
The Power of Programs over Monoids in J

Nathan Grosshans1,2(B)

1 DI ENS, ENS, CNRS, PSL University, Paris, France
nathan.grosshans@polytechnique.edu

2 Inria, Paris, France
https://www.di.ens.fr/~ngrosshans/

Abstract. The model of programs over (finite) monoids, introduced by
Barrington and Thérien, gives an interesting way to characterise the
circuit complexity class NC1 and its subclasses and showcases deep con-
nections with algebraic automata theory. In this article, we investigate
the computational power of programs over monoids in J, a small variety
of finite aperiodic monoids. First, we give a fine hierarchy within the
class of languages recognised by programs over monoids from J, based
on the length of programs but also some parametrisation of J. Second,
and most importantly, we make progress in understanding what regu-
lar languages can be recognised by programs over monoids in J. We
show that those programs actually can recognise all languages from a
class of restricted dot-depth one languages, using a non-trivial trick, and
conjecture that this class suffices to characterise the regular languages
recognised by programs over monoids in J.

1 Introduction

In computational complexity theory, many hard still open questions concern
relationships between complexity classes that are expected to be quite small in
comparison to the mainstream complexity class P of tractable languages. One
of the smallest such classes is NC1, the class of languages decided by Boolean
circuits of polynomial length, logarithmic depth and bounded fan-in, a relevant
and meaningful class, that has many characterisations but whose internal struc-
ture still mostly is a mystery. Indeed, among its most important subclasses, we
count AC0, CC0 and ACC0: all of them are conjectured to be different from each
other and strictly within NC1, but despite many efforts for several decades, this
could only be proved for the first of those classes.

In the late eighties, Barrington and Thérien [3], building on Barrington’s
celebrated theorem [2], gave an interesting viewpoint on those conjectures, rely-
ing on algebraic automata theory. They defined the notion of a program over
a monoid M : a sequence of instructions (i, f), associating through function f
some element of M to the letter at position i in the input of fixed length. In that
way, the program outputs an element of M for every input word, by multiplying
out the elements given by the instructions for that word; acceptance or rejection
then depends on that outputted element. A language of words of arbitrary length
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 315–327, 2020.
https://doi.org/10.1007/978-3-030-40608-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_22

316 N. Grosshans

is consequently recognised in a non-uniform fashion, by a sequence of programs
over some fixed monoid, one for each possible input length; when that sequence
is of polynomial length, it is said that the monoid p-recognises that language.
Barrington and Thérien’s discovery is that NC1 and almost all of its signifi-
cant subclasses can each be exactly characterised by p-recognition over monoids
taken from some suitably chosen variety of finite monoids (a class of finite mono-
ids closed under basic operations on monoids). For instance, NC1, AC0, CC0 and
ACC0 correspond exactly to p-recognition by, respectively, finite monoids, finite
aperiodic monoids, finite solvable groups and finite solvable monoids. Under-
standing the internal structure of NC1 thus becomes a matter of understanding
what finite monoids from some particular variety are able to p-recognise.

It soon became clear that regular languages play a central role in understand-
ing p-recognition: McKenzie, Péladeau and Thérien indeed observed [12] that
finite monoids from a variety V and a variety W p-recognise the same languages
if and only if they p-recognise the same regular languages. Otherwise stated, most
conjectures about the internal structure of NC1 can be reformulated as a state-
ment about where one or several regular languages lie within that structure. This
is why a line of previous works got interested into various notions of tameness,
capturing the fact that for a given variety of finite monoids, p-recognition does
not offer much more power than classical morphism-recognition when it comes
to regular languages (see [8,10,11,13,14,20–22]).

This paper is a contribution to an ongoing study of what regular languages
can be p-recognised by monoids taken from “small” varieties, started with the
author’s Ph.D. thesis [7]. In a previous paper by the author with McKenzie and
Segoufin [8], a novel notion of tameness was introduced and shown for the “small”
variety of finite aperiodic monoids DA. This allowed them to characterise the
class of regular languages p-recognised by monoids from DA as those recognised
by so called quasi-DA morphisms and represented a first small step towards
a new proof that the variety A of finite aperiodic monoids is tame. This is a
statement equivalent to Furst’s, Saxe’s, Sipser’s [6] and Ajtai’s [1] well-known
lower bound result about AC0. In [8], the authors also observed that, while DA
“behaves well” with respect to p-recognition of regular languages, the variety J, a
subclass of DA, does, in contrast, “behave badly” in the sense that monoids from
J do p-recognise regular languages that are not recognised by quasi-J morphisms.

