
Explorations of the Semantic Learning
Machine Neuroevolution Algorithm:

Dynamic Training Data Use, Ensemble
Construction Methods, and Deep Learning

Perspectives

Ivo Gonçalves1, Marta Seca2, and Mauro Castelli2

1 INESC Coimbra, DEEC, University of Coimbra, Coimbra, Portugal

2 cNOVA IMS, Universidade Nova de Lisboa, Lisboa, Portugal

e-mail: M20170451@novaims.unl.pt - mcastelli@novaims.unl.pt

This is the Author Peer Reviewed version of the following chapter/

conference paper published by Springer:

Gonçalves, I., Seca, M., Castelli, M. (2020). Explorations of the Semantic Learning
Machine Neuroevolution Algorithm: Dynamic Training Data Use, Ensemble Construction
Methods, and Deep Learning Perspectives. In: Banzhaf, W., Goodman, E., Sheneman, L.,
Trujillo, L., Worzel, B. (eds) Genetic Programming Theory and Practice XVII. Genetic and
Evolutionary Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-39958-
0_3

FUNDING:

This work was partially supported by projects UID/MULTI/00308/2019 and by the
European Regional Development Fund through the COMPETE 2020 Programme, FCT—
Portuguese Foundation for Science and Technology and Regional Operational Program
of the Center Region (CENTRO2020) within project MAnAGER (POCI-01-0145-FEDER-
028040). This work was also partially supported by national funds through FCT
(Fundação para a Ciência e a Tecnologia) under project DSAIPA/DS/0022/2018
(GADgET).

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0

International License.

mailto:M20170451@novaims.unl.pt
mailto:mcastelli@novaims.unl.pt
https://doi.org/10.1007/978-3-030-39958-0_3
https://doi.org/10.1007/978-3-030-39958-0_3
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

Explorations of the Semantic Learning Machine
Neuroevolution Algorithm: Dynamic Training Data
Use, Ensemble Construction Methods, and Deep
Learning Perspectives

Ivo Gonçalves, Marta Seca, and Mauro Castelli

Abstract The recently proposed Semantic Learning Machine (SLM) neu-
roevolution algorithm is able to construct Neural Networks (NNs) over uni-
modal error landscapes in any supervised learning problem where the error is
measured as a distance to the known targets. This chapter studies how differ-
ent methods of dynamically using the training data affect the resulting gen-
eralization of the SLM algorithm. Across four real-world binary classification
datasets, SLM is shown to outperform the Multi-layer Perceptron, with sta-
tistical significance, after parameter tuning is performed in both algorithms.
Furthermore, this chapter also studies how different ensemble constructions
methods influence the resulting generalization. The results show that the
stochastic nature of SLM already confers enough diversity to the ensembles
such that Bagging and Boosting cannot improve upon a simple averaging
ensemble construction method. Finally, some initial results with SLM and
Convolutional NNs are presented and future Deep Learning perspectives are
discussed.

Key words: Semantic Learning Machine, Neuroevolution, Evolutionary Ma-
chine Learning, Artificial Neural Networks, Deep Learning, Deep Semantic
Learning Machine

Ivo Gonçalves
INESC Coimbra, DEEC, University of Coimbra, Pólo 2, 3030-290 Coimbra, Portugal,
e-mail: ivogoncalves77@gmail.com
Marta Seca · Mauro Castelli
NOVA IMS, Universidade Nova de Lisboa, Campus de Campolide, 1070-312 Lisboa,
Portugal, e-mail: {M20170451,mcastelli}@novaims.unl.pt

1

2 Ivo Gonçalves et al.

1 Introduction

The success of artificial intelligence can be partially attributed to Artificial
Neural Networks (ANNs), a machine learning algorithm that was invented
in the late 1950s [74]. Inspired by the anatomy of the human brain, classic
ANNs consist of neurons: atomic operators that receive a set of inputs and
generate one output, determined by their activation function. To create net-
works, neurons are connected over synapses, so that the output of one neuron
serves as input for the other. ANNs were used for a wide variety of tasks in
many different fields [62], showing their suitability in addressing both clas-
sification and regression problems. Several properties of ANNs make them a
suitable approach for addressing forecasting tasks: (1) ANNs are data-driven
self-adaptive methods and there are few a priori assumptions about the mod-
els for the problems under study [79]. Thus, ANNs are a valuable technique
for problems whose solutions require knowledge that is difficult to specify,
but for which there are enough data or observations; (2) ANNs are univer-
sal functional approximators. In particular, it was proven that ANNs can
approximate any continuous function to any desired accuracy [31, 29, 28].

Despite this result, in the literature there is no established procedure to
determine the correct number of neurons for a given application. Another
critical aspect relates with the topology of the network, that is, how the
neurons are connected among them. For ANNs to perform well at a certain
task, it is critical to find suitable connection weights. For this purpose, weights
are adjusted in a learning process, based on provided training data. The
most prevalent approach is backpropagation [60], where the error between
prediction and ground truth is distributed back recursively through adjacent
connections. However, backpropagation fails to answer the question of how
to define the general topology of neurons and synapses. Devising suitable
topologies is crucial, since it directly affects the speed and accuracy of the
subsequent learning process.

Neuroevolution addresses these issues by applying Evolutionary Computa-
tion (EC) methods with the goal of evolving ANNs. Within neuroevolution,
some approaches are specifically designed to automatically discover suitable
combinations of topology and weights. More recently, a neuroevolution algo-
rithm called Semantic Learning Machine (SLM) was proposed by Gonçalves
et al. [20]. The most interesting characteristic of SLM is that it searches
over unimodal error landscapes in any supervised learning problem where
the error is measured as a distance to the known targets. It was empirically
verified that this characteristic allows SLM to outperform other neuroevo-
lution methods over a considerable set of supervised learning problems [32].
This work continues the investigation of SLM by empirically studying: (1)
different methods of dynamic training data use; (2) different ensemble con-
structions methods. Furthermore, the extension of SLM to Convolutional
Neural Networks is also discussed.

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 3

This chapter is organized as follows: section 2 overviews the field of
neuroevolution; section 3 describes the SLM neuroevolution algorithm and
presents its distinctive features; section 4 outlines the experimental method-
ology; section 5 reports and discusses the experimental results; and section 6
presents some initial results with SLM and Convolutional Neural Networks,
and discusses future Deep Learning perspectives.

2 Neuroevolution Overview

One of the most challenging problems when using an ANN is the choice
of its architecture or topology. In this context, the terms architecture and
topology are used as synonyms to indicate some specific hyperparameters
of the ANN, namely the number of hidden layers, the number of hidden
neurons, and how the neurons are connected among them. Despite the vast
number of applications where ANNs were used [1], the literature lacks an
established procedure to determine the most suitable topology of a network
when addressing a given task. Consequently, a lot of effort is currently put
into automating the process of finding good ANN architectures. Solving this
requires addressing several topics, such as:

1. how to design the components of the architecture
2. how to put them together
3. how to set the hyperparameters

There are two main approaches followed when approaching these topics,
namely a) using search methods based on artificial intelligence, and b) using
evolutionary techniques to generate networks. The first approach uses the
gradient descent algorithm to optimize the weights of the network and to
dynamically modify the hyperparameters of ANNs, while the second approach
is characterized by the use of evolution to optimize the network’s topology.

Neuroevolution techniques were successfully applied in different domains [14]
and several attempts were proposed for using EC techniques for the optimiza-
tion of ANNs [76]. The existing works can be categorized into three main
approaches: (1) use of EC to train the ANN; (2) use of EC to optimize the
network of an ANN; (3) use of EC to optimize the ANN’s topology and to
train the ANN. These different approaches are briefly discussed to present
the reader the evolution of this research field in the last three decades.

The initial works aimed at using EC techniques for optimizing the weights
of the connections, with a fixed topology [53, 52, 73, 68, 10]. The main
idea of these works was to counteract the limitations of the backpropaga-
tion algorithm [30, 7], that due to the use of gradient descent [71] can get
trapped in a local minimum of the error function and it is not capable of
determining a global minimum if the error function is multimodal and/or
non-differentiable [76]. These works replace the backpropagation algorithm

4 Ivo Gonçalves et al.

with an evolutionary technique for learning the weights of the ANN’s con-
nections. The use of EC techniques for optimizing the weights of an ANN
is attractive because they can handle the global search problem better in a
vast, complex, multimodal, and non-differentiable surface [76]. Additionally,
it does not depend on gradient information of the error function and thus is
particularly appealing when this information is difficult to obtain. These two
advantages allowed the use of evolutionary-based methods to train different
kind of ANNs, including recurrent ANNs [26, 42] and higher order ANNs [12].

Subsequently, a second strand of research investigated the design of ANN
architectures, namely the number of neurons, the number of hidden layers,
and the connectivity among the neurons. Differently with respect to the pre-
vious studies, where it was assumed that the architecture of an ANN is pre-
defined and fixed during the evolution of connection weights, the main aim
here is to use EC techniques for evolving the topology of the network. The
problem can be formulated as an optimization problem in which the objective
is to determine the global optimum into a search space where each point rep-
resents an architecture. Given an objective function to be optimized (i.e., a
function that quantifies the quality or performance of each architecture), the
design of the optimal topology corresponds in determining the highest point
on the surface induced by the objective function on the search space of the
architectures. This surface (or fitness landscape), presents some properties
that make EC a suitable approach for finding the sought architecture [52].
The following features were identified and discussed by Miller et al. [52]: (1)
the number of possible neurons and connections is unbounded, thus the fit-
ness landscape is infinitely large; (2) since changes in the number of neurons
or connections must be discrete, the surface is non-differentiable, thus mak-
ing gradient-based approaches impossible to be used; (3) the mapping from
network design to network performance after learning, is indirect, strongly
epistatic, and dependent on initial conditions (e.g., initial weights), so the
surface is complex and noisy; (4) structurally similar networks can show very
different information processing capabilities, thus making the surface highly
deceptive; and (5) structurally dissimilar networks can provide similar per-
formance, thus the surface is multimodal.

For all these reasons, EC techniques seem to be a natural choice for ad-
dressing the problem at hand, and they represent an alternative approach,
with respect to constructive and destructive algorithms, toward the auto-
matic design of architectures. A constructive algorithm [15, 13] is a hill
climbing method that starts with a minimal network (an ANN with a mini-
mal number of hidden layers, nodes, and connections) and adds new layers,
nodes, and connections during the training phase when deemed necessary and
based on some criterion. On the other hand, destructive algorithms [56, 66, 8]
search for the optimal topology starting with a maximal network and by sub-
sequently removing unnecessary layers, nodes, and connections during the
training phase [76]. While these approaches are simpler to implement with
respect to EC-based methods, they are susceptible to becoming trapped at

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 5

structural local optima and they are able to explore only a small fraction of
the possible ANN topologies [4].

Several works based on EC for optimizing the topology of an ANN ap-
peared in the literature. One of the first works was proposed by Miller et
al. [52], where a method based on a genetic algorithm is used for evolving
neural network architectures for specific tasks. Each network architecture is
represented as a connection constraint matrix mapped directly into a bit-
string genotype. Modified standard genetic operators act on populations of
these genotypes to produce network architectures with higher fitnesses over
successive generations. Architecture fitness is assessed by training particular
network instantiations and recording their final performance error. Schaffer
et al. [63] demonstrated, using a genetic algorithm, that an evolved network
architecture performs better than a large network using backpropagation
learning alone when the criterion is correct generalization from a set of ex-
amples. In the same line of research, Wilson [75] showed that when genetic
search is applied, a set of perceptrons can learn more complex tasks than
initially apparent. Schiffmann et al. [64] presented a crossover operator for
a genetic algorithm specifically created for automatic topology-optimization.
In contrast to competing approaches, it allows that two parent networks with
a different number of units can mate and produce a (valid) child network,
which inherits genes from both of the parents. Similarly, Alba et al. [3] relied
on a genetic algorithm to address the connectivity and structure definition
problems, in order to accomplish a full genetic ANN design. Nikolopoulos and
Fellrath [57] proposed the use of genetic algorithms and classifier systems to
optimize the architecture of an ANN to be used for investment advising.

In the methods previously discussed, only the architecture of the ANN
is evolved, but it is assumed that the activation function of each node in
the architecture is fixed and predefined a priori. Despite the simplicity of
this assumption, some studies demonstrated that the choice of the activa-
tion function plays a important role in determining the performance of an
ANN [48, 9].

An important attempt to evolve the architecture of an ANN, as well as
the activation functions, was proposed by Schoenauer and Ronald [65], where
authors investigated the tuning of the slopes of the transfer functions of the
individual neurons in the ANN. White and Ligomenides [72] adopted a sim-
pler approach to the evolution of both topological structures and node trans-
fer functions. The initial population contained ANNs with an 80% of the
neurons using the sigmoid function and a 20% of the neurons using a Gaus-
sian function. The evolutionary process was used to determine the optimal
blend of these two functions in an automatic fashion. The idea of evolving
the activation functions is nowadays investigated given the popularity of deep
learning. For instance, the rectified linear activation (ReLU) function [33] has
simplified the training of deep neural networks by counteracting the problems
related to weight initialization and the vanishing gradient. As summarized
by Manessi and Rozza [47], variations of ReLU have been proposed over the

6 Ivo Gonçalves et al.

years, such as leaky ReLU (LReLU) [46], which addresses dead neuron issues
in ReLU networks, thresholded ReLU [38], which tackles the problem of large
negative biases in autoencoders, and parametric ReLU (PReLU) [27], which
treats the leakage parameter of LReLU as a per-filter learnable weight. While
these works introduced new and useful activation functions, other works used
more advanced strategies to learn the most suitable activation function for
the particular architecture at hand. Agostinelli et al. [2] designed a novel form
of piecewise linear activation function that is learned independently for each
neuron using gradient descent. With this adaptive activation function, they
were able to improve upon deep neural network architectures composed of
static rectified linear units, achieving state-of-the-art performance on CIFAR-
10, CIFAR-100, and a benchmark from high-energy physics involving Higgs
boson decay modes. Manessi and Rozza [47] introduced two approaches to
automatically learn different combinations of base activation functions (such
as the identity function, ReLU, and hyperbolic tangent) during the training
phase. They presented a thorough comparison of their novel approaches with
well-known architectures on three standard datasets showing substantial im-
provements in the overall performance. Thus, the evolution of the activation
functions is nowadays deemed as important as the evolution of the architec-
tures of the ANNs [47].

The evolutionary methods just discussed only evolve the architecture of
ANNs, without any connection weights. That is, connection weights have to
be learned in a subsequent step. While this approach reduces the complexity
of evolving both the topology and the weights, there is a major problem with
the evolution of architectures without connection weights as pointed out by
Yao and Liu [77]. In particular it is possible to identify two critical issues: (1)
different random initial weights may produce different training results. Thus,
the same genotype may have different fitness due to different random initial
weights used in training; and (2) different training algorithms may produce
different training results even from the same set of initial weights. This is
especially true for multimodal error functions.

Thus, the remaining part of this section recalls contributions where EC-
based techniques were used to optimize the weights and the topology of an
ANNs simultaneously. The idea behind this approach is that each individual
in a population is a fully specified ANN with complete weight information.
As a consequence, there is a one-to-one mapping between a genotype and its
phenotype, thus allowing the search process to overcome the issues related to
the fitness evaluation. Srinivas and Patnaik [68] presented a technique for re-
ducing the search space of the genetic algorithm to improve its performance
in searching for the globally optimal set of connection weights. They used
the notion of equivalent solutions in the search space, and included in the re-
duced search-space only one solution, called the base solution, from each set
of equivalent solutions. The iteration of the genetic algorithm consisted of an
additional step where the solutions are mapped to the respective base solu-
tions. A genetic algorithm based method was also proposed by Bornholdt and

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 7

Grauden [5] for evolving a network that represented a model for a brain with
sensory and motor neurons. Oliker et al. [58] proposed a distributed genetic
algorithm for designing and training neural networks. The method sets the
neural network’s architecture and weights for a given task where the network
is comprised of binary linear threshold units. White and Ligomenides [72]
introduced a new algorithm which uses a genetic algorithm to determine the
topology and link weights of a neural network. If the genetic algorithm fails
to find a satisfactory solution network, the best network developed by the ge-
netic algorithm is used to try to find a solution via back-propagation. In this
way, each algorithm is used to its greatest advantage: the genetic algorithm
(with its global search) determines a (sub-optimal) topology and weights to
solve the problem, and back-propagation (with its local search) seeks the best
solution in the neighborhood of the weight and topology spaces found by the
genetic algorithm.

Besides genetic algorithms, other EC methods were used to address the
optimization problem at hand. Koza and Rice [39] showed how to use ge-
netic programming to find both the weights and architecture for a neural
network, including the number of layers, the number of processing elements
per layer, and the connectivity between processing elements. Jian and Yu-
geng [34] presented a new design method for the structure and weights of
static neural networks based on evolutionary programming. The method is
further extended to design recurrent neural networks through introducing de-
layed links into networks. Particle Swarm Optimization (PSO) has also been
used to evolve both the weights and the topology of the networks [78, 37, 17].
In particular, Kiranyaz et al. [37] presented a Multi-Dimensional Particle
Swarm Optimization (MD-PSO) technique for the automatic design of Ar-
tificial Neural Networks by evolving to the optimal network configuration
(connections, weights, and biases) within the architecture space. Similarly,
Garro and Vázquez [17] explored the simultaneous evolution of the three
principal components of an ANN: the set of synaptic weights, the connec-
tions or architecture, and the transfer function for each neuron. The main
topic of this contribution was the evaluation of eight different proposed fit-
ness functions used to evaluate the quality of each solution and find the best
design. Zhang et al. [78] introduced a new evolutionary system for evolving
Feed-Forward ANNs, which is constrained to the use of PSO. Both the archi-
tecture and the weights of ANNs were adaptively adjusted according to the
quality of the network. One of the most popular and broadly used approaches
in neuroevolution is the NeuroEvolution of Augmenting Topologies (NEAT)
algorithm [70]. Recently, NEAT has been evolved to CoDeepNEAT [51], an
algorithm capable of covering more complex areas such as vision, speech and
language.

To conclude, among the many existing references reporting on the use of
EC to optimize ANNs, the reader is particularly referred to [76, 61, 69] for a
comprehensive overview of this research field.

8 Ivo Gonçalves et al.

3 Semantic Learning Machine

3.1 Algorithm

In the proposal of Geometric Semantic Genetic Programming (GSGP),
Moraglio et al. [54] showed that any supervised learning problem where the
error is measured as a distance to the known targets has a unimodal error
landscape. This property can be exploited by constructing specific variation
operators. These operators are known as geometric semantic operators. In this
context, the term semantics is used to refer to the outputs of any supervised
learning model (e.g., a neural network) over a set of data instances. In GSGP,
geometric semantic operators were defined for some domains: boolean, arith-
metic, and conditional rules. GSGP was shown to outperform the traditional
syntactic genetic programming approach in several datasets [54, 19].

The reasoning behind these geometric semantic operators can be used to
create equivalent operators for other representations or computational mod-
els. With the proposal of the Semantic Learning Machine (SLM) neuroevo-
lution algorithm [20, 23], it is achievable to perform semantic search for the
space of Neural Networks (NNs). This was made possible by deriving the
arithmetic mutation from GSGP to the space of NNs, therefore defining a
geometric semantic mutation for NNs. This allows SLM to effectively and
efficiently explore the space of NNs by exploiting the underlying unimodal
error landscape. Given that these error landscapes are unimodal, no local
optima exist. In the case of SLM this means that, with the exception of the
global optimum, every point in the search space has at least one neighbor
with better fitness, and that neighbor is reachable through the application of
the mutation operator. The direct consequence is that a hill climbing strategy
can effectively advance the search.

SLM is essentially a geometric semantic hill climber for NNs that follows
a (1+λ) strategy. Without local optima, the search can be focused around
the current best NN without incurring in any particular disadvantage. SLM
can be summarized in the following steps:
1. Generate N initial random NNs
2. Choose the best NN (B) from the initial random NNs, according to the

selected performance criterion
3. Repeat the following steps until a given stopping criterion is met:

a. Apply the geometric semantic mutation to the current best (B) N times
to generate N new NNs (known as children or neighbors)

b. Update B as being the NN with the best performance according to the
selected criterion, considering the current B and the N newly generated
NNs

4. Return B as the best performing NN according to the selected performance
criterion

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 9

The initial random NNs can be generated without any particular restric-
tion. They can have any number of layers and neurons, with any activation
functions, while the weights in the connections between the neurons can be
freely selected. The networks do not have to be fully-connected and can be
as sparsely connected as desired. The crucial aspect of SLM is the geomet-
ric semantic mutation which takes a parent NN and produces a child NN.
This mutation works by adding new hidden neurons while ensuring that the
semantics of the parent’s hidden neurons are not affected by these new hid-
den neurons. To ensure this fundamental aspect of the geometric semantic
mutation, the new hidden neurons do not feed their computations to the par-
ent’s hidden neurons, with the exception of the output neurons. The weights
of connections from the new hidden neurons in the last hidden layer to the
output neurons are defined by the learning step. The learning step can be
computed optimally with the Moore-Penrose pseudoinverse (similarly to the
case of GSGP [19, 55, 21]), or it can be defined as a parameter to be tuned.
Each new hidden neuron added can select from which neurons it receives
incoming connections. This means that the sparseness level can be easily
controlled by defining how many incoming connections each new neuron will
receive. The weights of each connection can be freely selected as in the ini-
tialization step. As is common in neuroevolution algorithms, SLM does not
rely on backpropagation to adjust the weights of the NNs. For further SLM
details the reader is referred to Gonçalves et al. [20] and Gonçalves [23].

3.2 Previous Comparisons with Other Neuroevolution Methods

Jagusch et al. [32] explored several SLM variants and performed a comparison
with other neuroevolution methods as well as other well-established super-
vised machine learning techniques. Regarding the neuroevolution methods,
NEAT and a fixed-topology neuroevolution approach were used as points of
comparison. NEAT was one the focus of the comparison given its popularity.
The comparisons were performed on a total of nine real-world datasets freely
available from the UCI Machine Learning Repository [43]: four binary classifi-
cation datasets and five regression datasets. The results showed that, in terms
of learning the training data, SLM was superior to the other neuroevolution
methods in all the nine datasets considered (all with statistically significant
differences). In this comparison the best SLM variant was, naturally, always
the one that computed the optimal learning step. Focusing on the NEAT
comparison and on the generalization performance, SLM was found to be su-
perior to NEAT, with statistically significant differences, in eight out of the
nine datasets considered. No statistically significant difference was found in
the remaining dataset. Furthermore, particularly the SLM variant that com-
puted the optimal learning step and used a semantic stopping criterion [25]
(further details on section 4.2) also resulted in much smaller neural networks

10 Ivo Gonçalves et al.

and achieved speed-ups of various orders of magnitude over NEAT on several
datasets.

4 Experimental Methodology

4.1 Datasets and Parameter Tuning

In the experimental phase, four real-world binary classifications datasets are
considered: Cancer, Credit, Diabetes, and Sonar. In Credit, the objective is
to classify the individuals as either good or bad credit whereas in Diabetes
and Cancer, the goal is to predict whether an individual has diabetes or
cancer, respectively. The Sonar task aims at classifying sonar signals as they
either bounced off a metal cylinder or a roughly cylindrical rock. All of these
datasets are freely available from the UCI Machine Learning Repository [43].
Table 1 presents the number of features (input variables), the number of
instances (observations), and the % of class 1 instances in each of the four
datasets under consideration.

Table 1 Binary classification datasets considered
Dataset Features Instances % of class 1 instances
Cancer 30 569 ≈ 37%
Credit 24 1000 30%
Diabetes 8 768 ≈ 35%
Sonar 60 208 ≈ 47%

Different SLM variants are compared with the Multi-layer Perceptron
(MLP) trained with backpropagation. A nested k-fold cross-validation (CV)
methodology is followed. A 30-fold outer CV is used to obtain 30 final gen-
eralization values (test set values) to assess the statistical significance of the
results. For each outer training fold, a 2-fold inner CV is conducted to per-
form parameter tuning for each algorithm. Both algorithms are allowed to
explore a total of 72 random parameter combinations during parameter tun-
ing. Four SLM and two MLP variants are tested (detailed on sections 4.2
and 4.3). To ensure fairness, SLM tests 18 parameter combinations for each
of the four variants considered, while MLP tests 36 parameter combinations
for each of the two variants considered.

4.2 SLM Variants

The base SLM configuration is the following:

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 11

• In the initial population each NN is generated with a random number of
hidden layers selected between 1 and 5

• In the initial population each NN randomly selects the number of neurons
for each hidden layer between 1 and 5

• Each hidden neuron randomly selects its activation function from the fol-
lowing options: Logistic, Relu, and Tanh

• Each hidden neuron randomly selects the weight of each incoming con-
nection from values in the interval [−mncw,mncw], where mncw represents
the maximum neuron connection weight parameter (subject to parameter
tuning)

• Each hidden neuron randomly selects the weight of its bias from values in
the interval [−mbw,mbw], where mbw represents the maximum bias weight
parameter (subject to parameter tuning)

• Each time a new NN is created by the mutation operator, the number of
new neurons to be added to each layer is randomly selected between 1 and
3

The three main differences between the SLM variants under study are
the following: (1) the strategy regarding the learning step; (2) the type of
training data use (static or dynamic); (3) the stopping criterion to decide the
termination of the training process.

Regarding the learning step, two variants are considered: computing the
Optimal Learning Step (OLS) for each application of the mutation operator;
and using a Bounded Learning Step (BLS). The SLM-BLS variants intro-
duce an additional parameter that defines the maximum learning step (mls)
that bounds the learning step. At each application of the mutation operator,
the effective learning step is randomly selected from values in the interval
[−mls,mls].

In terms of dynamic training data use, two approaches are considered:
randomly selecting a subset of the training data at each iteration and com-
puting the quality of each solution with this subset; and always using the
complete training data but randomly weighting each instance (between 0
and 1) and changing these weights at each iteration. The first approach
is referred to as Random Sampling Technique (RST) following Gonçalves
et al. [22, 18, 24], while the second approach is referred to as Random
Weighting Technique (RWT). In genetic programming, RST successfully con-
tributed to avoid overfitting and improve generalization on high-dimensional
datasets [22, 18]. Other studies using dynamic training data in genetic pro-
gramming have followed [50, 49, 16, 67].

Finally, regarding the termination of the training process, the following
approaches are considered: termination based on a given number of itera-
tions; and termination based on a semantic stopping criterion. The Semantic
Stopping Criteria (SSC) proposed by Gonçalves et al. [25] use information
gathered from the semantic neighborhood (the set of new models generated
by the mutation) to decide when to stop the search. These are named the

12 Ivo Gonçalves et al.

Error Deviation Variation (EDV) criterion and the Training Improvement
Effectiveness (TIE) criterion. EDV stops the search when a considerable ma-
jority of the neighbors are improving the training performance at the expense
of larger error deviations. TIE stops the search when training error improve-
ments become harder to find within the semantic neighborhood. This can
signal that the training error improvements are being forced at the expense
of the resulting generalization. These SSC can be used to avoid setting a
maximum number of iterations and to avoid setting data aside to use as a
validation set to decide when to stop.

With these different aspects into consideration, the following SLM variants
are grouped and named as follows:

1. BLS variants: SLM-BLS, SLM-BLS + RST, and SLM-BLS + RWT
2. OLS variants: SLM-OLS, SLM-OLS + RST, and SLM-OLS + RWT
3. BLS + TIE/EDV: SLM-BLS + TIE/EDV
4. OLS + EDV: SLM-OLS + EDV

When SLM-BLS is mentioned by itself it refers to SLM-BLS without using
RST and RWT. Similarly, when SLM-OLS is mentioned by itself it refers to
SLM-OLS without using RST and RWT.

All SLM variants can tune the maximum neuron connection weight (mncw)
and the maximum bias weight (mbw) in the range [0.1,0.5]. The BLS variants
and BLS + TIE/EDV can tune the maximum learning step (mls) in the range
[0.1,2], and the number of iterations in the range [1,100]. The BLS and the
OLS variants select with equal probability the use of RST, RWT, or none.
BLS + TIE/EDV selects with equal probability the use of EDV or TIE as
the semantic stopping criterion. Whenever RST is used, the parameter that
defines the ratio of the total training data to be used (the subset ratio) is
selected from the range [0.01,0.99].

4.3 MLP Variants

Two MLP variants are considered: the most common stochastic gradient de-
scent (SGD) [59, 35] variant, and the Adam SGD variant [36]. For SGD and
Adam, the following parameters are tuned:

• The number of iterations in the range [1,100]
• The batch size between 50 and the maximum number of training instances

available
• The activation function to be used in the hidden layers: Logistic, Relu,

and Tanh
• The number of hidden layers in the range [1,5]
• The number of hidden neurons per layer in the range [1,200]
• The learning rate in the range [0.1,2]

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 13

• The L2 penalty in the range [0.1,10]

SGD can also select the momentum in the range [0.0000001,1] and decide to
use or not the Nesterov’s momentum. Adam can also select the beta 1 and
beta 2 parameters in the range [0,1[.

5 Results and Analysis

This section analyzes the results obtained in the experimental phase. Sec-
tion 5.1 presents the results achieved by the different variants of the SLM
algorithm taken into account, analyzing the performance obtained on the
validation set and discussing some aspects related to the choice of the pa-
rameters. Subsequently, section 5.2 presents the results produced by the MLP
over the same benchmark problems and discusses the main performance dif-
ferences between MLP and SLM. Section 5.3 compares SLM and MLP after
their best configuration are found and explores the generalization ability of
SLM under different ensemble construction methods.

5.1 SLM

This section presents the results obtained by considering different groups of
SLM variants. The first analysis refers to the validation Area Under Receiver
Operating Characteristic (AUROC) curve values produced by the considered
SLM variants, and the results are summarized in Table 2. For each benchmark
problem and for each technique, this Table reports the mean and the stan-
dard deviation of the validation AUROC. These values were obtained from
the nested cross-validation procedure previously described. Thus they are the
mean and standard deviation values achieved by the best models obtained
in the inner cross-validation procedure (that was performed to determine the
most suitable values of the hyperparameters). According to the results re-
ported in this Table and complementing them with the ones in Table 3, it
is possible to state that OLS variants are the best performer, outperform-
ing the other variants taken into account. In particular, the OLS variants
outperformed the other competitors 23 times on both the Cancer and the
Credit datasets, 20 times on the Diabetes dataset, and 26 times on the Sonar
dataset. The second-best performer when considering the Cancer and the
Sonar datasets is the BLS variants group, while OLS + EDV outperforms
the other competitors 7 times on the Credit dataset and 9 times on the Dia-
betes dataset. BLS + TIE/EDV performs poorly in relative terms. A possible
explanation might be that, for the datasets considered, the maximum number
of iterations is not high enough for the semantic stopping criterion to take ef-
fect under a bounded learning step. Overall, OLS families (OLS variants and

14 Ivo Gonçalves et al.

OLS + EDV) seem to provide higher AUROC values with respect to the BLS
families. A global view on the average AUROC values reported in Table 2
suggests that: (1) Within the BLS groups, BLS + TIE/EDV always achieved
a lower average validation AUROC than the BLS variants; (2) Within the
OLS groups, OLS + EDV is the best performer on the Cancer dataset, while
the OLS variants group is the best performer over the remaining benchmarks
taken into account; (3) the OLS variants represent the most suitable choice
for the classification problems at hand.

The subsequent analysis considers the average number of iterations per-
formed by each SLM variant. Results of this analysis are reported in Table 4.
The BLS variants require a larger number of iterations with respect to the
other competitors. This behavior was expected considering that the BLS vari-
ants do not use any semantic stopping criterion and optimal learning step.
Focusing on the other competitors, the OLS variants (the best performer over
these problems) ran for a significantly larger number of iterations with re-
spect to BLS + TIE/EDV. When comparing OLS variants with OLS + EDV,
it is possible to see that also in this case the number of iterations performed
by OLS + EDV is significantly lower than the one of the OLS variants. The
use of the optimal learning step allows OLS + EDV to reach satisfactory
performance in all of the considered benchmarks and to outperform the OLS
variants over the Cancer dataset. To summarize the results of this analysis,
it seems that the use of a semantic stopping criterion with the OLS and the
BLS is effective at reducing the computational effort needed to perform the
training process, but according to the problem at hand, it may not result in
the best overall performance.

With respect to the semantic stopping criterion, Table 5 compares the us-
age of EDV and TIE in SLM-BLS. According to these values, it is clear that
EDV is more effective than the TIE stopping criterion in the classification
problems considered. An additional analysis performed during the experimen-
tal phase aimed at understanding whether the random weighting/sampling
techniques are beneficial when coupled with the SLM variants. Results of
this analysis are reported in Table 6, where the use of RST, RWT, and the
whole original set of observations (None) are compared in the context of BLS
variants and OLS variants. According to these values, it seems that RWT
is more effective than RST in both of the considered SLM variants. Com-
paring the use of RST and RWT with the use of the whole original set of
observations, the results of Table 6 suggest that random sampling and ran-
dom weighting techniques can improve the performance of SLM. This shows
that the dynamic use of training data can indeed be beneficial within SLM.
This is particularly clear when RWT is used in conjunction with the optimal
learning step computation.

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 15

Table 2 Validation AUROC for each SLM variant considered
Dataset BLS variants OLS variants BLS + TIE/EDV OLS + EDV
Cancer 0.951 +- 0.095 0.937 +- 0.124 0.896 +- 0.185 0.959 +- 0.061
Credit 0.679 +- 0.134 0.733 +- 0.120 0.564 +- 0.166 0.688 +- 0.108
Diabetes 0.680 +- 0.169 0.784 +- 0.110 0.626 +- 0.153 0.738 +- 0.131
Sonar 0.648 +- 0.282 0.816 +- 0.213 0.636 +- 0.277 0.724 +- 0.220

Table 3 Best SLM configuration by variant
Dataset BLS variants OLS variants BLS + TIE/EDV OLS + EDV
Cancer 5 23 0 2
Credit 0 23 0 7
Diabetes 1 20 0 9
Sonar 2 26 1 1

Table 4 Number of iterations for each SLM variant considered
Dataset BLS variants OLS variants BLS + TIE/EDV OLS + EDV
Cancer 79.567 +- 16.332 64.067 +- 23.712 3.067 +- 2.741 1.133 +- 0.434
Credit 68.267 +- 20.793 63.433 +- 26.165 3.967 +- 2.399 2.233 +- 1.406
Diabetes 76.000 +- 18.819 60.467 +- 22.508 5.567 +- 8.336 1.967 +- 1.217
Sonar 75.033 +- 22.172 58.667 +- 24.288 3.533 +- 3.391 3.167 +- 4.900

Table 5 EDV and TIE use in SLM-BLS
Dataset EDV TIE
Cancer 27 3
Credit 26 4
Diabetes 25 5
Sonar 25 5

5.2 MLP

This section presents the results obtained by both MLP variants: Adam and
SGD. The first part of this discussion considers the performance on the vali-
dation set and the corresponding results are reported in Table 7. According
to these values, Adam is the best performer over the Cancer dataset, while
SGD is the best performer over the Credit dataset and the Sonar dataset. The
two MLP variants produce the same performance on the Diabetes dataset.
According to these results it is difficult to draw a general conclusion, and it

Table 6 RST and RWT use in the BLS and the OLS variants

Dataset BLS variants OLS variants
None RST RWT None RST RWT

Cancer 8 9 13 15 6 9
Credit 18 4 8 15 4 11
Diabetes 11 6 13 12 4 14
Sonar 15 4 11 15 6 9

16 Ivo Gonçalves et al.

seems that the choice between Adam and SGD must be evaluated accord-
ing to the particular problem at hand. To complement this analysis, Table 8
shows the best MLP configurations by variant. According to these values,
SGD produces the best performance most of the times over the Credit and
Sonar dataset, while Adam returns the best performance on the remaining
datasets in the vast majority of the runs considered.

At this stage, it is important to compare the results of Table 7 (obtained
with MLP) with the ones reported in Table 2 (obtained with SLM). Ac-
cording to these results, all the SLM variants are able to outperform the
best MLP variant over all the classification problems under exam. This com-
parison clearly demonstrates the superiority of SLM (with respect to MLP)
in creating models characterized by a greater validation AUROC. Overall,
the SLM algorithm is a competitive option to consider in these classification
problems given that its performance (independently of the selected variant)
is significantly better than the best MLP variant.

Another important aspect to analyze in the comparison between MLP
and SLM, is the number of iterations required to produce the final model.
While this analysis was performed for the SLM algorithm (see Table 4),
Table 9 reports the same information for MLP-based models. In particular,
the SLM variants that use a semantic stopping criterion are able to build a
classification model in a considerably lower amount of iterations with respect
to an MLP variant based on the backpropagation algorithm. This smaller
number of iterations does not negatively affect the performance of the final
models, as these SLM variants are able to outperform MLP over all the
considered benchmarks.

To further understand the different MLP variants, Table 10 reports the
activation function used by each one of them. From these values it is inter-
esting to point out that the Adam variant has a clear preference for the Relu
function, disregarding the problem under analysis. SGD shows a preference
for the Relu function when considering the Cancer and Diabetes datasets,
while Tanh is the function used most of the times over the Credit dataset.
For the Sonar dataset the Logistic function was never selected and Relu and
Tanh were selected 14 and 16 times respectively.

Table 7 Validation AUROC for each MLP variant considered
Dataset Adam SGD
Cancer 0.542 +- 0.110 0.500 +- 0.000
Credit 0.509 +- 0.031 0.525 +- 0.048
Diabetes 0.498 +- 0.016 0.498 +- 0.011
Sonar 0.496 +- 0.023 0.581 +- 0.109

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 17

Table 8 Best MLP configuration by variant
Dataset Adam SGD
Cancer 28 2
Credit 9 21
Diabetes 24 6
Sonar 7 23

Table 9 Number of iterations for each MLP variant considered
Dataset Adam SGD
Cancer 56.200 +- 25.183 55.500 +- 26.046
Credit 56.400 +- 24.210 57.167 +- 26.592
Diabetes 42.433 +- 27.320 56.700 +- 30.326
Sonar 50.267 +- 24.237 49.667 +- 29.352

Table 10 Activation functions use by MLP variant

Dataset Adam SGD
Logistic Relu Tanh Logistic Relu Tanh

Cancer 8 15 7 7 16 7
Credit 9 13 8 9 8 13
Diabetes 4 16 10 7 15 8
Sonar 8 17 5 0 14 16

5.3 Generalization and Ensemble Analysis

This section starts by assessing the generalization (i.e., the test set perfor-
mance over the 30 outer folds) of SLM and MLP considering the best pa-
rameter configurations found after parameter tuning. Figure 1 presents the
boxplots for the AUROC values of both algorithms. On each box, the central
mark is the median, the edges of the box are the 25th and 75th percentiles, and
the whiskers extend to the most extreme data points that are not considered
outliers.

These boxplots show that SLM consistently achieves better AUROC values
than MLP across all datasets. A set of statistical tests is performed to assess
the statistical significance of these results. Firstly, a Kolmogorov-Smirnov test
is applied to assess if these values come from a normal distribution. The result
of this test suggests that the alternative hypothesis (i.e., the data do not come
from a normal distribution) cannot be rejected considering a significance level
(α) of 0.05. Given this outcome, a rank-based statistic is selected for the next
step. A Mann-Whitney U-test is performed with the null hypothesis that the
samples have equal medians. As in the previous test, a significance level of
0.05 is considered. The outcomes suggest that SLM outperforms MLP in
all datasets with statistically significant differences. The p-values for these
comparisons can be found in table 11.

The final part of the analysis studies the outcomes of different ensemble
construction methods when using SLM as a base learner. Bagging [6] and

18 Ivo Gonçalves et al.

SLM MLP

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

R
O

C

SLM MLP

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
U

R
O

C

SLM MLP

0.4

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

SLM MLP

0.4

0.5

0.6

0.7

0.8

0.9

1

A
U

R
O

C

Fig. 1 Boxplots for test set AUROC values of SLM and MLP: Cancer, Credit, Diabetes,
and Sonar

Table 11 p-values of Mann-Whitney U-tests over test set AUROC values of SLM and
MLP

Dataset p-value
Cancer 3.486×10−11

Credit 1.054×10−8

Diabetes 1.036×10−11

Sonar 9.894×10−5

Boosting [11] methods are compared with a common simple averaging con-
struction method that trains the base learner N times without changing the
training instances provided. This simpler ensemble construction method can
be effective if the base learner already has an inherent diversity within its
search process. This might be the case of SLM given that it is a stochastic
algorithm. These three ensemble construction methods are used to create en-
sembles of 30 NNs using SLM as the base learner. In the Boosting case, four
variations of AdaBoost.R2 are studied and labeled as follows:

• Boosting-1: weighted median prediction and fixed learning rate of 1
• Boosting-2: weighted median prediction and variable learning rate selected

randomly in the interval [0,1] for each new NN added to the ensemble
• Boosting-3: weighted mean prediction and fixed learning rate of 1

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 19

• Boosting-4: weighted mean prediction and variable learning rate selected
randomly in the interval [0,1] for each new NN added to the ensemble
Figure 2 presents the boxplots for the test set AUROC values of each

ensemble construction method considered: Simple (averaging), Bagging, and
the four Boosting variations.

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AU
R

O
C

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.4

0.5

0.6

0.7

0.8

0.9

AU
R

O
C

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

AU
R

O
C

Simple Bagging Boosting-1 Boosting-2 Boosting-3 Boosting-4

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
AU

R
O

C

Fig. 2 Boxplots for test set AUROC values of each ensemble construction method con-
sidered: Cancer, Credit, Diabetes, and Sonar

These ensemble results show that the simple averaging method performs
similarly to Bagging and Boosting. In terms of the median AUROC value,
the simple averaging method even achieves the highest value in three of the
four datasets: Credit, Diabetes, and Sonar. Overall, these different ensemble
construction methods perform similarly in terms of the distribution of the
values. These results suggest that the stochastic nature of SLM allows the
simple averaging method to perform well without having to explicitly con-
fer more diversity to the base learner, e.g., by providing different training
instances to each ensemble member.

6 Toward the Deep Semantic Learning Machine

Recently, SLM was used in conjunction with Convolutional Neural Networks
(CNNs) for the first time [41, 40]. In these contributions, the task of discrim-

20 Ivo Gonçalves et al.

inating between benign and malignant prostate cancer lesions given multi-
parametric magnetic resonance imaging was addressed. This image classifica-
tion task was proposed in the context of the PROSTATEx competition [44].
SLM was tested as a backpropagation replacement for the training of the last
fully-connected layers of CNNs. In this approach, the outputs from the convo-
lutional layers of a given CNN are passed as inputs (without pre-training) to
SLM. The empirical comparison is performed with XmasNet [45], a state-of-
the-art CNN specifically developed to address the PROSTATEx 2017 com-
petition. The results show that SLM achieves higher AUROC curve values
than XmasNet with a statistically significant difference. This performance
is achieved without neither pre-training the underlying CNN nor relying on
backpropagation. Furthermore, SLM is also much more computationally effi-
cient in the training phase. SLM achieves an average speed-up of around 14
over training with backpropagation. This is also important as neuroevolution
methods are sometimes perceived as slow. Additionally, it is important to em-
phasize that SLM was only run on CPU (whereas XmasNet was trained using
a GPU) and without any explicit parallelization. This further reinforces the
results obtained, given that each network evaluation could be suitably paral-
lelized, thus achieving a higher speed-up. Furthermore, inside each network
evaluation, the new nodes of a given layer can also be evaluated in parallel.
SLM can be further extended to include the convolutional layers within the
search process. This would remove the need for a fixed CNN topology to be
provided and it would also eliminate the burden of assessing several CNN
topologies in order to find a suitable topology for the task at hand. Adapting
SLM to include the convolutional layers within the search would result in a
unimodal search over the space of CNNs. Such a development could result in
considerable improvements in the field of deep learning and computer vision.
This is something that is currently under study.

Acknowledgements This work was partially supported by projects
UID/MULTI/00308/2019 and by the European Regional Development Fund through
the COMPETE 2020 Programme, FCT - Portuguese Foundation for Science and Tech-
nology and Regional Operational Program of the Center Region (CENTRO2020) within
project MAnAGER (POCI-01-0145-FEDER-028040). This work was also partially
supported by national funds through FCT (Fundação para a Ciência e a Tecnologia)
under project DSAIPA/DS/0022/2018 (GADgET).

References

1. Abiodun, O.I., Jantan, A., Omolara, A.E., Dada, K.V., Mohamed, N.A., Arshad,
H.: State-of-the-art in artificial neural network applications: A survey. Heliyon
4(11), e00,938 (2018)

2. Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions
to improve deep neural networks. arXiv preprint arXiv:1412.6830 (2014)

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 21

3. Alba, E., Aldana, J., Troya, J.M.: Full automatic ann design: A genetic approach.
In: International Workshop on Artificial Neural Networks, pp. 399–404. Springer
(1993)

4. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An evolutionary algorithm that con-
structs recurrent neural networks. IEEE Transactions on Neural Networks 5(1),
54–65 (1994)

5. Bornholdt, S., Graudenz, D.: General asymmetric neural networks and structure
design by genetic algorithms. Neural networks 5(2), 327–334 (1992)

6. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996).
7. Chauvin, Y., Rumelhart, D.E.: Backpropagation: theory, architectures, and appli-

cations. Psychology Press (2013)
8. Cun, Y.L., Denker, J.S., Solla, S.A.: Advances in neural information processing sys-

tems 2. chap. Optimal Brain Damage, pp. 598–605. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1990)

9. DasGupta, B., Schnitger, G.: Efficient approximation with neural networks: A com-
parison of gate functions. Pennsylvania State University, Department of Computer
Science (1992)

10. Dill, F.A., Deer, B.C.: An exploration of genetic algorithms for the selection of
connection weights in dynamical neural networks. In: Proceedings of the IEEE
1991 National Aerospace and Electronics Conference NAECON 1991, vol. 3, pp.
1111–1115 (1991)

11. Drucker, H.: Improving regressors using boosting techniques. In: Proceedings of the
Fourteenth International Conference on Machine Learning, ICML ’97, pp. 107–115.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1997).

12. Epitropakis, M.G., Plagianakos, V.P., Vrahatis, M.N.: Evolutionary Algorithm
Training of Higher-Order Neural Networks. IGI Global (2009)

13. Fahlman, S.E., Lebiere, C.: Advances in neural information processing systems 2.
chap. The Cascade-correlation Learning Architecture, pp. 524–532. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (1990)

14. Floreano, D., Dürr, P., Mattiussi, C.: Neuroevolution: from architectures to learn-
ing. Evolutionary Intelligence 1(1), 47–62 (2008)

15. Frean, M.: The upstart algorithm: A method for constructing and training feedfor-
ward neural networks. Neural Computation 2(2), 198–209 (1990)

16. Galván-López, E., Vázquez-Mendoza, L., Schoenauer, M., Trujillo, L.: On the use
of dynamic gp fitness cases in static and dynamic optimisation problems. In: In-
ternational Conference on Artificial Evolution (Evolution Artificielle), pp. 72–87.
Springer (2017)

17. Garro, B.A., Vázquez, R.A.: Designing artificial neural networks using particle
swarm optimization algorithms. Computational intelligence and neuroscience 2015,
61 (2015)

18. Gonçalves, I., Silva, S.: Balancing learning and overfitting in genetic programming
with interleaved sampling of training data. In: Genetic Programming, pp. 73–84.
Springer (2013)

19. Gonçalves, I., Silva, S., Fonseca, C.M.: On the generalization ability of geometric
semantic genetic programming. In: Genetic Programming, pp. 41–52. Springer
(2015)

20. Gonçalves, I., Silva, S., Fonseca, C.M.: Semantic learning machine: A feedforward
neural network construction algorithm inspired by geometric semantic genetic pro-
gramming. In: Progress in Artificial Intelligence, Lecture Notes in Computer Sci-
ence, vol. 9273, pp. 280–285. Springer (2015)

21. Gonçalves, I., Silva, S., Fonseca, C.M., Castelli, M.: Arbitrarily close alignments in
the error space: A geometric semantic genetic programming approach. In: Proceed-
ings of the 2016 on Genetic and Evolutionary Computation Conference Companion,
pp. 99–100. ACM (2016)

22 Ivo Gonçalves et al.

22. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique
for overfitting control in genetic programming. In: Genetic Programming, pp. 218–
229. Springer (2012)

23. Gonçalves, I.: An exploration of generalization and overfitting in genetic program-
ming: Standard and geometric semantic approaches. Ph.D. thesis, Department of
Informatics Engineering, University of Coimbra, Portugal (2017)

24. Gonçalves, I., Silva, S.: Experiments on controlling overfitting in genetic program-
ming. In: Local proceedings of the 15th Portuguese Conference on Artificial Intel-
ligence, EPIA 2011 (2011)

25. Gonçalves, I., Silva, S., Fonseca, C.M., Castelli, M.: Unsure when to stop? ask your
semantic neighbors. In: Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO ’17, pp. 929–936. ACM, New York, NY, USA (2017).

26. Greenwood, G.W.: Training partially recurrent neural networks using evolutionary
strategies. IEEE Transactions on Speech and Audio Processing 5(2), 192–194 (1997)

27. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision, pp. 1026–1034 (2015)

28. Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural
networks 4(2), 251–257 (1991)

29. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural networks 2(5), 359–366 (1989)

30. Hush, D.R., Horne, B.G.: Progress in supervised neural networks. IEEE signal
processing magazine 10(1), 8–39 (1993)

31. Irie, B., Miyake, S.: Capabilities of three-layered perceptrons. In: IEEE Interna-
tional Conference on Neural Networks, vol. 1, p. 218 (1988)

32. Jagusch, J.B., Gonçalves, I., Castelli, M.: Neuroevolution under unimodal error
landscapes: an exploration of the semantic learning machine algorithm. In: Pro-
ceedings of the Genetic and Evolutionary Computation Conference Companion, pp.
159–160. ACM (2018)

33. Jarrett, K., Kavukcuoglu, K., LeCun, Y., et al.: What is the best multi-stage ar-
chitecture for object recognition? In: 2009 IEEE 12th international conference on
computer vision, pp. 2146–2153. IEEE (2009)

34. Jian, F., Yugeng, X.: Neural network design based on evolutionary programming.
Artificial Intelligence in engineering 11(2), 155–161 (1997)

35. Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression
function. Ann. Math. Statist. 23(3), 462–466 (1952).

36. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR
abs/1412.6980 (2014).

37. Kiranyaz, S., Ince, T., Yildirim, A., Gabbouj, M.: Evolutionary artificial neural net-
works by multi-dimensional particle swarm optimization. Neural networks 22(10),
1448–1462 (2009)

38. Konda, K., Memisevic, R., Krueger, D.: Zero-bias autoencoders and the benefits of
co-adapting features. arXiv preprint arXiv:1402.3337 (2014)

39. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for
a neural network. In: IJCNN-91-seattle international joint conference on neural
networks, vol. 2, pp. 397–404. IEEE (1991)

40. Lapa, P., Gonçalves, I., Rundo, L., Castelli, M.: Enhancing classification perfor-
mance of convolutional neural networks for prostate cancer detection on magnetic
resonance images: a study with the semantic learning machine. In: Proceedings of
the Genetic and Evolutionary Computation Conference Companion, GECCO ’19.
ACM, New York, NY, USA (2019).

