Skip to main content

Realisability of Choreographies

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12012))

Abstract

Choreographies prescribe the rendez-vous synchronisation of messages in a system of communicating finite state machines. Such a system is called realisable, if the traces of the prescribed communication coincide with those of the asynchronous system of peers, where the communication channels either use FIFO queues or multiset mailboxes. In this paper we provide two necessary conditions for synchronisability and hence for realisability of communication choreographies. We show that both conditions together are sufficient. A simple consequence is that realisability in the presence of a choreography becomes decidable. The conditions permit realisable choreographies to be obtained by means of composition, and then choreographies can be further refined into concurrent systems of communicating machines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the automata defined in the next two definitions are not FSMs, strictly speaking, as there may be infinitely many states. Nonetheless, languages accepted by these automata can be defined analogously to FSMs.

  2. 2.

    As we will see, \(\epsilon \)-transitions are not needed, but they come in handy in proofs.

  3. 3.

    In fact, all counter-examples in [12] to previously claimed decidability results are P2P systems that are not choreography-defined.

  4. 4.

    As the theory is based on FSMs, there is no possibility to express parallelism.

References

  1. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Srinivasan, S., et al. (eds.) Proceedings of the 20th International Conference on World Wide Web (WWW 2011), pp. 795–804. ACM (2011)

    Google Scholar 

  2. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communicating systems. Theor. Comput. Sci. 656, 60–75 (2016)

    Article  MathSciNet  Google Scholar 

  3. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field, J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL 2012), pp. 191–202. ACM (2012)

    Google Scholar 

  4. Benyagoub, S., Aït-Ameur, Y., Ouederni, M., Mashkoor, A., Medeghri, A.: Formal design of scalable conversation protocols using Event-B: validation, experiments and benchmarks. J. Softw. Evol. Process (2019, to appear)

    Google Scholar 

  5. Benyagoub, S., Ouederni, M., Aït-Ameur, Y., Mashkoor, A.: Incremental construction of realizable choreographies. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_1

    Chapter  Google Scholar 

  6. Benyagoub, S., Ouederni, M., Singh, N.K., Ait-Ameur, Y.: Correct-by-construction evolution of realisable conversation protocols. In: Bellatreche, L., Pastor, Ó., Almendros Jiménez, J.M., Aït-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp. 260–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1_21

    Chapter  Google Scholar 

  7. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Informatica 53(5), 469–492 (2016)

    Article  MathSciNet  Google Scholar 

  8. Börger, E., Schewe, K.-D.: Communication in abstract state machines. J. UCS 23(2), 129–145 (2017)

    MathSciNet  Google Scholar 

  9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2), 323–342 (1983)

    Article  MathSciNet  Google Scholar 

  10. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9_28

    Chapter  Google Scholar 

  11. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_20

    Chapter  Google Scholar 

  12. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is not decidable. In: Chatzigiannakis, I., et al. (eds.) 44th International Colloquium on Automata, Languages, and Programming (ICALP 2017). LIPIcs, vol. 80, pp. 122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

    Google Scholar 

  13. Schewe, K.-D.: Extensions to hybrid Event-B to support concurrency in cyber-physical systems. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D., Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 418–433. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00856-7_28

    Chapter  Google Scholar 

  14. Zoubeyr, F., Aït-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction model for asynchronously communicating systems. STTT 19(4), 465–485 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Dieter Schewe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schewe, KD., Aït-Ameur, Y., Benyagoub, S. (2020). Realisability of Choreographies. In: Herzig, A., Kontinen, J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2020. Lecture Notes in Computer Science(), vol 12012. Springer, Cham. https://doi.org/10.1007/978-3-030-39951-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39951-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39950-4

  • Online ISBN: 978-3-030-39951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics