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Abstract. Automatic sequences can be defined by DFAs with output
(DFAO) in two natural ways. We propose to consider the minimal size
of a corresponding DFAO as the complexity measure of the automatic
sequence, for both variants. This paper compares these complexity mea-
sures and investigates their properties like the relationships with kernel
and morphic sequences. There exist automatic sequences for which the
one complexity is exponentially greater than the other one, in both direc-
tions. For both complexity measures we investigate the effect of taking
basic operations on sequences like removing or adding an element in
front, and observe that these operations may increase the complexity by
at most a quadratic factor.

1 Introduction

Automatic sequences form an important class of infinite sequences over a finite
alphabet; roughly speaking it is a first regular class going beyond ultimately
periodic sequences. They have been extensively studied, in particular in the
book [1] that serves as the main reference for research in this area. More recent
references on the topic include [5,9].

Automatic sequences depend on a base k > 1, with special interest for k = 2.
Two well-known 2-automatic sequences are the Thue-Morse sequence and the
regular paper folding sequence, to be defined in Sect. 2. Automatic sequences
admit several equivalent characterizations, many of which are closely related to
the following two. In the first one the ith element ai of the sequence a is the
output of a DFAO when taking as input the k-ary notation of i. The second one
is similar, but then the reverse of the k-ary notation of i is taken as input. It is
natural to consider the minimal size of a corresponding DFAO as the complexity
measure of the automatic sequence, for both variants, and we denote them by
‖a‖k and ‖a‖R

k . These complexity measures are the main topic of this paper. We
show how they relate to other characterizations; in particular, ‖a‖R

k is closely
related to the size of the kernel of a, and ‖a‖k is closely related to the size of
the smallest alphabet needed to describe a as a morphic sequence with respect
to a k-uniform morphism. In doing so, we follow constructions as presented in
[1] for which we investigate the precise effect on the measures ‖a‖k and ‖a‖R

k .
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A first result states that there is an exponential gap between both measures:
there exist sequences of automatic sequences a, b for which ‖a‖R

k is exponential
in ‖a‖k, and ‖b‖k is exponential in ‖b‖R

k .
A next natural question is about the effect of taking basic operations on

sequences. For instance, for any sequence a its tail tail(a) is obtained by removing
its first element. We show that ‖tail(a)‖R

k ≤ 2‖a‖R
k and ‖tail(a)‖k ≤ (‖a‖k)2 for

all k-automatic sequences, and that the last inequality is sharp. Similar results
hold for adding an element in front rather than removing. Also other operations
are considered, like pointwise combining two sequences and taking particular
subsequences. About all of these basic operations f the main observation is
that their sizes do not increase more than quadratically: ‖f(a)‖k ≤ (‖a‖k)2 and
‖f(a)‖R

k ≤ (‖a‖R
k )2 for all a.

Another interesting question is what happens for periodic sequences. In the
current paper we only derive a quadratic upper bound for ‖·‖R

k and a linear
upper bound for ‖·‖k, so opposite to the effect of tail. Whether and when these
upper bounds are reached is a much more involved question that is investigated
in [2]. The research project on this topic is a joined project of Wieb Bosma and
the current author; as this analysis for periodic sequences requires arguments of
a completely different combinatorial flavor than the automata based arguments
in this paper, we decided to present the current paper and [2] separately.

Throughout the paper we make several claims about the exact values of
‖a‖k and ‖a‖R

k for particular sequences a. To compute these values we wrote
a program to search for a DFAO of minimal size n having the corresponding
property for ai for all i < N for N being typically around 210. This was done
by expressing the requirements as a satisfiability problem and then call a SAT
solver. The smallest n for which the formula is satisfiable then is given. As only
the requirements for i < N are checked, this only yields a lower bound, but for
N large enough it gives the exact value. According to [6], corollary 3.1 (page
59) two states in a DFAO of n states are equivalent are equivalent if and only
if for every string of length ≤ n − 1 they produce the same output. This can
be improved to ≤ n − 2. Applying this for the union of the found automaton
and the real automaton with bounds derived in this paper, this shows that for
N = 2n−2 the exact value is obtained.

This paper is organized as follows. In Sect. 2 we give the basic definitions and
a general lemma for proving lower bounds. In Sect. 3 we investigate the exponen-
tial gap between ‖·‖k and ‖·‖R

k . In Sect. 4 we define the kernel of an automatic
sequence and investigate its relationship with ‖·‖R

k . In Sect. 5 we present how to
define automatic sequences as morphic sequences with respect to uniform mor-
phisms, and investigate the relationship with ‖·‖k. In Sect. 6 we investigate the
effect of basic operations like tail on ‖·‖k and ‖·‖R

k . In Sect. 7 we give the upper
bounds of ‖·‖k and ‖·‖R

k for periodic sequences. We conclude in Sect. 8.
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2 Basic Definitions

Let k ≥ 2 and Σk = {0, 1, . . . , k − 1}.
The set of infinite sequences a = a0a1a2a3 · · · over a finite alphabet Γ is

denoted by ΓN.
A DFA M with output (DFAO) is defined to be a tuple M = (Q,Σ, δ,

q0, Γ, τ), where

– Q is the finite set of states,
– Σ is the finite input alphabet,
– δ : Q × Σ → Q is the transition function,
– q0 ∈ Q is the initial state,
– Γ is the finite output alphabet,
– τ : Q → Γ is the output function.

DFAOs are denoted by states and arrows just as is usual for DFAs; the extra
information that τ(q) = x is denoted by writing q/x in the state q.

As in DFAs, δ extends to δ : Q × Σ∗ → Q by δ(q, ε) = q, δ(q, xu) =
δ(δ(q, x), u). A DFAO M defines a function fM : Σ∗ → Γ defined by fM (u) =
τ(δ(q0, u)). A function f : Σ∗ → Γ is called a finite state function if a DFAO M
exists such that f = fM . For every finite state function f there exists a unique
(up to renaming of states) DFAO M with a minimal number of states such that
f = fM .

A DFAO of which the input alphabet Σ is equal to Σk = {0, 1, . . . , k − 1}, is
called a k-DFAO.

Every natural number n has a unique representation (n)k ∈ Σ∗
k , where (0)k =

ε and

(n)k = d0d1 · · · dr ⇐⇒ n = d0k
r + d1k

r−1 + · · · + dr−1k + dr ∧ d0 > 0

for n > 0. So (0)2 = ε and (11)2 = 1011. Note that non-empty strings of which
the leftmost symbol is 0 do not occur as (n)k for some number n.

Conversely, every u ∈ Σ∗
k represents a number [u]k:

[d0d1 · · · dr]k = d0k
r + d1k

r−1 + · · · + dr−1k + dr.

For any Σ and any string u ∈ Σ∗ the reverse uR of u is defined by
(u1u2 · · · un)R = unun−1 · · · u1.

An infinite sequence a ∈ ΓN is called k-automatic if a k-DFAO
M = (Q,Σk, δ, q0, Γ, τ) exists such that a[w]k = τ(δ(q0, w)) for all w ∈ Σ∗

k .
According to Theorem 5.2.1 from [1] a is k-automatic if and only if a k-DFAO
M = (QM , Σk, δM , q0, Γ, τM ) exists such that τM (δM (q0, (i)k)) = ai for all i ∈ N.
According to Theorem 5.2.3 from [1] a is k-automatic if and only if a k-DFAO
M = (QM , Σk, δM , q0, Γ, τM ) exists such that τM (δM (q0, (i)R

k )) = ai for all i ∈ N.
Now we are ready to define the two natural measures ‖.‖k, ‖.‖R

k for
k-automatic sequences that we investigate in this paper.
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Definition 1. For any k-automatic sequence a = a0a1a2a3 · · · its size ‖a‖k is
defined to be the size of a smallest k-DFAO M = (QM , Σk, δM , q0, Γ, τM ) such
that τM (δM (q0, (i)k)) = ai for all i ∈ N.

For any k-automatic sequence a = a0a1a2a3 · · · its reversed size ‖a‖R
k is

defined to be the size of a smallest k-DFAO M = (QM , Σk, δM , q0, Γ, τM ) such
that τM (δM (q0, (i)R

k )) = ai for all i ∈ N.

Conversely, every k-DFAO M = (QM , Σk, δM , q0, Γ, τM ) defines two infinite
sequences seqk(M) and seqR

k (M) over Γ :

seqk(M)i = τM (δM (q0, (i)k)) and seqR
k (M)i = τM (δM (q0, (i)R

k ))

for all i ∈ N. From the above definition it is immediate that ‖seqk(M)‖k ≤ |QM |
and ‖seqR

k (M)‖R
k ≤ |QM |.

The Thue-Morse sequence thue =
0110100110010110 · · · is defined by thuei = 0 if the
number of 1s in (i)2 is even, and thuei = 1 if the
number of 1s in (i)2 is odd, see, e.g., [1] Section 1.6,
or OEIS A010060. We have ‖thue‖2 = ‖thue‖R

2 = 2,
both justified by the DFAO on the right.

Mthue :

q0/0 q1/1

0 0

1

1

The regular paper-folding sequence paper = 001001100011011 · · · (or dragon
curve sequence is defined by paperi = m mod 2 for every i ≥ 0 for the unique
representation i = (2m+1)2j −1, see, e.g., [1] Example 5.16., or OEIS A014577.
We have ‖paper‖2 = ‖paper‖R

2 = 4, respectively justified by the following two
DFAOs.

Mpaper :

q0/0 q1/0

q2/1

q3/10

1

1

0
0

0 1

1

MpaperR :

q0/0 q1/0

q2/0

q3/11

0
0

1

0, 1

0, 1

The following lemma is the basic tool for lower bounds on ‖a‖k and ‖a‖R
k .

Lemma 1. Let a be a k-automatic sequence, and m1, . . . ,mn ∈ N such that for
every i 
= j there exists v ∈ Σ∗

k satisfying a[(mi)kv]k 
= a[(mj)kv]k , then ‖a‖k ≥ n.
Let a be a k-automatic sequence, and m1, . . . ,mn ∈ N such that for every

i 
= j there exists v ∈ Σ∗
k satisfying a[v(mi)k]k 
= a[v(mj)k]k , then ‖a‖R

k ≥ n.

Proof. For the first claim let M = (QM , Σk, δM , q0, Γ, τM ) be a smallest k-
DFAO such that τM (δM (q0, (i)k)) = ai for all i ∈ N. For i = 1, 2, . . . , n define
qi = δM (q0, (mi)k). For i 
= j from the assumption we obtain τM (δM (qi, v)) 
=
τM (δM (qj , v)), so qi 
= qj . This shows |Q| ≥ n, so ‖a‖k ≥ n.

The proof of the second claim is similar. ��
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3 The Exponential Gap

The following theorem shows that there can be an exponential gap between ‖a‖k

and ‖a‖R
k , in both directions. Its proof is inspired by the folklore result that the

language (0 + 1) ∗ 1(0 + 1)n−1 has an NFA of size n + 1, and its reverse has a
DFA of size n + 1, but its smallest DFA has size at least 2n. We found it in
[8], Sect. 3.2, page 67, exercise 3. Many similar results on state complexity are
known, e.g., in [7], it is proved that all values until 2n can be reached as sizes.

Theorem 1. For every n > 1 there exist k-automatic sequences a, b such that
‖a‖k ≤ n+k and ‖a‖R

k ≥ (k−1)kn−1, and ‖b‖R
k ≤ n+k and ‖b‖k ≥ (k−1)kn−1.

Proof. Define a by ai = 0 for i < kn, and ai = j if and only if the nth
digit of (i)k is j, for j = 0, 1, . . . , k − 1, i ≥ kn. The following DFAO satis-
fies τM (δM (q0, (i)k)) = ai by construction:

q0/0 q1/0 q2/0 . . .

. . .

qn−1/0 r0/0

r1/1

rk−1/k − 1

0
1

k − 1

in which all unlabeled arrows are assumed to be labeled by all symbols
0, 1, . . . , k − 1. Since this DFAO has n + k states we obtain ‖a‖k ≤ n + k.

For proving ‖a‖R
k ≥ (k − 1)kn−1 we apply Lemma 1. For i = 1, 2, . . . ,

(k − 1)kn−1 define mi = kn + i − 1, so the numbers mi are exactly the numbers
of k-ary length n, starting in a digit 
= 0. For any two distinct such numbers
mi and mj there is a position p on which they differ, so by choosing v = 1n−p,
the strings v(mi)k and v(mj)k differ in their n-th position. So the condition of
Lemma 1 holds and we conclude ‖a‖R

k ≥ (k − 1)kn−1.
Define b by bi = 0 for i < kn, and ai = j if and only if the nth element

of (i)R
k is j, for j = 0, 1, . . . , k − 1, i ≥ kn. A similar argument using the same

automaton proves the claim for b. ��

4 The k-kernel

For j ∈ Σk we define pj(a) = ajak+ja2k+ja3k+j · · · by (pj(a))i = aik+j for all
i ∈ N. So for k = 2 we have p0(a) = even(a) = a0a2a4 · · · and p1(a) = odd(a) =
a1a3a5 · · · .

For an infinite sequence a = a0a1a2a3 · · · over Γ we define its k-kernel Kk(a)
to be the smallest set Kk(a) ⊆ ΓN such that
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– a ∈ Kk(a),
– for every b ∈ Kk(a) and every j ∈ Σk we have pj(b) ∈ Kk(a).

We recall from [4], Prop. V.3.3, or [1], Theorem 6.6.2, that a is k-automatic if
and only if Kk(a) is finite.

For a k-automatic sequence a = a0a1a2a3 · · · over the alphabet Γ its k-kernel
Kk(a) has a natural DFAO structure: the DFAO Kk(a) = (Kk(a), Σk, δ, a, Γ, τ),
where

– the input alphabet is Σk,
– Kk(a) is the set of states,
– δ : Kk(a) × Σk → Q is defined by δ(q, j) = pj(q),
– a is the initial state,
– the output alphabet is Γ ,
– the output function τ : Kk(a) → Σk is defined by τ(b0b1b2 · · · ) = b0.

Recall that for k = 2 we have p0 = even and p1 = odd, so in K2(a) the
0-steps describe even and the 1-steps describe odd. For thue the 2-kernel exactly
coincides with the DFAO Mthue given in Sect. 2, in which q0 coincides with thue
and q1 coincides with the sequence obtained from thue by swapping symbols 0
and 1. For paper the 2-kernel exactly coincides with the given DFAO MpaperR , in
which q0 coincides with paper, q1 with (01)ω = 010101 · · · , q2 with 0ω = 000 · · ·
and q3 with 1ω = 111 · · · .

The following theorem is straightforwardly proved by induction on i:

Theorem 2. For every k-automatic sequence a = a0a1a2a3 · · · and every i ∈ N

we have τ(δ(a, (i)R
k )) = ai where τ, δ refer to Kk(a) = (Kk(a), Σk, δ, a, Γ, τ).

As a consequence, by only giving the DFAO Kk(a) the sequence a is fully
defined.

Theorem 3. The DFAO Kk(a) is the unique DFAO of minimal size such that
τ(δ(a, (i)R

k 0j)) = ai for every i, j ∈ N.

Proof. Let Kk(a) = (Kk(a), Σk, δ, a, Γ, τ). Combining Theorem 2 with the fact
that τ(q) = τ(δ(q, 0)) for all q ∈ Kk(a) yields τ(δ(a, (i)R

k 0j)) = ai for every
i, j ∈ N. Assume it is not of minimal size with this property. Then there are two
distinct states q, q′ such that τ(δ(q, u)) = τ(δ(q′, u)) for all u ∈ Σ∗

k . Since q, q′

are sequences over Σk, applying Theorem 2 to Kk(q) and Kk(q′) yield qi = q′
i

for all i ∈ N. But then q, q′ are equal as sequences, contradicting that they are
distinct. ��

Recall that ‖a‖R
k is the minimal size |Q| for which a DFAO M =

(Q,Σ, δ, q0, Γ, τ) exists such that τ(δ(q0, (i)R
k )) = ai for every i ∈ N. We observe

that a DFAO with this property does not need to be unique. For instance,
for a = 01ω the DFAO Kk(a) is a minimal DFAO with this property, hav-
ing two states a and b = 1ω, and δ(a, 0) = a, δ(a, 1) = δ(b, 0) = δ(b, 1) = b,
τ(a) = 0, τ(b) = 1. But the DFAO with the same two states a, b and
δ(b, 0) = a, δ(a, 0) = δ(a, 1) = δ(b, 1) = b, τ(a) = 0, τ(b) = 1 produces the
same sequence a = 01ω.
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Next we observe that ‖a‖R
k can be strictly

smaller than |Kk(a)|, the size of the state space of
Kk(a). Define ai = 1 if the number of zeros in (i)2
is odd, and ai = 0 if this number is even. Clearly
it admits the following DFAO, in which as usual
τ(q) = x is denoted by q/x in the state q:

0/0 1/10

1

0

1

0

Hence ‖a‖R
k ≤ 2; we obtain ‖a‖R

k = 2 since the sequence contains both 0 and
1. However, |Kk(a)| = 4, since Kk(a) is the following DFAO:

a/0 b/0

c/1d/1

0

1

0

1

1

1

0

0

The sequences a, b, c, d are as follows:

a = 001001101 · · · , b = 010110010 · · · ,

c = 110110010 · · · , d = 101001101 · · · .

Observe that a and d differ only at the first
position, and similarly for b and c. The next
lemma states that this always occurs if |Kk(a)|
is greater then ‖a‖R

k .

Lemma 2. Let a be an infinite sequence over Γ with kernel Kk(a) =
(Kk(a), Σk, δ, a, Γ, τ). Let (QM , Σk, δM , q0, Γ, τM ) such that τM (δM (q0, (i)R

k )) =
ai for all i ∈ N. Assume that δM (q0, u) = δM (q0, v) for u, v ∈ Σ∗

k . Then

δ(a, u)i = δ(a, v)i for all i > 0.

Proof. Let i > 0. For any w ∈ Σ∗
k define the numbers mw by (mw)k = (i)kwR;

this is possible since (i)kwR does not start in 0 since i > 0. For any b ∈ Kk(a)
we obtain bi = τ(δ(b, (i)R

k )) by considering Kk(b). Hence

δ(a,w)i = τ(δ(δ(a,w), (i)R
k )) = τ(δ(a,w(i)R

k )) = τ(δ(a, (mw)R
k )) = amw

.

We obtain: δ(a, u)i = amu
= τM (δM (q0, (mu)R

k ))
= τM (δM (q0, u(i)R

k ))
= τM (δM (δM (q0, u), (i)R

k ))
= τM (δM (δM (q0, v), (i)R

k ))
= τM (δM (q0, (mv)R

k )) = amv
= δ(a, v)i.

��
Theorem 4. Let a be a k-automatic sequence over an alphabet Γ . Then

‖a‖R
k ≤ |Kk(a)| ≤ |Γ | ∗ ‖a‖R

k .

Moreover, if a is periodic then ‖a‖R
k = |Kk(a)|.

Proof. The inequality ‖a‖R
k ≤ |Kk(a)| holds since the automaton Kk(a) sat-

isfies τ(δ(a, (i)R
k )) = ai for every i ∈ N. For the other inequality let M =

(Q,Σ, δ, q0, Γ, τ) be a DFAO of minimal size ‖a‖R
k such that τ(δ(q0, (i)R

k )) = ai



Complexity of Automatic Sequences 267

for every i ∈ N. For every b ∈ Kk(a) choose ub ∈ Σ∗
K such that b = δ(a, ub).

Define ∼ on Kk(a) by b ∼ c ⇐⇒ δM (q0, ub) = δM (q0, uc).
According to Lemma 2 b ∼ c implies that bi = ci for all i > 0, so the difference

between b and c may only be caused by b0 
= c0. Hence every equivalence class
of ∼ has at most |Γ | elements, while the number of equivalence classes is |Q| =
‖a‖R

k . This proves |Kk(a)| ≤ |Γ | ∗ ‖a‖R
k .

In case a is periodic then all elements of Kk(a) are periodic too, and bi = ci

for all i > 0 implies b = c. Hence in that case all equivalence classes consist of a
single element, proving ‖a‖R

k = |Kk(a)|. ��

5 Morphic Sequences

Recall that ‖a‖k = |QM | for the smallest QM being the set of states of a DFAO
M = (QM , Σk, δM , q0, Γ, τM ) for which τM (δM (q0, (i)k)) = ai for every i ∈ N.
Again this DFAO of minimal size is not unique: for a = 01ω the DFAO Kk(a) as
given above also satisfies τM (δM (q0, (i)k)) = ai for all i ∈ N, but after changing
δ(a, 0) = a to δ(a, 0) = b this property still holds, since (i)k never starts by 0.

Just like ‖a‖R
k is strongly related to the kernel of a as described in Theorem

4, ‖a‖k is strongly related to the number of symbols needed to describe a as
a morphic sequence with respect to a k-uniform morphism. A sequence a over
an alphabet Γ is called morphic with respect to a morphism h : Δ → Δ∗ and
a coding τ : Δ → Γ if a = τ(hω(x)) for some x ∈ Δ satisfying h(x) = xu,
by which hω(x) = xuh(u)h2(u)h3(u) · · · is a fixed point of h. The morphism
h : Δ → Δ∗ is called k-uniform if the string h(y) ∈ Δ∗ has length k for every
y ∈ Δ. It is well-known (Cobham [3], see also [1] Theorem 6.3.2) that a is k-
automatic if and only if it is morphic with respect to a k-uniform morphism.
For instance, thue = hω(0) for h(0) = 01, h(1) = 10, and paper = τ(gω(0)) for
g(0) = 02, g(1) = 31, g(2) = 32, g(3) = 01, τ(0) = τ(2) = 0, τ(1) = τ(3) = 1.

Theorem 5. Let a be a k-automatic sequence. Let d(a) be the minimal size of
the alphabet Δ such that a = τ(hω(x)) for a k-uniform morphism h : Δ → Δ∗

and a coding τ : Δ → Γ . Then ‖a‖k ≤ d(a) ≤ ‖a‖k + 1.

Proof. The k-DFAO M = (Δ,Σk, δ, q0, Γ, τ) with q0 = x and δ(q, y) = h(q)y,
where we write h(q) = h(q)0 · · · h(q)k−1, satisfies τ(δ(q0, (i)k)) = ai for all i ≥ 0
as is showed in the proof of Theorem 6.3.2 of [1]. As ‖a‖k is the smallest size of
a k-DFAO with this property we obtain ‖a‖k ≤ d(a).

Conversely, if M = (QM , Σk, δM , q0, Γ, τM ) is a k-DFAO of size ‖a‖k with
τM (δM (q0, (i)k)) = ai for all i ≥ 0, then by choosing a fresh state q′

0 and defining
Q = QM ∪{q′

0}, δ(q, y) = δM (q, y) for q ∈ QM , δ(q′
0, 0) = q′

0, δ(q′
0, y) = δM (q0, y)

for y 
= 0, τ(q′
0) = τM (q0), τ(q) = τM (q) for q ∈ QM , we obtain the k-DFAO

(Q,Σk, δ, q′
0, Γ, τ) of size ‖a‖k + 1 with τ(δ(q′

0, (i)k)) = ai for all i ≥ 0. Using
the fact that δ(q′

0, 0) = q′
0 we obtain a = τ(hω(q′

0)) for h defined by h(q) =
δ(q, 0)δ(q, 1) · · · δ(q, k−1) as is shown in the proof of Theorem 6.3.2 of [1]. Hence
d(a) ≤ ‖a‖k + 1. ��
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6 The Effect of Basic Operations

For any sequence a = a0a1a2a3 · · · we define its tail tail(a) = a1a2a3a4 · · · by
(tail(a))i = ai+1 for all i ∈ N.

Theorem 6. For any k-automatic sequence a we have ‖tail(a)‖R
k ≤ 2‖a‖R

k and
‖tail(a)‖k ≤ (‖a‖k)2. For every n > 1 there exists a k-automatic sequence a such
that ‖a‖k = n and ‖tail(a)‖k = n2.

Proof. For the first claim take a DFAO M = (Q,Σk, δ, q0, Γ, τ) of size ‖a‖R
k

with τ(δ(q0, (i)R
k )) = ai for all i ≥ 0. Let m ≤ ‖a‖R

k be the smallest number
m > 0 such that j < m exists with δ(q0, 0m) = δ(q0, 0j). Introduce fresh states
r0, . . . , rm−1 and define the DFAO M ′ = (Q∪{r0, . . . , rm−1}, Σk, δ′, r0, Γ, τ ′) by

δ′(q, x) = δ(q, x) for q ∈ Q,x ∈ Σk,

δ′(ri, k − 1) = ri+1 for i = 1, . . . ,m − 2,

δ′(rm−1, k − 1) = rj for j < m with δ(q0, 0m) = δ(q0, 0j),

δ′(ri, x) = δ(q0, 0i(x + 1)) for i = 0, . . . ,m − 1, x < k − 1.

By construction we have δ′(r0, (k−1)ix) = δ(q0, 0i(x+1)) for all i ∈ N, x < k−1.
So by defining τ ′(q) = τ(q) for q ∈ Q and τ ′(ri) = τ(δ(q0, 0i)) for i = 0, . . . , m−1
we obtain

τ ′(δ′(r0, (vx(k − 1)i)R)) = τ(δ(q0, (v(x + 1)0i)R))

and
τ ′(δ′(r0, (k − 1)i)) = τ(δ(q0, (10i)R))

for all i ∈ N, v ∈ Σ∗
k . Since [vx(k−1)i]k +1 = [v(x+1)0i]k, and [(k−1)i]k +1 =

[10i]k, and every number in N is either of the shape [vx(k − 1)i]k or [(k − 1)i]k,
this proves that M ′ is a DFAO for tail(a). Since |Q∪{r0, . . . , rm−1}| ≤ 2|Q| this
yields ‖tail(a)‖R

k ≤ 2‖a‖R
k .

For the second claim take a DFAO M = (Q,Σk, δ, q0, Γ, τ) of size ‖a‖k with
τ(δ(q0, (i)k)) = ai for all i ≥ 0. Define the DFAO M = (Q × Q,Σk, δ, q0, Γ, τ) of
size (‖a‖k)2 by

q0 = (q0, δ(q0, 1)), τ(q, q′) = τ(q′),

δ((q, q′), k − 1) = (δ(q, k − 1), δ(q′, 0)),

δ((q, q′), x) = (δ(q, x), δ(q, x + 1)),

for all q, q′ ∈ Q, x < k − 1. For every i ∈ N we have either (i)k = (k − 1)m

or (i)k = vx(k − 1)m, for some m ≥ 0, v ∈ Σ∗
k , x < k − 1. In the first case

we have (i + 1)k = 10m, in the second case (i + 1)k = v(x + 1)0m. The DFAO
M has been constructed in such a way that τ(δ(q0, (k − 1)m) = τ(δ(q0, 10m)
and τ(δ(q0, vx(k − 1)m) = τ(δ(q0, v(x + 1)0m). Hence for all i ∈ N we have
τ(δ(q0, (i)k) = τ(δ(q0, (i + 1)k)) = ai+1 = tail(a)i, proving the second claim.

As ‖tail(a)‖k ≤ n2, for the last claim it suffices to prove ‖tail(a)‖k ≥ n2.
We define a by ai = 1 if the number of zeros in (i)k is divisible by n, and
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ai = 0 otherwise. A DFAO consisting of a single n-cycle easily produces a, so
‖a‖k ≤ n, and since a smaller one is not possible we obtain ‖a‖k = n. Let
b = tail(a), so bi = ai+1 for all i ∈ N. We prove ‖tail(a)‖k ≥ n2 by Lemma 1.
Choose m1,m2, . . . ,mn2 to be the numbers [10p(k−1)q]k for p, q = 1, . . . , n. Let
mi = [10p(k − 1)q]k and mj = [10p′

(k − 1)q′
]k for i 
= j, then (p, q) 
= (p′, q′).

First we consider the case where p + q and p′ + q′ are distinct modulo n,
choose r such that p + q + r − 1 is divisible by n and p′ + q′ + r − 1 is not.
Choose v = (k − 1)r. Then b[(mi)kv]k = a[(mi)kv]k+1 = a[10p−110q+r]k = 1 
= 0 =
a[10p′−110q′+r]k

= b[(mj)kv]k .
In the remaining case p+ q and p′ + q′ are equal modulo n, and since (p, q) 
=

(p′, q′) we obtain that p and p′ are distinct modulo n. Choose r such that p+r is
divisible by n and p′ +r is not. Choose v = 0r+1, then b[(mi)kv]k = a[(mi)kv]k+1 =
a[10p(k−1)q0r1]k = 1 
= 0 = a[10p′ (k−1)q′0r1]k = b[(mj)kv]k .

So the conditions of Lemma 1 hold, and ‖tail(a)‖k ≥ n2. ��
For our examples thue and paper we have ‖tail(thue)‖2 = 4, ‖tail(thue)‖R

2 = 3,
‖tail(paper)‖2 = 8 and ‖tail(paper)‖R

2 = 6.
For any sequence a = a0a1a2a3 · · · over Γ , and x ∈ Γ the sequence x · a =

xa0a1a2a3 · · · is defined by (x · a)0 = x and (x · a)i = ai−1 for all i > 0. The
next theorem states that the effect of x· is similar to tail.

Theorem 7. For any k-automatic sequence a over Γ , and x ∈ Γ we have
‖x · a‖R

k ≤ 2‖a‖R
k and ‖x · a‖k ≤ (‖a‖k)2. For every n > 1 there exists a k-

automatic sequence a such that ‖a‖k = n and ‖x · a‖k ≥ n2.

Proof. Similar to the proof of Theorem 6, with the roles of the symbols 0 and
k − 1 swapped, exploiting the property [vx0i]k − 1 = [v(x − 1)(k − 1)i]k for any
string v and any x > 0. ��
For our examples thue and paper we have ‖0 · thue‖2 = 4, ‖0 · thue‖R

2 = 4,
‖0 · paper‖2 = 4 and ‖0 · paper‖R

2 = 4.
Recall that for j ∈ Σk the operator pj on sequences a is defined by (pj(a))i =

aik+j for all i ∈ N.

Theorem 8. For any k-automatic sequence a and j ∈ Σk we have ‖pj(a)‖k ≤
‖a‖k and ‖pj(a)‖R

k ≤ ‖a‖R
k .

Proof. Let M = (Q,Σk, δ, q0, Γ, τ) be a DFAO of size ‖a‖k with τ(δ(q0, (i)k)) =
ai for all i ≥ 0. Define M ′ = (Q,Σk, δ, q0, Γ, τ ′) by τ ′(q) = τ(δ(q, j)) for all
q ∈ Q. Then

(pj(a))i = aki+j = τ(δ(q0, (i)kj)) = τ(δ(δ(q0, (i)k), j)) = τ ′(δ(q0, (i)k))

for all i ∈ N, so M ′ is a DFAO of size ‖a‖k producing pj(a), so ‖pj(a)‖k ≤ ‖a‖k.
For the other claim let M = (Q,Σk, δ, q0, Γ, τ) be a DFAO of size ‖a‖R

k with
τ(δ(q0, (i)R

k )) = ai for all i ≥ 0. Define M ′ = (Q,Σk, δ, δ(q0, j), Γ, τ). Then

(pj(a))i = aki+j = τ(δ(q0, j(i)k)R) = τ(δ(δ(q0, j), (i)k)R)

for all i ∈ N, so M ′ is a DFAO of size ‖a‖R
k producing pj(a), so ‖pj(a)‖k ≤

‖a‖k. ��
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For our examples thue and paper we have ‖even(thue)‖2 = 2, ‖odd(thue)‖R
2 = 2,

‖even(paper)‖2 = 2 and ‖odd(paper)‖R
2 = 4.

When applying an operator f : Γ1 × Γ2 → Γ3 on two sequences a ∈ ΓN
1 ,

b ∈ ΓN
2 , by f(a, b) ∈ ΓN

3 we mean the sequence defined by f(a, b)i = f(ai, bi) for
all i ∈ N. For instance, ∧ applied on boolean sequences denotes the elementwise
conjunction of the two boolean sequences.

Theorem 9. For any two k-automatic sequences a ∈ ΓN
1 , b ∈ ΓN

2 and every
function f : Γ1 × Γ2 → Γ3 we have ‖f(a, b)‖k ≤ ‖a‖k‖b‖k and ‖f(a, b)‖R

k ≤
‖a‖R

k ‖b‖R
k .

Proof. Let (Q1, Σk, δ1, q10, Γ1, τ1) be a DFAO of size ‖a‖k with τ1(δ(q10, (i)k)) =
ai for all i ≥ 0. Let (Q2, Σk, δ2, q20, Γ2, τ2) be a DFAO of size ‖b‖k with
τ2(δ(q20, (i)k)) = bi for all i ≥ 0. Then (Q1 × Q2, Σk, δ, (q10, q20), Γ3, τ) for δ, τ
defined by δ((q1, q2), x) = (δ1(q1, x), δ2(q2, x)) and τ(q1, q2) = f(τ1(q1), τ2(q2))
for all q1 ∈ Q1, q2 ∈ Q2, x ∈ Σk, is a DFAO of size ‖a‖k‖b‖k for f(a, b). The
proof for the reversed version is similar. ��
Combining our examples thue and paper we have ‖thue ∧ paper‖2 = 8 and
‖thue ∧ paper‖R

2 = 7.

7 Periodic Sequences

Theorem 10. Let a = vω be a periodic sequence with |v| = n. Then ‖a‖k ≤ n
and ‖a‖R

k ≤ n(n − 1).

Proof. Writing v = v0v1 · · · vn−1 we obtain ai = vi mod n for all i ∈ N. Define
(Q,Σk, δ, q0, Γ, τ) by Q = {0, 1, . . . , n − 1}, q0 = 0, δ(q, x) = (kq + x) mod n,
τ(q) = vq, for all q ∈ Q,x ∈ Σk. Then by induction on the length of (i)k

one proves that δ(q0, (i)k) = (i mod n) for every i ∈ N. Hence τ(δ(q0, (i)k)) =
τ(i mod n) = vi mod n = ai for all i ∈ N, proving that ‖a‖k ≤ n.

For the other claim we prove that |Kk(a)| ≤ n(n− 1), then the result follows
from Theorem 4. The states of Kk(a) are sequences b for which there are numbers
q, j such that bi = aikq+j = v(ikq+j) mod n for all i ∈ N. We have to show that
there are at most n(n − 1) such sequences b. This follows from the fact that this
only i depends on the n values for (j mod n) and the at most n − 1 values for
(kq mod n). The latter follows since if k, n are relatively prime, then the values
of (kq mod n) are among the n − 1 values 1, . . . , n − 1, and otherwise there is
some p > 1 dividing both n and k, and the values are among the n/p multiples
of p modulo n. ��

A natural question is for which cases the bounds of Theorem 10 can be
reached, in particular the quadratic bound for ‖a‖R

k . This question is beyond the
scope of this paper, but has been addressed in [2]. A main result of [2] is that if
n > 5 is prime and 2 is a primitive root modulo n (on which Artin’s conjecture
states that this holds for infinitely many primes), then ‖vω‖R

k = n(n − 1) for
v = 10110n−4.
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8 Conclusions

We investigated two natural complexity measures for a k-automatic sequence
a: ‖a‖k closely related to the alphabet size required to present a as a morphic
sequence with respect to a k-uniform morphism, and ‖a‖R

k closely related to the
size of the kernel of a. We saw how there can be an exponential gap between
‖a‖k and ‖a‖R

k , but basic operations like tail, adding an element in front, or
applying a binary operator elementwise, never increases ‖·‖k or ‖·‖R

k by more
than a quadratic factor. Many other operations, like changing the tenth element
of a sequence, can be obtained by combining such basic operations, and hence
yield a polynomial upper bound too. Probably these polynomial bounds can be
improved strongly. Other open questions include a further investigation of when
these upper bounds can be reached. Conversely, our SAT based tool provides
values that are likely to be exact, but formally are only lower bounds. It would
make sense to further investigate how to be sure to have the exact value, either
depending on particular ways to define automatic sequences, or by giving general
criteria for exactness depending on known upper bounds.

On periodic sequences this paper only contains some very basic observations;
more involved observations are given in [2].

We want to thank Wieb Bosma for fruitful collaboration on this topic and
careful proof reading. We want to thank Jeffrey Shallit for giving pointers to
state complexity.
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