Skip to main content

Towards Probabilistic Reasoning in Type Theory - The Intersection Type Case

  • Conference paper
  • First Online:
  • 476 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12012))

Abstract

The development of different probabilistic models of uncertainty has been inspired by the rapid progress in various fields, e.g. in AI, probabilistic programming, etc. Lambda calculus is a universal model of computation suitable to express programming languages concepts. Hence, different methods for probabilistic reasoning in lambda calculus have been investigated. In this paper, we develop a formal model for probabilistic reasoning about lambda terms with intersection types, which is a combination of lambda calculus and probabilistic logic. The language of lambda calculus with intersection types is endowed with a probabilistic operator. We propose a semantics based on the possible world approach. An infinitary axiomatization is given for this system and it is proved to be sound with respect to the proposed semantics.

This work was supported by the Serbian Ministry of Education and Science through projects ON174026, III 044006 and by the Swiss National Science Foundation grant 200021\(\_\)165549.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For any real number \(\epsilon > 0\) there exists an \(n \in \mathbb {N}\) such that \(\frac{1}{n} < \epsilon \).

  2. 2.

    Note that the notion of a consistent set is different than usual. We have one additional condition, namely condition (2).

References

  1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland Publishing Company, Amsterdam (1984)

    MATH  Google Scholar 

  2. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types. Perspectives in Logic. Cambridge University Press, Cambridge (2013). http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types

    Book  Google Scholar 

  3. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the completeness of type assignment. J. Symb. Logic 48(4), 931–940 (1983). https://doi.org/10.2307/2273659

    Article  MathSciNet  MATH  Google Scholar 

  4. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer Science. vol. 2, pp. 117–309. Oxford University Press Inc, New York (1992). http://dl.acm.org/citation.cfm?id=162552.162561

  5. Ben-Yelles, C.B.: Type assignment in the lambda-calculus: syntax and semantics. Ph.D. thesis, Department of Pure Mathematics, University College of Swansea, September 1979

    Google Scholar 

  6. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2), 56–68 (1940). https://doi.org/10.2307/2266170

    Article  MathSciNet  MATH  Google Scholar 

  7. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for \(\lambda \)-terms. Arch. Math. Log. 19(1), 139–156 (1978). https://doi.org/10.1007/BF02011875

    Article  MathSciNet  MATH  Google Scholar 

  8. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-value \(\lambda \)-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8_12

    Chapter  MATH  Google Scholar 

  9. Crubillé, R., Dal Lago, U., Sangiorgi, D., Vignudelli, V.: On applicative similarity, sequentiality, and full abstraction. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 65–82. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_7

    Chapter  Google Scholar 

  10. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-order probabilistic functional programs. In: POPL, pp. 297–308. ACM (2014)

    Google Scholar 

  11. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18 (1964). https://doi.org/10.1007/BF02759729

    Article  MathSciNet  MATH  Google Scholar 

  12. Ghilezan, S.: Strong normalization and typability with intersection types. Notre Dame J. Form. Logic 37(1), 44–52 (1996). https://doi.org/10.1305/ndjfl/1040067315

    Article  MathSciNet  MATH  Google Scholar 

  13. Ghilezan, S., Ivetić, J., Kašterović, S., Ognjanović, Z., Savić, N.: Probabilistic reasoning about simply typed lambda terms. In: Artemov, S., Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 170–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72056-2_11

    Chapter  Google Scholar 

  14. Hailperin, T.: Best possible inequalities for the probability of a logical function of events. Am. Math. Monthly 72(4), 343–359 (1965). http://www.jstor.org/stable/2313491

    Article  MathSciNet  Google Scholar 

  15. Hamblin, C.L.: The modal “probably”. Mind 68(270), 234–240 (1959). https://doi.org/10.1093/mind/LXVIII.270.234

    Article  Google Scholar 

  16. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Computer Science 42. Cambridge University Press, Cambridge (1997). http://gen.lib.rus.ec/book/index.php?md5=3BB4134A46F16E81D2D16744850F44EA

    Book  Google Scholar 

  17. Hindley, J.R., Longo, G.: Lambda-calculus models and extesionality. Math. Logic Q. 26, 289–310 (1980)

    Article  Google Scholar 

  18. Ikodinović, N., Ognjanović, Z., Rašković, M., Marković, Z.: First-order probabilistic logics and their applications. In: Zbornik radova, Subseries Logic in Computer Science, vol. 18, no. 26, pp. 37–78. Matematički institut(2015)

    Google Scholar 

  19. Kašterović, S., Pagani, M.: The discriminating power of the let-in operator in the lazy call-by-name probabilistic lambda-calculus. In: 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, 24–30 June 2019, Dortmund, Germany, pp. 26:1–26:20 (2019). https://doi.org/10.4230/LIPIcs.FSCD.2019.26

  20. Keisler, H.: Hyperfinite models of adapted probability logic. Ann. Pure Appl. Logic 31, 71–86 (1986). https://doi.org/10.1016/0168-0072(86)90063-1. http://www.sciencedirect.com/science/article/pii/0168007286900631

    Article  MathSciNet  MATH  Google Scholar 

  21. Kraus, M.: Early Greek probability arguments and common ground in dissensus. In: Ontario Society for the Study of Argumentation (OSSA) Proceedings, pp. 1–11. OSSA Conference Archive (2007)

    Google Scholar 

  22. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  23. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986). https://doi.org/10.1016/0004-3702(86)90031-7

    Article  MathSciNet  MATH  Google Scholar 

  24. Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. In: Zborik radova, Subseries logic in computer science, vol. 12, no. 20, pp. 35–111. Matematički institut (2009)

    Google Scholar 

  25. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based Formalization of Uncertain Reasoning. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47012-2

    Book  MATH  Google Scholar 

  26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems - Networks of Plausible Inference. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, San Mateo (1989)

    MATH  Google Scholar 

  27. Thurn, S.: Exploring Artificial Intelligence in the New Millennium, chap. Robotic Mapping: A Survey, pp. 1–35. Morgan Kaufmann Publishers Inc., San Francisco (2003), http://dl.acm.org/citation.cfm?id=779343.779345

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Kašterović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghilezan, S., Ivetić, J., Kašterović, S., Ognjanović, Z., Savić, N. (2020). Towards Probabilistic Reasoning in Type Theory - The Intersection Type Case. In: Herzig, A., Kontinen, J. (eds) Foundations of Information and Knowledge Systems. FoIKS 2020. Lecture Notes in Computer Science(), vol 12012. Springer, Cham. https://doi.org/10.1007/978-3-030-39951-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39951-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39950-4

  • Online ISBN: 978-3-030-39951-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics