
𝑘-path vertex cover of 𝑃.
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Proof. We prove the lemma by induction on 𝑝. If 𝑝 = 0, then by the assumption,
the lemma clearly holds because the token on 𝑣𝑖 can indeed be moved to 𝑣𝑖+1 without
leaving any non-covered 𝑘-path. Assume that if {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝−1} ⊆ 𝐼 and 𝑣𝑖+𝑝 ∉ 𝐼

for some integer 𝑝 satisfying 0 ≤ 𝑝 ≤ 𝑛 − 𝑖 − 1, then there exists a TS-sequence 𝑆′ in
𝑃 that reconfigures 𝐼 to 𝐼 \ {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝−1} ∪ {𝑣𝑖+1, . . . , 𝑣𝑖+𝑝}. We claim that if
{𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝} ⊆ 𝐼 and 𝑣𝑖+𝑝+1 ∉ 𝐼 for some integer 𝑝 satisfying 0 ≤ 𝑝 ≤ 𝑛 − 𝑖 − 1,
then there exists a TS-sequence 𝑆 in 𝑃 that reconfigures 𝐼 to 𝐼 \ {𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝} ∪
{𝑣𝑖+1, . . . , 𝑣𝑖+𝑝+1}. Note that the 𝑘-path 𝑣𝑖+𝑝−𝑘+1 . . . 𝑣𝑖+𝑝 is (at least) covered by both
𝑣𝑖+𝑝−1 and 𝑣𝑖+𝑝 . Therefore, the token on 𝑣𝑖+𝑝 can be slid to 𝑣𝑖+𝑝+1 without leaving any
non-covered 𝑘-path. More formally, 𝐼 ′ = 𝐼 \ {𝑣𝑖+𝑝} ∪ {𝑣𝑖+𝑝+1} is a 𝑘-path vertex cover
in 𝑃. By the inductive hypothesis, there exists a TS-sequence 𝑆′ that reconfigures 𝐼 ′ to
𝐼 ′\{𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝−1}∪{𝑣𝑖+1, . . . , 𝑣𝑖+𝑝} = 𝐼 \{𝑣𝑖 , 𝑣𝑖+1, . . . , 𝑣𝑖+𝑝}∪{𝑣𝑖+1, . . . , 𝑣𝑖+𝑝+1}.
Thus, 𝑆 = 〈𝐼, 𝐼 ′〉 ⊕ 𝑆′ is our desired TS-sequence. It is not hard to see that each
iteration of the while loop in Push(𝑃, 𝐼, 𝑖, 𝑗) performs exactly the procedure we have
just described (the case 𝑝 = 0 corresponds to the steps outside the if condition, the
case 𝑝 ≥ 0 corresponds to the recursive call inside the if condition). As a result, if the
assumption of this lemma is satisfied, Push(𝑃, 𝐼, 𝑖, 𝑗) is indeed a TS-sequence.

Clearly, the function Push(𝑃, 𝐼, 𝑖𝑝 , 𝑗𝑝) can be used to slide a token on 𝑣𝑖𝑝 to 𝑣 𝑗𝑝 for
𝑝 ∈ {1, . . . , 𝑠} and 𝑖𝑝 < 𝑗𝑝 . Thus, we have the following theorem.

Theorem 13. Given an instance (𝑃, 𝐼, 𝐽, TS) of 𝑘-PVCR on a path 𝑃, the 𝑘-path vertex
covers 𝐼 and 𝐽 are reconfigurable if and only if |𝐼 | = |𝐽 |. Moreover, we can compute a
shortest reconfiguration sequence in 𝑂 (𝑛2) time.

Proof. Before proving Theorem 13, we describe the algorithm PVCRPathTS(𝑃, 𝐼, 𝐽)
(Algorithm 4) that takes two 𝑘-path vertex covers 𝐼 and 𝐽 of 𝑃 with |𝐼 | = |𝐽 | as the
input, and returns a TS-sequence between them. In the following, we use the expression
leftmost instead of using “with the smallest index”.

Suppose that vertices in 𝐼 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑠 } and 𝐽 = {𝑣 𝑗1 , . . . , 𝑣 𝑗𝑠 } are ordered such
that 1 ≤ 𝑖1 < · · · < 𝑖𝑠 ≤ 𝑛 and 1 ≤ 𝑗1 < · · · < 𝑗𝑠 ≤ 𝑛, where 𝑠 = |𝐼 | = |𝐽 |.
Intuitively, PVCRPathTS(𝑃, 𝐼, 𝐽) outputs a TS-sequence that slides the token on 𝑣𝑖𝑝 to
𝑣 𝑗𝑝 for 𝑝 ∈ {1, . . . , 𝑠}. Since 𝑃 is a path, this is the only way of sliding tokens, and thus
any TS-sequence between 𝐼 and 𝐽 uses at least

∑𝑠
𝑝=1 dist𝑃 (𝑣𝑖𝑝 , 𝑣 𝑗𝑝 ) TS-steps.

Now we prove Theorem 13. As before, the only-if direction is trivial. We show
that PVCRPathTS(𝑃, 𝐼, 𝐽) constructs a shortest TS-sequence between two 𝑘-path vertex
covers 𝐼, 𝐽 of 𝑃 with |𝐼 | = |𝐽 | in 𝑂 (𝑛2) time.

We first verify that the output of PVCRPathTS(𝑃, 𝐼, 𝐽) is a TS-sequence between
𝐼 and 𝐽 in 𝑃. Note that if in the current iteration of the while loop in PVCRPathTS,
the token on 𝑣𝑖 is moved to 𝑣 𝑗 (i.e., 𝑖 < 𝑗), then the distance between 𝑣 𝑗 and the two
untouched vertices considered in the next iteration must be at most 𝑘; otherwise, some
non-covered 𝑘-path appears. Then, the assumption of Lemma 12 is satisfied in the
next iteration. A similar argument holds for 𝑖 > 𝑗 . As a result, the function Push
always returns a TS-sequence. Let 𝐼 ′ be the 𝑘-path vertex cover of 𝑃 obtained when the
condition of the while loop of PVCRPathTS(𝑃, 𝐼, 𝐽) is violated. Then, it is not hard to
see that 𝑆𝐼 (resp. 𝑆𝐽 ) is a TS-sequence that reconfigures 𝐼 (resp. 𝐽) to 𝐼 ′, and therefore
𝑆 = 𝑆𝐼 ⊕ rev(𝑆𝐽 ) reconfigures 𝐼 to 𝐽.
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Note that in the function Push(𝑃, 𝐼, 𝑖, 𝑗) (and also Push(𝑃, 𝐽, 𝑗 , 𝑖)), Push is called
at most once for each vertex of 𝑃, which implies Push(𝑃, 𝐼, 𝑖, 𝑗) runs in 𝑂 (𝑛) time.
Moreover, PVCRPathTS marks each vertex in 𝐼 and 𝐽 exactly twice. Thus, in total,
PVCRPathTS runs in 𝑂 (𝑛2) time.

To conclude the proof of Theorem 13, we show that the TS-sequence 𝑆 between 𝐼

and 𝐽 in 𝑃 obtained from PVCRPathTS(𝑃, 𝐼, 𝐽) is shortest. To see this, note that for each
𝑝 ∈ {1, . . . , 𝑠}, either the token 𝑡 on 𝑣𝑖𝑝 ∈ 𝐼 is slid to 𝑣 𝑗𝑝 ∈ 𝐽 or the token 𝑡 ′ on 𝑣 𝑗𝑝 ∈ 𝐽
is slid to 𝑣𝑖𝑝 ∈ 𝐼 in some iteration of the while loop in PVCRPathTS(𝑃, 𝐼, 𝐽), and either
𝑆𝐼 or 𝑆𝐽 is then updated accordingly. Suppose that the algorithm slides 𝑡 to 𝑣 𝑗𝑝 . Note
that if there is any token 𝑡 ′′ placed at some vertex 𝑣𝑖𝑞 (𝑖𝑞 ∈ {𝑖𝑝 + 1, . . . , 𝑗𝑝} in the path
𝑣𝑖𝑝 𝑣𝑖𝑝+1 . . . 𝑣 𝑗𝑝 , then even when 𝑡 ′′ is moved by some Push calls, by the time 𝑡 ends up
at 𝑣 𝑗 , 𝑡 ′′ cannot be placed at any vertex whose index is larger than 𝑗𝑞 . (We always have
𝑖𝑝 < 𝑖𝑞 ≤ 𝑗𝑝 < 𝑗𝑞 for all such 𝑖𝑞 .) Clearly, if no such 𝑣𝑖𝑞 exists, sliding 𝑡 has no effect
on sliding any other token in the next iterations. A similar argument holds in case the
algorithm slides 𝑡 ′. Thus, we can conclude that PVCRPathTS(𝑃, 𝐼, 𝐽) performs exactly∑𝑠

𝑝=1 dist𝑃 (𝑣𝑖𝑝 , 𝑣 𝑗𝑝 ) TS-steps, and therefore outputs a shortest TS-sequence.

4.2.2 𝑘-PVCR on Cycles.

Let 𝐶 = 𝑣0𝑣1 . . . 𝑣𝑛−1𝑣0 be a given 𝑛-vertex cycle, and let (𝐶, 𝐼, 𝐽,R) be a 𝑘-PVCR
instance on 𝐶 under a reconfiguration rule R ∈ {TJ, TS, TAR(𝑢)}. We remark that if
|𝐼 | = |𝐽 | = d𝑛/𝑘e and 𝑛 = 𝑐 · 𝑘 for some 𝑐, then (𝐶, 𝐼, 𝐽,R) where R ∈ {TS, TJ} is a
no-instance. This is because no tokens can be moved in such instances.

Here we assume that the indices of vertices on the cycle increase in the clockwise
manner. We claim that it is possible to apply the algorithms for paths to cycles, by
cutting a cycle into a path with a vertex in 𝐼 ∩ 𝐽, if it exists. Moreover, if 𝐼 ∩ 𝐽 = ∅,
we claim that one can always move tokens to reach an instance where 𝐼 ∩ 𝐽 ≠ ∅. Our
algorithms do not always achieve the shortest reconfiguration sequence. However, we
later show that achieving the shortest sequence even on cycles under TJ might not be
trivially easy, since we can systematically create the instances such that the length of
the shortest reconfiguration sequence is not equal to |𝐼Δ𝐽 |/2.

Now, we describe the sketch how to cut 𝐶 under TJ, TS, and TAR. In the TS case,
without loss of generality, we can assume that either |𝐼 | ≠ d𝑛/𝑘e or 𝑛 ≠ 𝑐 · 𝑘 holds. If 𝑣
is already in 𝐼 ∩ 𝐽, we cut 𝐶 by removing 𝑣. The following lemma ensures that if 𝐼 and
𝐽 are reconfigurable in 𝐶 − 𝑣, then 𝐼 ∪ {𝑣} and 𝐽 ∪ {𝑣} are reconfigurable in 𝐶.
Lemma 14. Let 𝐶 be an 𝑛-vertex cycle and 𝑣 be a token in 𝐼 ∩ 𝐽 of 𝐶. Then, for any
𝑘-path vertex cover 𝐼 ′ of 𝐶 − 𝑣, 𝐼 ′ ∪ {𝑣} is a 𝑘-path vertex cover of 𝐶.
Proof. Let us assume 𝑣 to be 𝑣0. Consider the path 𝑃 = 𝐶 − 𝑣 = 𝑣1𝑣2 . . . 𝑣𝑛−2𝑣𝑛−1
and a 𝑘-path vertex cover 𝐼 ′ on 𝑃. Since 𝐼 ′ covers all the 𝑘-paths on 𝑃, 𝐼 ′ has at
least one token on the 𝑘-path 𝑃′ = 𝑣1𝑣2 . . . 𝑣𝑘 and also at least one token on the 𝑘-path
𝑃′′ = 𝑣𝑛−𝑘𝑣𝑛−𝑘+1 . . . 𝑣𝑛−1. Now 𝑣 is a token in 𝐼 ∩ 𝐽, if we connect two endpoints 𝑣1 and
𝑣𝑛−1 with 𝑣 and create a cycle, all new 𝑘-paths include 𝑣 and those paths are covered by
𝑣. This completes the proof.

If 𝐼 ∩ 𝐽 = ∅, there exists at least one token movable in the clockwise or counter-
clockwise direction. Here, we say a token 𝑢 is movable if and only if (i) there exists
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a neighbor 𝑣 of 𝑢 such that no token is placed on 𝑣, and (ii) moving a token on 𝑢 to 𝑣

results a 𝑘-path vertex cover.

Lemma 15. If either |𝐼 | ≠ d𝑛/𝑘e or 𝑛 ≠ 𝑐 · 𝑘 holds, then there exists at least one
token movable by at least one step in the clockwise or counterclockwise direction.
Furthermore, we can find such a token in linear time.

Proof. If |𝐼 | ≠ d𝑛/𝑘e, since d𝑛/𝑘e is a minimum size of 𝑘-path vertex cover on 𝑛-vertex
cycle, we can assume |𝐼 | ≥ d𝑛/𝑘e + 1. This implies that there exists some 𝑘-path that
has at least two tokens on it. We can find such a path (and thus such tokens) in linear
time, since there are at most 𝑛 distinct 𝑘-paths on an 𝑛-vertex cycle. Once we find such
tokens, e.g., 𝑢 and 𝑣, at least one of them can move at least one step in clockwise or
counterclockwise direction, since the 𝑘-path is now covered by 𝑢 and 𝑣 and if we move
𝑣, either 𝑢 or 𝑣 still covers the 𝑘-path. Hence, if |𝐼 | ≠ d𝑛/𝑘e, this lemma holds.

Consider the case |𝐼 | = d𝑛/𝑘e and 𝑛 is not divisible by 𝑘 . Since 𝐼 is a 𝑘-path vertex
cover, 𝐼 covers all 𝑘-paths in 𝐶. Clearly, 𝐶 is a cycle of size 𝑛 if and only if the number
of edges of 𝐶 is 𝑛. Suppose to the contrary that each 𝑘-path in 𝐶 has exactly one token
of 𝐼. Then, the length of the cycle is |𝐼 | · (𝑘 − 1) + |𝐼 | = |𝐼 | · 𝑘 , which contradicts to
the assumption that 𝑛 is not divisible by 𝑘 . By this argument, similarly to the above
|𝐼 | ≠ d𝑛/𝑘e case, there exists at least one 𝑘-path which has two tokens of 𝐼, and we can
find them in linear time. This completes the proof.

After finding such a movable token, we can use rotate operation repeatedly until
we obtain at least one vertex in 𝐼 ∩ 𝐽. Here, the rotate operation takes a token-
set, a movable token 𝑢 which can be slid at least one step towards direction 𝑑 ∈
{clockwise, counterclockwise} as input, and outputs a TS-sequence that slides all tokens
one step towards 𝑑. Intuitively, moving 𝑢 one step towards 𝑑 enables its successor (with
respect to direction 𝑑) to move one step towards 𝑑, and so on. After obtaining at least
one vertex in 𝐼 ∩ 𝐽, we can perform the cutting operation as before.

Next, we consider the TJ case. Since any TS-sequence is also a TJ-sequence, we
can perform the same cutting operation as in the TS case. Then, using this cutting
operation, we can show the following theorem.

Theorem 16. Given an instance (𝐶, 𝐼, 𝐽,R) of 𝑘-PVCR on a cycle 𝐶 where R ∈
{TS, TJ}, if |𝐼 | = |𝐽 | = d𝑛/𝑘e and 𝑛 = 𝑐 · 𝑘 for some 𝑐, then (𝐶, 𝐼, 𝐽,R) is a no-instance.
Otherwise, the 𝑘-path vertex covers 𝐼 and 𝐽 are reconfigurable if and only if |𝐼 | = |𝐽 |.
Moreover, we can compute a reconfiguration sequence for TJ rule in 𝑂 (𝑛) time, and for
TS rule in 𝑂 (𝑛2) time.

Proof. We describe an algorithm (Algorithm 6) that takes 𝐶 = 𝑣0𝑣1 . . . 𝑣𝑛−1𝑣0, initial
token-set 𝐼, and target token-set 𝐽 and outputs a reconfiguration sequence 𝑆 if exists,
and otherwise says no-instance. Lemma 14 shows that it is possible to cut the cycle 𝐶
with a vertex 𝑣 ∈ 𝐼 ∩ 𝐽; in other words, it is equivalent to consider problems on a path
𝑃 = 𝐶 − 𝑣.

Lemma 15 allows us to find at least one movable token if either |𝐼 | ≠ d𝑛/𝑘e or
𝑛 ≠ 𝑐 · 𝑘 holds. After finding such a movable token, we can use the rotate operation
described in Function 5 and obtain at least one vertex 𝑣 ∈ 𝐼 ∩ 𝐽. Let us assume that
𝐼 = {𝑣𝑖0 , 𝑣𝑖1 , . . . , 𝑣𝑖𝑠−1 } where 0 ≤ 𝑖0 < 𝑖1 < · · · < 𝑖𝑠−1 ≤ 𝑛 − 1. Here, let 𝑣𝑖 𝑗 be a token
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that is movable to at least one step in the direction 𝑑 ∈ {clockwise, counterclockwise},
where 𝑗 ∈ {0, . . . , 𝑠 − 1}.

One can observe that, by Lemma 15, the reconfiguration sequence obtained by
rot(𝐼, 𝑖 𝑗 , 𝑑) is a TS-sequence. This is indeed true, since it moves each token in 𝐼 by
exactly one step keeping the 𝑘-path vertex cover property, by starting to move tokens
from 𝑣𝑖 𝑗 along the cycle until we meet 𝑣𝑖 𝑗 again.

By Lemma 14 and Lemma 15, PVCRCycleTS(𝐶, 𝐼, 𝐽) is shown to be correct. Note
here that, for 𝑘-PVCR on cycles under TJ, one can use PVCRPathTJ(𝐶 − 𝑣, 𝐼, 𝐽) instead
of applying PVCRPathTS(𝐶 − 𝑣, 𝐼, 𝐽) in the algorithm. For the computation time, since
(i) while loop takes 𝑂 (𝑘𝑛) time and (ii) PVCRPathTS(𝐶 − 𝑣, 𝐼, 𝐽) runs in 𝑂 (𝑛2) time,
PVCRCycleTS(𝐶, 𝐼, 𝐽) runs in 𝑂 (𝑛2) time. For TJ case, since PVCRPathTJ(𝐶 − 𝑣, 𝐼, 𝐽)
runs in 𝑂 (𝑛) time, PVCRCycleTJ(𝐶, 𝐼, 𝐽) runs in 𝑂 (𝑛) time.

For the TAR case, we can use the result for the TJ case and Lemma 1 to show the
following theorem.

Theorem 17. For any instance (𝐶, 𝐼, 𝐽, TAR(𝑢)) of 𝑘-PVCR on a cycle 𝐶, one can
decide if 𝐼 and 𝐽 are reconfigurable in linear time.

Proof. Clearly, if 𝑢 < max{|𝐼 |, |𝐽 |} or 𝑢 = 𝜓𝑘 (𝐶) then (𝐶, 𝐼, 𝐽, TAR) is a no-instance,
because either 𝐼 or 𝐽 cannot be modified by adding/removing tokens. We now consider
the case 𝑢 ≥ max{|𝐼 |, |𝐽 |} and 𝑢 > 𝜓𝑘 (𝐶). Note that if |𝐼 | < |𝐽 | then we can
add tokens to 𝐼 until the resulting 𝑘-path vertex cover is of size |𝐽 |, simply because
𝑢 ≥ max{|𝐼 |, |𝐽 |}. As a result, we can assume without loss of generality that |𝐼 | = |𝐽 | = 𝑠

for some constant 𝑠. Now we have |𝐼 | = |𝐽 | = 𝑠 and 𝑢 > 𝜓𝑘 (𝐶), we divide into two
cases: 𝑢 ≥ 𝑠 + 2 or 𝑢 = 𝑠 + 1.

Consider the case 𝑢 ≥ 𝑠 + 2. If 𝐼 ∩ 𝐽 = ∅, then we add one token 𝑣 ∉ 𝐼 ∪ 𝐽.
Then we can cut 𝐶 by 𝑣 and consider the instance (𝐶 − 𝑣, 𝐼 \ {𝑣}, 𝐽 \ {𝑣}) on the path
𝐶 − 𝑣 under TAR(𝑢′) where 𝑢′ ≥ 𝑠 + 1. Then, by Theorem 10 and Lemma 1, 𝐼 is
always reconfigurable to 𝐽 under TAR(𝑢). Otherwise, i.e., 𝐼 ∩ 𝐽 ≠ ∅, we can use the
similar argument as before with |𝐼 | = |𝐽 | = 𝑠 − 1 and 𝑢 ≥ 𝑠 + 1, therefore 𝐼 is always
reconfigurable to 𝐽 under TAR(𝑢).

Next, consider the case 𝑢 = 𝑠 + 1. If 𝐼 ∩ 𝐽 ≠ ∅, also similar argument can be applied
as before with |𝐼 | = |𝐽 | = 𝑠−1 and 𝑢 = 𝑠. Hence, in this case, 𝐼 is always reconfigurable
to 𝐽 under TAR(𝑢). Otherwise, we first find a token of 𝐼 which is movable in direction
𝑑 ∈ {clockwise, counterclockwise}. Recall that a token 𝑢 is movable to some vertex
𝑣 if the resulting set still keeps a 𝑘-path vertex cover property. If we can find such a
token, we can rotate 𝐼 in 𝑑 until 𝐼 ∩ 𝐽 ≠ ∅ as in the algorithm PVCRCycleTS. We
note that though such rotation forms a TS-sequence (which is also a TJ-sequence), by
Lemma 1, it can be converted to a TAR(𝑢)-sequence. If we finish the rotation, then
we can also cut 𝐶 by 𝑣 ∈ 𝐼 ∩ 𝐽 and similar argument can be applied as before. Else,
assume without loss of generality that no token in 𝐼 can move. Then, by Lemma 15,
it follows that 𝐼 is minimum and 𝑛 = 𝑐 · 𝑘 . Now we have 𝑢 = 𝑠 + 1, and we can add
exactly one token. However, even when adding a new token 𝑣, one cannot remove any
other token 𝑢 while keeping the 𝑘-path vertex cover property. Suppose to the contrary,
let 𝐼 ′ = 𝐼 \ {𝑢} ∪ {𝑣}. This implies that 𝐼 ′ can be obtained from 𝐼 by jumping the token
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on 𝑢 to 𝑣. However, since 𝑛 = 𝑐 · 𝑘 and 𝐼 and 𝐼 ′ are token sets of minimum size, then 𝐼

cannot be reconfigured to 𝐼 ′ under TJ, a contradiction.

So far, we have shown that 𝑘-PVCR on cycles under each of TJ and TAR(𝑢) can
be solved in 𝑂 (𝑛) time, and under TS can be solved in 𝑂 (𝑛2) time (Theorems 16
and 17). To conclude this section, we give an example showing that even in a yes-
instance (𝐶, 𝐼, 𝐽, TJ) of 𝑘-PVCR (𝑘 ≥ 3) under TJ on a cycle 𝐶, one may need to use
more than |𝐼Δ𝐽 |/2 TJ-steps even in a shortest TJ-sequence. Intuitively, the lower bound
|𝐼Δ𝐽 |/2 seems to be easy to achieve under TJ, simply by jumping tokens one by one
from 𝐼 \ 𝐽 to 𝐽 \ 𝐼. However, as we show in the following lemma, to keep the 𝑘-path
vertex cover property, sometimes a token in 𝐼 may need to jump to some vertex not in
𝐽 \ 𝐼 beforehand. This implies the non-triviality of finding a shortest reconfiguration
sequence even under TJ.

Lemma 18. For 𝑘-PVCR (𝑘 ≥ 3) yes-instances (𝐶, 𝐼, 𝐽, TJ) on cycles where 𝐶 =

𝑣0𝑣1 . . . 𝑣3𝑘−2𝑣0, 𝐼 = {𝑣0, 𝑣𝑘 , 𝑣2𝑘 } and 𝐽 = {𝑣3𝑘−2, 𝑣2𝑘−2, 𝑣𝑘−1}, the length of a shortest
reconfiguration sequence from 𝐼 to 𝐽 is greater than |𝐼Δ𝐽 |/2.

Proof. We illustrate such instances in Figure 6. In Figure 6, black tokens are in 𝐼,
and white tokens are in 𝐽. Note that dist𝐶 (𝑣2𝑘−2, 𝑣2𝑘 ) = 2 and dist𝐶 (𝑣3𝑘−2, 𝑣0) =
dist𝐶 (𝑣𝑘−1, 𝑣𝑘 ) = 1.

First, 𝑣0 is the only vertex that covers the path 𝑃 = 𝑣0𝑣1 . . . 𝑣𝑘−1, which means 𝑣0
cannot move to some vertex outside 𝑃, such as 𝑣3𝑘−2. Therefore, 𝑣0 has no choice but to
move to 𝑣𝑘−1. However then, the path 𝑣2𝑘 . . . 𝑣3𝑘−2𝑣0 . . . 𝑣𝑘−1 is of length 2𝑘 − 2 ≥ 𝑘 .
By these arguments, 𝑣0 cannot directly move to 𝑣𝑘−1. Similarly, since 𝑣2𝑘 is the only
vertex that covers the path 𝑃′ = 𝑣𝑘+1 . . . 𝑣2𝑘 , the possible way is only to move 𝑣2𝑘 to
𝑣2𝑘−2, which also results in an non-covered path 𝑣2𝑘−1 . . . 𝑣3𝑘−2 of length 𝑘 − 1. It is
clear that 𝑣𝑘 cannot move directly to either 𝑣2𝑘−2 or 𝑣𝑘−1. Therefore, every token in
𝐼 cannot move directly to one of the tokens in 𝐽, which means it requires at least one
step to put some token on some vertex 𝑣 ∉ 𝐼Δ𝐽. This also holds for the case moving
tokens in 𝐽 to 𝐼. Hence, the length of the reconfiguration sequence is greater than
|𝐼 \ 𝐽 | = |𝐽 \ 𝐼 | = |𝐼Δ𝐽 |/2.

Finally, we confirm that the created instance is a yes-instance. First, for exam-
ple, one can move 𝑣2𝑘 to 𝑣2𝑘−1, since after such a move the 𝑘-vertex path 𝑣2𝑘 . . . 𝑣0
is covered by the token 𝑣0 and another 𝑘-vertex path 𝑣2𝑘−1 . . . 𝑣3𝑘−2 is covered by the
token 𝑣2𝑘−1. Then, now the length of path 𝑣2𝑘−1 . . . 𝑣𝑘 is 𝑘 , hence 𝑣𝑘 can be moved
to 𝑣𝑘−1 by the similar argument. Therefore, by the reconfiguration sequence 𝑆 = 〈𝐼 =
{𝑣0, 𝑣𝑘 , 𝑣2𝑘 }, {𝑣0, 𝑣𝑘 , 𝑣2𝑘−1}, {𝑣0, 𝑣𝑘−1, 𝑣2𝑘−1}, {𝑣3𝑘−2, 𝑣𝑘−1, 𝑣2𝑘−1}, {𝑣3𝑘−2, 𝑣𝑘−1, 𝑣2𝑘−2} =
𝐽〉, one can reconfigure 𝐼 to 𝐽.

5 Concluding Remarks
In this paper, we have investigated the complexity of 𝑘-PVCR under each of TS, TJ, and
TAR for several graph classes. In particular, several known hardness results for VCR
(i.e., 𝑘 = 2) can be generalized for 𝑘-PVCR when 𝑘 ≥ 3. Additionally, we proved a
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complexity dichotomy for 𝑘-PVCR by showing that it remains PSPACE-complete even
if the input (planar) graph is of maximum degree three (using a reduction from NCL)
and can be solved in polynomial time when the input (planar) graph is of maximum
degree two (i.e., it is either a path or a cycle). On the positive side, we designed
polynomial-time algorithms for 𝑘-PVCR on trees under each of TJ and TAR. We also
showed how to construct a shortest reconfiguration sequence on paths, and presented
an example showing the nontriviality of finding shortest reconfiguration sequences on
cycles even under TJ. The question of whether one can solve 𝑘-PVCR on trees under TS
in polynomial time remains open. Another target graphs may be chordal graphs (under
each of TJ and TAR), cographs, and graphs of treewidth at most 2. Even on graphs
of treewidth at most 2 (and moreover, on outerplanar graphs), the complexity of VCR
remains open.
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Figure 4: (a) All vaild orientations of the edges incident to an NCL and vertex, and (b)
all 3-PVCs of the and gadget. The 3-PVCs connected by an edge are adjacent by TJ/TS
rules, while the 3-PVCs connected by dashed edge are adjacent only by TJ rule.
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Figure 5: (a) All vaild orientations of the edges incident to an NCL or vertex, and (b)
all 3-PVCs of the or gadget. The 3-PVCs connected by an edge are adjacent by TJ/TS
rules, while the 3-PVCs connected by dashed edge are adjacent only by TJ rule.
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Algorithm 4: PVCRPathTS(𝑃, 𝐼, 𝐽)
Input: A path 𝑃 = 𝑣1𝑣2 . . . 𝑣𝑛, two 𝑘-path vertex covers 𝐼, 𝐽;
Output: A TS-sequence 𝑆 between 𝐼 and 𝐽 in 𝑃;

