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Foreword

It is a genuine pleasure to write this brief foreword to the collected proceedings of
GPTP XVII. It was my privilege to act as opening keynote speaker at the gathering,
returning after a 16-year break from playing the same role for GPTP I in 2003. In
both cases, I was a fascinated outsider learning about a community that seemed at
once oddly similar and yet weirdly different from the computational evolutionary
biologists who comprise my own academic tribe (specifically those concerned with
the origin and early evolution of life).

On both occasions, I was struck immediately by the potential for the Genetic
Programming Theory and Practice (GPTP) community to answer questions that “my
people” struggle to frame. How and why did the computational basis of biology
evolve to comprise the particular set of rules and pieces which freshmen biologists
now strive to memorize, some four billion years later (4 genetic letters, 20 amino
acid building blocks of proteins and their interactions)?

But this year, just as in 2003, careful listening soon brought a far deeper
conviction that the questions of evolutionary computing are not and should not
be limited to those which happen to interest me, or indeed anyone else. There
is something too fresh, vibrant, and exploratory about the border formed by
introducing evolutionary principles into programming. The diverse works which
follow will grow, within the reader, an inescapable sense that it would be to the
detriment of human knowledge and technological progress for anyone to presume,
at this early stage, any particular purpose or direction for the field. There’s simply
too much exploration to be done first!

This truth only highlights a more urgent and somber note which must rightfully
dominate my remaining words. While it would be nice to write here only a tourist’s
guide to the series of locations along the border between evolution and computing
which populate the following pages, something far more serious dominated the
gathering and must be spoken openly. When I, a nosy outsider, asked participants
to bring me up to speed on the history of their field “while I was away,” one
message united all answers: Deep Learning has emerged to pose a deep and perhaps
existential threat to our community. The numerous directions in which this particular
form of neural network can find answers are undeniable. Equally undeniable is
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viii Foreword

the attractiveness of a simple, reliable, and user-friendly product developed by the
financial might and business acumen of Google. But just as, at least within the USA,
the emergence of “big box” stores brought reliability, cost savings, and convenience
only at the cost of conformity which eroded a far richer consumer ecosystem, so it
is very clear from the pages that follow that Deep Learning is flattening something
far richer.

Both implicitly and explicitly, the pages which follow demonstrate that Deep
Learning is not the answer to every problem. From industry to computing theory,
genetic programming and genetic algorithms can help where neural networks and
other forms of machine learning struggle. A subtler, deeper message to be found
between their lines is one familiar throughout research science. Surprisingly often, it
turns out that an answer to the question, as originally posed, is downright unhelpful.
We needed, instead, to understand why the question was badly framed. That need not
be expressed in the past tense. Any history of science suggests that we progress less
by obtaining answers than by forming better questions. Douglas Adams satirized
this important truth famously within the Hitchhiker’s Guide to the Galaxy when
he told the story of an unimaginably advanced civilization which built planet Earth
as a supercomputer with which to calculate the answer to life in the universe and
everything. Only when this answer arrived in the form of the number 42 did the
civilization reflect that perhaps the question had not been well formed.

The truth behind this humor matters when a core limitation of Deep Learning
is its lack of transparency. What just happened? How did it reach that answer? Is
that really what we needed to know/solve/achieve? In contrast to the black (“big”)
box of Deep Learning, the diverse “Mom-and-Pop” stores of the GPTP community
invite such meta-questions. Through them, we have every reason to believe, a deeper
kind of learning proceeds. Let us not wait for Deep Learning to produce all of
the answers, only to discover that we now need to dust off, resurrect, or reinvent
alternative approaches that it drove extinct along the way. It matters, then, that the
community of evolutionary computing spreads this message: through its areas of
success and the unexpected insights it uncovers. And if you, the reader, are in any
way new to the field represented by GPTP then it matters that you keep reading.

Baltimore, MD, USA Stephen Freeland
October 2019



Preface

After 16 annual editions of the workshop on Genetic Programming Theory and
Practice (GPTP) were held in Ann Arbor, 2019, we saw the workshop venturing
out from that location for the first time. This 17th GPTP workshop was held in East
Lansing, Michigan, from May 16 to May 19, 2019, at Michigan State University,
one of the first land-grant institutions in the USA. It was organized and supported
by the NSF-funded BEACON Center for the Study of Evolution in Action, a Science
and Technology Center funded by the NSF since 2010.

The collection you hold in hand contains the written final contributions submitted
by the workshop’s participants. Each contribution was drafted, read, and reviewed
by other participants prior to the workshop. Each was then presented at the
workshop, and subsequently revised, after the workshop, on the basis of feedback
received during the event.

GPTP has long held a special place in the genetic programming community, as
an unusually intimate, interdisciplinary, and constructive meeting. It brings together
researchers and practitioners who are eager to engage with one another deeply,
in thoughtful, unhurried discussions of the major challenges and opportunities in
the field. Despite the change in location, the large group of interested individuals
at MSU this year resulted in one of the largest groups ever participating in the
workshop with approximately 50 regular attendees.

It should be kept in mind that participation at this workshop is by invitation only,
and every year the editors make an effort to invite a group of participants that is
diverse in several ways, including participants both from academia and industry,
junior and senior, local, national, and international. Efforts are also made to include
participants in “adjacent” fields such as evolutionary biology.

GPTP is a single-track workshop, with a schedule that provides ample time for
presentations and for discussions, both in response to specific presentations and
on more general topics. Participants are encouraged to contribute observations from
their own, unique perspectives, and to help one another to engage with the presented
work. Often, new ideas are developed in these discussions, leading to collaborations
after the workshop.
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In this year’s edition, the regular talks touched on many of the most important
issues and research questions in the field, including: opportune application domains
for GP-based methods, game playing and co-evolutionary search, symbolic regres-
sion and efficient learning strategies, encodings and representations for GP, schema
theorems, and new selection mechanisms.

Aside from the presentations of regular contributions, the workshop featured
three keynote presentations that were chosen to broaden the group’s perspective on
the theory and practice of genetic programming. This year, the first keynote speaker
was Dr. Stephen Freeland, University of Maryland, on “Alphabets, topologies and
optimization.” He returned to the workshop after giving a keynote at the first
GPTP workshop in 2003, with 15 years of additional research to report on. On
the second day, the keynote was presented by Gavin A. Schmidt from the NASA
Goddard Institute for Space Studies, on “Some Challenges and Progress in Pro-
gramming for Climate Science.” The third and final keynote was delivered by Indika
Rajapakse Associate Professor of Computational Medicine and Bioinformatics,
Mathematics and Bioengineering at the University of Michigan in Ann Arbor, on
“Cell Reprogramming.” As can be gathered from their titles, none of these talks
focused explicitly on genetic programming per se. But each presented fascinating
developments that connect to the theory and applications of genetic programming
in intriguing and possibly influential ways.

While most readers of this volume will not have had the pleasure of attending
the workshop itself, our hope is that they will nonetheless be able to appreciate and
engage with the ideas that were presented. We also hope that all readers will gain an
understanding of the current state of the field, and that those who seek to do so will
be able to use the work presented herein to advance their own work, and to make
additional contributions to the field in the future.
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