41. Lapa, P., Gonçalves, I., Rundo, L., Castelli, M.: Semantic learning machine im-
proves the cnn-based detection of prostate cancer in non-contrast-enhanced mri.
In: Proceedings of the Genetic and Evolutionary Computation Conference Com-
panion, GECCO ’19. ACM, New York, NY, USA (2019).

Explorations of the Semantic Learning Machine Neuroevolution Algorithm 23

42. Lei, J., He, G., Jiang, J.P.: The state estimation of the cstr system based on a recur-
rent neural network trained by hgas. In: Proceedings of International Conference
on Neural Networks (ICNN’97), vol. 2, pp. 779–782 (1997)

43. Lichman, M.: UCI machine learning repository (2013).
44. Litjens, G., Debats, O., Barentsz, J., Karssemeijer, N., Huisman,

H.: ”PROSTATEx Challenge data”, The Cancer Imaging Archive.
https://wiki.cancerimagingarchive.net/display/Public/SPIE-AAPM-
NCI+PROSTATEx+Challenges (2017). Online; Accessed on January 25,
2019

45. Liu, S., Zheng, H., Feng, Y., Li, W.: Prostate cancer diagnosis using deep learning
with 3D multiparametric MRI. In: Medical Imaging 2017: Computer-Aided Diag-
nosis, Proceedings SPIE, vol. 10134, p. 1013428. International Society for Optics
and Photonics (2017).

46. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proc. icml, vol. 30, p. 3 (2013)

47. Manessi, F., Rozza, A.: Learning combinations of activation functions. In: 2018
24th International Conference on Pattern Recognition (ICPR), pp. 61–66. IEEE
(2018)

48. Mani, G.: Learning by gradient descent in function space. In: 1990 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics Conference Proceedings, pp.
242–247 (1990)

49. Martínez, Y., Naredo, E., Trujillo, L., Legrand, P., López, U.: A comparison of
fitness-case sampling methods for genetic programming. Journal of Experimental
& Theoretical Artificial Intelligence 29(6), 1203–1224 (2017)

50. Martinez, Y., Trujillo, L., Naredo, E., Legrand, P.: A comparison of fitness-case
sampling methods for symbolic regression with genetic programming. In: EVOLVE-
A Bridge between Probability, Set Oriented Numerics, and Evolutionary Compu-
tation V, pp. 201–212. Springer (2014)

51. Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., Raju,
B., Shahrzad, H., Navruzyan, A., Duffy, N., Hodjat, B.: Evolving deep neural net-
works. In: R. Kozma, C. Alippi, Y. Choe, F.C. Morabito (eds.) Artificial Intelligence
in the Age of Neural Networks and Brain Computing. Amsterdam: Elsevier (2018).

52. Miller, G.F., Todd, P.M., Hegde, S.U.: Designing neural networks using genetic
algorithms. In: Proceedings of the Third International Conference on Genetic Al-
gorithms, pp. 379–384. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(1989)

53. Montana, D.J., Davis, L.: Training feedforward neural networks using genetic algo-
rithms. In: IJCAI, vol. 89, pp. 762–767 (1989)

54. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic program-
ming. In: Parallel Problem Solving from Nature-PPSN XII, pp. 21–31. Springer
(2012)

55. Moraglio, A., Mambrini, A.: Runtime analysis of mutation-based geometric seman-
tic genetic programming for basis functions regression. In: Proceedings of the 15th
annual conference on Genetic and evolutionary computation, pp. 989–996. ACM
(2013)

56. Mozer, M.C., Smolensky, P.: Advances in neural information processing systems 1.
chap. Skeletonization: A Technique for Trimming the Fat from a Network via Rele-
vance Assessment, pp. 107–115. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA (1989)

57. Nikolopoulos, C., Fellrath, P.: A hybrid expert system for investment advising.
Expert Systems 11(4), 245–250 (1994)

58. Oliker, S., Furst, M., Maimon, O.: Design architectures and training of neural net-
works with a distributed genetic algorithm. In: IEEE International Conference on
Neural Networks, pp. 199–202. IEEE (1993)

24 Ivo Gonçalves et al.

59. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statist.
22(3), 400–407 (1951).

60. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. nature 323(6088), 533 (1986)

61. S. Ding H. Li, C.S.J.Y.F.J.: Evolutionary artificial neural networks: a review. Ar-
tificial Intelligence Review 39, 251–260 (2013).

62. Samarasinghe, S.: Neural networks for applied sciences and engineering: from fun-
damentals to complex pattern recognition. Auerbach publications (2016)

63. Schaffer, J.D., Caruana, R.A., Eshelman, L.J.: Using genetic search to exploit the
emergent behavior of neural networks. Physica D: Nonlinear Phenomena 42(1-3),
244–248 (1990)

64. Schiffmann, W., Joost, M., Werner, R.: Synthesis and performance analysis of mul-
tilayer neural network architectures (1992)

65. Schoenauer, M., Ronald, E.: Genetic extensions of neural net learning: Transfer
functions and renormalisation coefficients

66. Sietsma, J., Dow, R.J.: Creating artificial neural networks that generalize. Neural
Networks 4(1), 67 – 79 (1991)

67. Silva, S., Ingalalli, V., Vinga, S., Carreiras, J.M., Melo, J.B., Castelli, M., Van-
neschi, L., Gonçalves, I., Caldas, J.: Prediction of forest aboveground biomass: an
exercise on avoiding overfitting. In: European Conference on the Applications of
Evolutionary Computation, pp. 407–417. Springer (2013)

68. Srinivas, M., Patnaik, L.M.: Learning neural network weights using genetic
algorithms-improving performance by search-space reduction. In: [Proceedings]
1991 IEEE International Joint Conference on Neural Networks, vol. 3, pp. 2331–
2336 (1991)

69. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nature Machine Intelligence 1(1), 24–35 (2019)

70. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evolutionary computation 10(2), 99–127 (2002)

71. Sutton, R.S.: Two problems with backpropagation and other steepest-descent learn-
ing procedures for networks. In: Proceedings of the Eighth Annual Conference of
the Cognitive Science Society. Hillsdale, NJ: Erlbaum (1986)

72. White, D., Ligomenides, P.: Gannet: A genetic algorithm for optimizing topology
and weights in neural network design. In: International Workshop on Artificial
Neural Networks, pp. 322–327. Springer (1993)

73. Whitley, D., Starkweather, T., Bogart, C.: Genetic algorithms and neural networks:
Optimizing connections and connectivity. Parallel computing 14(3), 347–361 (1990)

74. Widrow, B., Lehr, M.A.: 30 years of adaptive neural networks: perceptron, mada-
line, and backpropagation. Proceedings of the IEEE 78(9), 1415–1442 (1990)

75. Wilson, S.W.: Perception redux: Emergence of structure. Physica D: Nonlinear
Phenomena 42(1-3), 249–256 (1990)

76. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–
1447 (1999)

77. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks.
IEEE transactions on neural networks 8(3), 694–713 (1997)

78. Zhang, C., Shao, H., Li, Y.: Particle swarm optimisation for evolving artificial neural
network. In: Systems, Man, and Cybernetics, 2000 IEEE International Conference
on, vol. 4, pp. 2487–2490. IEEE (2000)

79. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks::
The state of the art. International journal of forecasting 14(1), 35–62 (1998)

View publication statsView publication stats

https://www.researchgate.net/publication/341251008