1 Let 𝑆, 𝑆𝐼 , 𝑆𝐽 be reconfiguration sequences, and initialize them by ∅;
2 while 𝐼 ≠ 𝐽 do
3 Mark all vertices in 𝐼 and 𝐽 as untouched;
4 Find the leftmost untouched vertex 𝑣𝑖 ∈ 𝐼 and the leftmost untouched

vertex 𝑣 𝑗 ∈ 𝐽;
5 if 𝑖 < 𝑗 then
6 𝑆𝐼 := 𝑆𝐼 ⊕ Push(𝑃, 𝐼, 𝑖, 𝑗) ; // 𝐼 is updated in Push
7 else
8 𝑆𝐽 := 𝑆𝐽 ⊕ Push(𝑃, 𝐽, 𝑗 , 𝑖) ; // 𝐽 is updated in Push
9 Mark 𝑣𝑖 and 𝑣 𝑗 as touched;

10 𝑆 := 𝑆𝐼 ⊕ rev(𝑆𝐽 );
11 return 𝑆;

Function 5: rot(𝐼, 𝑖 𝑗 , 𝑑)
Input: A token-set 𝐼, a token on 𝑣𝑖 𝑗 ∈ 𝐼, 𝑑 ∈ {clockwise, counterclockwise}.
Output: A TS-sequence 𝑆 that slides all tokens one step towards 𝑑, starting

from 𝑣𝑖 𝑗 .
1 𝑆 := ∅;
2 𝑐 := 𝑗 ;
3 if 𝑑 is clockwise then
4 repeat
5 𝑆 := 𝑆 ⊕ 〈𝐼, 𝐼 \ {𝑣𝑖𝑐 } ∪ {𝑣(𝑖𝑐+1) mod 𝑛}〉;
6 𝐼 := 𝐼 \ {𝑣𝑖𝑐 } ∪ {𝑣(𝑖𝑐+1) mod 𝑛};
7 𝑐 := (𝑐 + 1) mod |𝐼 |;
8 until 𝑐 = 𝑗 ;
9 else

10 repeat
11 𝑆 := 𝑆 ⊕ 〈𝐼, 𝐼 \ {𝑣𝑖𝑐 } ∪ {𝑣(𝑖𝑐−1) mod 𝑛}〉;
12 𝐼 := 𝐼 \ {𝑣𝑖𝑐 } ∪ {𝑣(𝑖𝑐−1) mod 𝑛};
13 𝑐 := (𝑐 − 1) mod |𝐼 |;
14 until 𝑐 = 𝑗 ;
15 return 𝑆;
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Algorithm 6: PVCRCycleTS(𝐶, 𝐼, 𝐽)
Input: A cycle 𝐶 = 𝑣0𝑣1 . . . 𝑣𝑛−1𝑣0, initial token-set 𝐼, and target token-set 𝐽;
Output: A reconfiguration sequence 𝑆 if it exists; otherwise says no-instance;

1 𝑆 := ∅;
2 if 𝐼 ∩ 𝐽 = ∅ and |𝐼 | = d𝑛/𝑘e and 𝑛 is divisible by 𝑘 then
3 return (𝐶, 𝐼, 𝐽) is a no-instance;
4 Find a token 𝑣𝑖 ∈ 𝐼 such that it can move at least one step in clockwise or

counterclockwise direction, and let 𝑑 be such a direction;
5 while 𝐼 ∩ 𝐽 = ∅ do
6 𝑆 := 𝑆 ⊕ rot(𝐼, 𝑖, 𝑑) ; // 𝐼 is updated in rot(𝐼, 𝑖, 𝑑)
7 if d is clockwise then
8 𝑖 := (𝑖 + 1) mod 𝑛;
9 else

10 𝑖 := (𝑖 − 1) mod 𝑛;
11 Pick one token 𝑣 ∈ 𝐼 ∩ 𝐽;
12 𝑆′ = PVCRPathTS(𝐶 − 𝑣, 𝐼, 𝐽);
13 Update 𝑆′ by adding 𝑣 to each of its members;
14 𝑆 := 𝑆 ⊕ 𝑆′;
15 return 𝑆;

distancedistance

distance

Figure 6: An instance (𝐶, 𝐼, 𝐽, TJ) that requires more than |𝐼Δ𝐽 |/2 steps to reconfigure
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