Now, J is a well-studied and fundamental variety in algebraic automata the-
ory (see, e.g., [15,16]), corresponding through classical morphism-recognition to
the class of regular languages in which membership depends on the presence or
absence of a finite set of words as subwords. This paper is a contribution to the
understanding of the power of programs over monoids in J, a knowledge that
certainly does not bring us closer to a new proof of the tameness of A (as we are
dealing with a strict subvariety of DA), but that is motivated by the importance
of J in algebraic automata theory and the unexpected power of programs over
monoids in J. The results we present in this article are twofold: first, we exhibit
a fine hierarchy within the class of languages p-recognised by monoids from
J, depending on the length of those programs and on a parametrisation of J;

The Power of Programs over Monoids in J 317

second, we show that a whole class of regular languages, that form a subclass
of dot-depth one languages [15], are p-recognised by monoids from J while, in
general, they are not recognised by any quasi-J morphism. This class roughly
corresponds to dot-depth one languages where detection of a given factor does
work only when it does not appear too often as a subword. We actually even con-
jecture that this class of languages with additional positional modular counting
(that is, letters can be differentiated according to their position modulo some
fixed number) corresponds exactly to all those p-recognised by monoids in J, a
statement that is interesting in itself for algebraic automata theory.

Organisation of the Paper. Following the present introduction, Sect. 2 is ded-
icated to the necessary preliminaries. In Sect. 3, we present the results about
the fine hierarchy and in Sect. 4 we expose the results concerning the regular
languages p-recognised by monoids from J. Section 5 gives a short conclusion.

Note. This article is based on unpublished parts of the author’s Ph.D. thesis [7].

2 Preliminaries

2.1 Various Mathematical Materials

We assume the reader is familiar with the basics of formal language theory,
semigroup theory and recognition by morphisms, that we might designate by
classical recognition; for those, we only specify some things and refer the reader
to the two classical references of the domain by Eilenberg [4,5] and Pin [16].

General Notations and Conventions. Let i, j ∈ N. We shall denote by [[i, j]] the
set of all n ∈ N verifying i ≤ n ≤ j. We shall also denote by [i] the set [[1, i]].
Given some set E, we shall denote by P(E) the powerset of E. All our alphabets
and words will always be finite; the empty word will be denoted by ε.

Varieties and Languages. A variety of monoids is a class of finite monoids closed
under submonoids, Cartesian product and morphic images. A variety of semi-
groups is defined similarly. When dealing with varieties, we consider only finite
monoids and semigroups, each having an idempotent power, a smallest ω ∈ N>0

such that xω = x2ω for any element x. To give an example, the variety of finite
aperiodic monoids, denoted by A, contains all finite monoids M such that, given
ω its idempotent power, xω = xω+1 for all x ∈ M .

To each variety V of monoids or semigroups we associate the class L(V) of
languages such that, respectively, their syntactic monoid or semigroup belongs
to V. For instance, L(A) is well-known to be the class of star-free languages.

Quasi V Languages. If S is a semigroup we denote by S1 the monoid S if S is
already a monoid and S ∪ {1} otherwise.

The following definitions are taken from [17]. Let ϕ be a surjective morphism
from Σ∗ to a finite monoid M . For all k consider the subset ϕ(Σk) of M (where

318 N. Grosshans

Σk is the set of words over Σ of length k). As M is finite there is a k such
that ϕ(Σ2k) = ϕ(Σk). This implies that ϕ(Σk) is a semigroup. The semigroup
given by the smallest such k is called the stable semigroup of ϕ. If S is the stable
semigroup of ϕ, S1 is called the stable monoid of ϕ. If V is a variety of monoids or
semigroups, then we shall denote by QV the class of such surjective morphisms
whose stable monoid or semigroup, respectively, is in V and by L(QV) the class
of languages whose syntactic morphism is in QV.

Programs over Monoids. Programs over monoids form a non-uniform model of
computation, first defined by Barrington and Thérien [3], extending Barrington’s
permutation branching program model [2]. Let M be a finite monoid and Σ an
alphabet. A program P over M on Σn is a finite sequence of instructions of the
form (i, f) where i ∈ [n] and f ∈ MΣ ; said otherwise, it is a word over ([n]×MΣ).
The length of P , denoted by |P |, is the number of its instructions. The program
P defines a function from Σn to M as follows. On input w ∈ Σn, each instruction
(i, f) outputs the monoid element f(wi). A sequence of instructions then yields a
sequence of elements of M and their product is the output P (w) of the program.
A language L ⊆ Σn is consequently recognised by P whenever there exists
F ⊆ M such that L = P−1(F).

A language L over Σ is recognised by a sequence of programs (Pn)n∈N over
some finite monoid M if for each n, the program Pn is on Σn and recognises
L=n = L ∩ Σn. We say (Pn)n∈N is of length s(n) for s : N → N whenever
|Pn| = s(n) for all n ∈ N and that it is of length at most s(n) whenever there
exists α ∈ R>0 verifying |Pn| ≤ α · s(n) for all n ∈ N.

For s : N → N and V a variety of monoids, we denote by P(V, s(n)) the class
of languages recognised by sequences of programs over monoids in V of length
at most s(n). The class P(V) =

⋃
k∈N

P
(
V, nk

)
is then the class of languages

p-recognised by a monoid in V, i.e. recognised by sequences of programs over
monoids in V of polynomial length.

The following is an important property of P(V).

Proposition 1 ([12, Corollary 3.5]). Let V be a variety of monoids, then
P(V) is closed under Boolean operations.

Given two alphabets Σ and Γ , a Γ -program on Σn for n ∈ N is defined
just like a program over some finite monoid M on Σn, except that instructions
output letters from Γ and thus that the program outputs words over Γ . Let now
L ⊆ Σ∗ and K ⊆ Γ ∗. We say that L program-reduces to K if and only if there
exists a sequence (Ψn)n∈N of Γ -programs (the program-reduction) such that Ψn

is on Σn and L=n = Ψ−1
n (K=|Ψn|) for each n ∈ N. The following proposition

shows closure of P(V) also under program-reductions.

Proposition 2 ([7, Proposition 3.3.12 and Corollary 3.4.3]). Let Σ and
Γ be two alphabets. Let V be a variety of monoids. Given K ⊆ Γ ∗ in P(V, s(n))
for s : N → N and L ⊆ Σ∗ from which there exists a program-reduction to K of
length t(n), for t : N → N, we have that L ∈ P(V, s(t(n))). In particular, when
K is recognised (classically) by a monoid in V, we have that L ∈ P(V, t(n)).

The Power of Programs over Monoids in J 319

2.2 Tameness and the Variety J

We won’t introduce any of the proposed notions of tameness but will only state
that the main consequence for a variety of monoids V to be tame in the sense
of [8] is that P(V)∩ Reg ⊆ L(QV). This consequence has far-reaching implica-
tions from a computational-complexity-theoretic standpoint when P(V) happens
to be equal to a circuit complexity class. For instance, tameness for A implies
that P(A) ∩ Reg ⊆ L(QA), which is equivalent to the fact that AC0 does not
contain the language MODm of words over {0, 1} containing a number of 1s not
divisible by m for any m∈N,m≥2 (a central result in complexity theory [1,6]).

Let us now define the variety of monoids J. A finite monoid M of idempotent
power ω belongs to J if and only if (xy)ω = (xy)ωx = y(xy)ω for all x, y ∈ M .
It is a strict subvariety of the variety DA, containing all finite monoids M of
idempotent power ω such that (xy)ω = (xy)ωx(xy)ω for all x, y ∈ M , itself a
strict subvariety of A. The variety J is a “small” one, well within A.

We now give some specific definitions and results about J that we will use,
based essentially on [9], but also on [16, Chapter 4, Section 1].

For some alphabet Σ and each k ∈ N, let us define the equivalence relation ∼k

on Σ∗ by u ∼k v if and only if u and v have the same set of k-subwords (subwords
of length at most k), for all u, v ∈ Σ∗. The relation ∼k is a congruence of finite
index on Σ∗. For an alphabet Σ and a word u ∈ Σ∗, we shall write u�Σ∗ for the
language of all words over Σ having u as a subword. In the following, we consider
that � has precedence over ∪ and ∩ (but of course not over concatenation).

We define the class of piecewise testable languages PT as the class of regular
languages such that for every alphabet Σ, we associate to Σ∗ the set PT (Σ∗)
of all languages over Σ that are Boolean combinations of languages of the form
u�Σ∗ where u ∈ Σ∗. In fact, PT (Σ∗) is the set of languages over Σ equal to a
union of ∼k-classes for some k ∈ N (see [18]). Simon showed [18] that a language
is piecewise testable if and only if its syntactic monoid is in J, i.e. PT = L(J).

We can define a hierarchy of piecewise testable languages in a natural way.
For k ∈ N, let the class of k-piecewise testable languages PT k be the class of
regular languages such that for every alphabet Σ, we associate to Σ∗ the set
PT k(Σ∗) of all languages over Σ that are Boolean combinations of languages
of the form u�Σ∗ where u ∈ Σ∗ with |u| ≤ k. We then have that PT k(Σ∗) is
the set of languages over Σ equal to a union of ∼k-classes. Let us define Jk the
inclusion-wise smallest variety of monoids containing the quotients of Σ∗ by ∼k

for any alphabet Σ: we have that a language is k-piecewise testable if and only
if its syntactic monoid belongs to Jk, i.e. PT k = L(Jk). (See [9, Section 3].)

3 Fine Hierarchy

The first part of our investigation of the computational power of programs over
monoids in J concerns the influence of the length of programs on their compu-
tational capabilities.

We say two programs over a same monoid on the same set of input words are
equivalent if and only if they recognise the same languages. Tesson and Thérien

320 N. Grosshans

proved in [23] that for any monoid M in DA, there exists some k ∈ N such that
for any alphabet Σ there is a constant c ∈ N>0 verifying that any program over
M on Σn for n ∈ N is equivalent to a program over M on Σn of length at most
c · nk. Since J ⊂ DA, any monoid in J does also have this property. However,
this does not imply that there exists some k ∈ N working for all monoids in J,
i.e. that P(J) collapses to P

(
J, nk

)
.

In this section, we show on the one hand that, as for DA, while P(J, s(n))
collapses to P(J) for any super-polynomial function s : N → N, there does not
exist any k ∈ N such that P(J) collapses to P

(
J, nk

)
; and on the other hand

that P(Jk) does optimally collapse to P
(
Jk, n�k/2�) for each k ∈ N.

3.1 Strict Hierarchy

Given k, n ∈ N, we say that σ is a k-selector over n if σ is a function of P([n])[n]
k

that associates a subset of [n] to each vector in [n]k. For any sequence Δ =
(σn)n∈N such that σn is a k-selector over n for each n ∈ N—a sequence we will
call a sequence of k-selectors—, we set LΔ =

⋃
n∈N

Kn,σn
, where for each n ∈ N,

the language Kn,σn
is the set of words over {0, 1} of length (k+1) ·n that can be

decomposed into k+1 consecutive blocks u(1), u(2), . . . , u(k), v of n letters where
the first k blocks each contain 1 exactly once and uniquely define a vector ρ in
[n]k, where for all i ∈ [k], ρi is given by the position of the only 1 in u(i) (i.e.
u
(i)
ρi = 1) and v is such that there exists j ∈ σn(ρ) verifying that vj is 1. Observe

that for any k-selector σ0 over 0, we have K0,σ0 = ∅.
We now proceed similarly to what has been done in Subsection 5.1 in [8] to

show, on one hand, that for all k ∈ N, there is a monoid Mk in J2k+1 such that
for any sequence of k-selectors Δ, the language LΔ is recognised by a sequence
of programs over Mk of length at most nk+1; and, on the other hand, that for all
k ∈ N there is a sequence of k-selectors Δ such that for any finite monoid M and
any sequence of programs (Pn)n∈N over M of length at most nk, the language
LΔ is not recognised by (Pn)n∈N.

We obtain the following proposition.

Proposition 3. For all k ∈ N, we have P
(
J, nk

)
⊂ P

(
J, nk+1

)
. More precisely,

for all k ∈ N and d ∈ N, d ≤
⌈

k
2

⌉
− 1, we have P

(
Jk, nd

)
⊂ P

(
Jk, nd+1

)
.

3.2 Collapse

Looking at Proposition 3, it looks at first glance rather strange that, for each
k ∈ N, we can only prove strictness of the hierarchy inside P(Jk) up to exponent⌈

k
2

⌉
. We now show, in a way similar to Subsection 5.2 in [8], that in fact P(Jk)

does collapse to P
(
Jk, n�k/2�) for all k ∈ N, showing Proposition 3 to be optimal

in some sense.

Proposition 4. Let k ∈ N. Let M ∈ Jk and Σ be an alphabet. Then there exists
a constant c ∈ N>0 such that any program over M on Σn for n ∈ N is equivalent
to a program over M on Σn of length at most c · n�k/2�.

In particular, P(Jk) = P
(
Jk, n�k/2�) for all k ∈ N.

The Power of Programs over Monoids in J 321

4 Regular Languages in P(J)

The second part of our investigation of the computational power of programs
over monoids in J is dedicated to understanding exactly what regular languages
can be p-recognised by monoids in J.

4.1 Non-tameness of J

It is shown in [8] that P(J) ∩ Reg � L(QJ), thus giving an example of a well-
known subvariety of A for which p-recognition allows to do unexpected things
when recognising a regular language. How far does this unexpected power go?

The first thing to notice is that, though none of them is in L(QJ), all lan-
guages of the form Σ∗u and uΣ∗ for Σ an alphabet and u ∈ Σ+ are in P(J).
Indeed, each of them can be recognised by a sequence of constant-length pro-
grams over the syntactic monoid of u�Σ∗: for every input length, just output
the image, through the syntactic morphism of u�Σ∗, of the word made of the
|u| first or last letters. So, informally stated, programs over monoids in J can
check for some constant-length beginning or ending of their input words.

But they can do much more. Indeed, the language (a+b)∗ac+ does not belong
to L(QJ) (compute the stable monoid), yet it is in P(J). The crucial insight is
that it can be program-reduced in linear length to the piecewise testable language
of all words over {a, b, c} having ca as a subword but not the subwords cca, caa
and cb by using the following trick (that we shall call “feedback-sweeping”) for
input length n ∈ N: read the input letters in the order 2, 1, 3, 2, 4, 3, 5, 4, . . . , n, n−
1, output the letters read. This has already been observed in [8, Proposition 5].

Lemma 1. (a + b)∗ac+ ∈ P(J, n).

Using variants of the “feedback-sweeping” reading technique, we can prove
that the phenomenon just described is not an isolated case.

Lemma 2. The languages (a + b)∗ac+, (a + b)∗ac+a(a + b)∗, c+a(a + b)∗ac+,
(a + b)∗bac+ and (a + b)∗ac+(a + b)∗ac+ do all belong to P(J) \ L(QJ).

Hence, we are tempted to say that there are “much more” regular languages
in P(J) than just those in L(QJ), even though it is not clear to us whether
L(QJ) ⊆ P(J) or not. But can we show any upper bound on P(J) ∩ Reg? It
turns out that we can, relying on two known results.

First, since J ⊆ DA, we have P(J) ⊆ P(DA), so Theorem 6 in [8], that
states P(DA) ∩ Reg = L(QDA), implies that P(J) ∩ Reg ⊆ L(QDA).

Second, let us define an important superclass of the class of piecewise testable
languages. Let Σ be an alphabet and u1, . . . , uk ∈ Σ+ (k ∈ N>0); we define
[u1, . . . , uk] = Σ∗u1Σ

∗ · · · Σ∗ukΣ∗. The class of dot-depth one languages is the
class of Boolean combinations of languages of the form Σ∗u, uΣ∗ and [u1, . . . , uk]
for Σ an alphabet, k ∈ N>0 and u, u1, . . . , uk ∈ Σ+. The inclusion-wise small-
est variety of semigroups containing all syntactic semigroups of dot-depth one
languages is denoted by J ∗ D and verifies that L(J ∗ D) is exactly the class of

322 N. Grosshans

dot-depth one languages. (See [11,15,19].) It has been shown in [11, Corollary
8] that P(J ∗ D) ∩ Reg = L(Q(J ∗ D)) (if we extend the program-over-monoid
formalism in the obvious way to finite semigroups). Now, we have J ⊆ J ∗D, so
that P(J) ⊆ P(J ∗ D) and hence P(J) ∩ Reg ⊆ L(Q(J ∗ D)).

To summarise, we have the following.

Proposition 5. P(J) ∩ Reg ⊆ L(QDA) ∩ L(Q(J ∗ D)).

In fact, we conjecture that the inverse inclusion does also hold.

Conjecture 1. P(J) ∩ Reg = L(QDA) ∩ L(Q(J ∗ D)).

Why do we think this should be true? Though, for a given alphabet Σ, we
cannot decide whether some word u ∈ Σ+ of length at least 2 appears as a factor
of any given word w in Σ∗ with programs over monoids in J (because Σ∗uΣ∗ /∈
L(QDA)), Lemma 2 and the possibilities offered by the “feedback-sweeping”
technique give the impression that we can do it when we are guaranteed that u
appears at most a fixed number of times in w, which seems somehow to be what
dot-depth one languages become when restricted to belong to L(QDA). This
intuition motivates the definition of threshold dot-depth one languages.

4.2 Threshold Dot-Depth One Languages

The idea behind the definition of threshold dot-depth one languages is that we
take the basic building blocks of dot-depth one languages, of the form [u1, . . . , uk]
for an alphabet Σ, for k ∈ N>0 and u1, . . . , uk ∈ Σ+, and restrict them so that,
given l ∈ N>0, membership of a word does really depend on the presence of a
given word ui as a factor if and only if it appears less than l times as a subword.

Definition 1. Let Σ be an alphabet. For all u ∈ Σ+ and l ∈ N>0, we define [u]l
to be the language of words over Σ containing ul as a subword or u as a factor,
i.e. [u]l = Σ∗uΣ∗ ∪ ul

�Σ∗. Then, for all u1, . . . , uk ∈ Σ+ (k ∈ N, k ≥ 2) and
l ∈ N>0, we define [u1, . . . , uk]l = [u1]l · · · [uk]l.

Obviously, for each Σ an alphabet, k ∈ N>0 and u1, . . . , uk ∈ Σ+, the lan-
guage [u1, . . . , uk]1 equals u1 · · · uk � Σ∗. Over {a, b, c}, the language [ab, c]3
contains all words containing a letter c verifying that in the prefix up to that
letter, ababab appears as a subword or ab appears as a factor. Finally, the lan-
guage (a + b)∗ac+ over {a, b, c} of Lemma 1 is equal to [c, a]2

� ∩ [c, b]2
� ∩ [ac]2.

We then define a threshold dot-depth one language as any Boolean combina-
tion of languages of the form Σ∗u, uΣ∗ and [u1, . . . , uk]l for Σ an alphabet, for
k, l ∈ N>0 and u, u1, . . . , uk ∈ Σ+.

Confirming the intuition briefly given above, the technique of “feedback-
sweeping” can indeed be pushed further to prove that the whole class of threshold
dot-depth one languages is contained in P(J), and we dedicate the remainder of
this section to prove it. Concerning Conjecture 1, our intuition leads us to believe
that, in fact, the class of threshold dot-depth one languages with additional posi-
tional modular counting is exactly L(QDA)∩L(Q(J ∗ D)). We simply refer the

The Power of Programs over Monoids in J 323

interested reader to Section 5.4 of the author’s Ph.D. thesis [7], that contains a
partial result supporting this belief, too technical and long to be presented here.

Let us now move on to the proof of the following theorem.

Theorem 1. Every threshold dot-depth one language belongs to P(J).

As P(J) is closed under Boolean operations (Proposition 1), our goal is to
prove, given an alphabet Σ, given l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0), that
[u1, . . . , uk]l is in P(J); the case of Σ∗u and uΣ∗ for u ∈ Σ+ is easily handled
(see the discussion at the beginning of Subsect. 4.1). To do this, we need to
put [u1, . . . , uk]l in some normal form. It is readily seen that [u1, . . . , uk]l =
⋃

q1,...,qk∈{1,l} L
(l)
(u1,q1)

· · · L(l)
(uk,qk)

where the L
(l)
(ui,qi)

’s are defined thereafter.

Definition 2. Let Σ be an alphabet.

For all u ∈ Σ+, l ∈ N>0 and α ∈ [l], set L
(l)
(u,α) =

{
Σ∗uΣ∗ if α < l

ul
�Σ∗ otherwise

.

Building directly a sequence of programs over a monoid in J that decides
L
(l)
(u1,q1)

· · · L(l)
(uk,qk)

for some alphabet Σ and q1, . . . , qk ∈ {1, l} seems however
tricky. We need to split things further by controlling precisely how many times
each ui for i ∈ [k] appears in the right place when it does less than l times. To do
this, we consider, for each α ∈ [l]k, the language Rα

l (u1, . . . , uk) defined below.

Definition 3. Let Σ be an alphabet.
For all u1, . . . , uk ∈ Σ+ (k ∈ N>0), l ∈ N>0, α ∈ [l]k, we set

Rα
l (u1, . . . , uk) =(u1

α1 · · · uk
αk)�Σ∗∩

⋂

i∈[k],αi<l

(
(u1

α1 · · · ui
αi+1 · · · uk

αk)�Σ∗)� .

Now, for a given α ∈ [l]k, we are interested in the words of Rα
l (u1, . . . , uk)

such that for each i ∈ [k] verifying αi < l, the word ui indeed appears as a factor
in the right place. We thus introduce a last language Sα

l (u1, . . . , uk) defined as
follows.

Definition 4. Let Σ be an alphabet.
For all u1, . . . , uk ∈ Σ+ (k ∈ N>0), l ∈ N>0, α ∈ [l]k, we set

Sα
l (u1, . . . , uk) =

⋂

i∈[k],αi<l

(
(u1

α1 · · · ui−1
αi−1)�Σ∗)

ui

(
(ui+1

αi+1 · · · uk
αk)�Σ∗)

.

We now have the normal form we were looking for to prove Theorem 1:
[u1, . . . , uk]l is equal to the union, over all α ∈ [l]k, of the intersection of
Rα

l (u1, . . . , uk) and Sα
l (u1, . . . , uk). Though rather intuitive, the correctness of

this decomposition is not so straightforward to prove and, actually, we can only
prove it when for each i ∈ [k], the letters in ui are all distinct.

324 N. Grosshans

Lemma 3. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0) such
that for each i ∈ [k], the letters in ui are all distinct. Then,

⋃

q1,...,qk∈{1,l}
L
(l)
(u1,q1)

· · · L(l)
(uk,qk)

=
⋃

α∈[l]k

(
Rα

l (u1, . . . , uk) ∩ Sα
l (u1, . . . , uk)

)
.

Our goal now is to prove, given an alphabet Σ, given l ∈ N>0 and u1, . . . , uk ∈
Σ+ (k ∈ N>0) such that for each i ∈ [k], the letters in ui are all distinct, that for
any α ∈ [l]k, the language Rα

l (u1, . . . , uk)∩ Sα
l (u1, . . . , uk) is in P(J); closure of

P(J) under union (Proposition 1) consequently entails that [u1, . . . , uk]l ∈ P(J).
The way Rα

l (u1, . . . , uk) and Sα
l (u1, . . . , uk) are defined allows us to reason as

follows. For each i ∈ [k] verifying αi < l, let Li be the language of words w over
Σ containing xi,1ui

αixi,2 as a subword but not xi,1ui
αi+1xi,2 and such that w =

y1uiy2 with y1 ∈ xi,1�Σ∗ and y2 ∈ xi,2�Σ∗, where xi,1 = u1
α1 · · · ui−1

αi−1 and
xi,2 = ui+1

αi+1 · · · uk
αk . If we manage to prove that for each i ∈ [k] verifying αi <

l we have Li ∈ P(J), we can conclude that Rα
l (u1, . . . , uk) ∩ Sα

l (u1, . . . , uk) =
(u1

α1 · · · uk
αk) � Σ∗ ∩

⋂
i∈[k],αi<l Li does belong to P(J) by closure of P(J)

under intersection, Proposition 1. The lemma that follows, the main lemma in
the proof of Theorem 1, exactly shows this. The proof crucially uses the “feedback
sweeping” technique, but note that we actually don’t know how to prove it when
we do not enforce that for each i ∈ [k], the letters in ui are all distinct.

Lemma 4. Let Σ be an alphabet and u ∈ Σ+ such that its letters are all distinct.
For all α ∈ N>0 and x1, x2 ∈ Σ∗, we have

(x1u
αx2)�Σ∗ ∩

(
(x1u

α+1x2)�Σ∗)� ∩ (x1 �Σ∗)u(x2 �Σ∗) ∈ P(J) .

Proof (Sketch). Let Σ be an alphabet and u ∈ Σ+ such that its letters are all
distinct. Let α ∈ N>0 and x1, x2 ∈ Σ∗. We let

L = (x1u
αx2)�Σ∗ ∩

(
(x1u

α+1x2)�Σ∗)� ∩ (x1 �Σ∗)u(x2 �Σ∗) .

If |u| = 1, the lemma follows trivially because L is piecewise testable and hence
belongs to L(J), so we assume |u| > 1.

For each letter a ∈ Σ, we shall use 2 |u| − 1 distinct decorated letters of the
form a(i) for some i ∈ [[0, 2 |u|−2]], using the convention that a(0) = a; of course,
for two distinct letters a, b ∈ Σ, we have that a(i) and b(j) are distinct for all
i, j ∈ [[0, 2 |u| − 2]]. We denote by A the alphabet of these decorated letters. The
main idea of the proof is, for a given input length n ∈ N, to build an A-program
Ψn over Σn such that, given an input word w ∈ Σn, it first ouputs the |u| − 1
first letters of w and then, for each i going from |u| to n, outputs wi, followed
by w

(1)
i−1 · · · w(|u|−1)

i−|u|+1 (a “sweep” of |u| − 1 letters backwards down to position i −
|u|+1, decorating the letters incrementally) and finally by w

(|u|)
i−|u|+2 · · · w(2|u|−2)

i

(a “sweep” forwards up to position i, continuing the incremental decoration of
the letters). The idea behind this way of rearranging and decorating letters is
that, given an input word w ∈ Σn, as long as we make sure that w and thus

The Power of Programs over Monoids in J 325

Ψn(w) do contain x1u
αx2 as a subword but not x1u

α+1x2, then Ψn(w) can be
decomposed as Ψn(w) = y1zy2 where y1 ∈ x1�Σ∗, y2 ∈ x2�Σ∗, and |y1| , |y2|
are minimal, with z containing uβu

(1)
|u|−1 · · · u(|u|−1)

1 u
(|u|)
2 · · · u(2|u|−2)

|u| uα−β as a
subword for some β ∈ [α] if and only if w ∈ (x1�Σ∗)u(x2�Σ∗). This means we
can check whether w ∈ L by testing whether w belongs to some fixed piecewise
testable language over A.

As explained before stating the previous lemma, we can now use it to prove the
result we were aiming for.

Proposition 6. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0)
such that for each i ∈ [k], the letters in ui are all distinct. For all α ∈ [l]k, we
have Rα

l (u1, . . . , uk) ∩ Sα
l (u1, . . . , uk) ∈ P(J).

We thus derive the awaited corollary.

Corollary 1. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈Σ+ (k ∈ N>0) such
that for each i ∈ [k], the letters in ui are all distinct. Then, [u1, . . . , uk]l ∈ P(J).

However, what we really want to obtain is that [u1, . . . , uk]l ∈ P(J) without
putting any restriction on the ui’s. But, in fact, to remove the constraint that
the letters must be all distinct in each of the ui’s, we simply have to decorate
each of the input letters with its position minus 1 modulo a big enough d ∈ N>0.
This finally leads to the following proposition.

Proposition 7. Let Σ be an alphabet, l ∈ N>0 and u1, . . . , uk ∈ Σ+ (k ∈ N>0).
Then [u1, . . . , uk]l ∈ P(J).

This finishes to prove Theorem 1 by closure of P(J) under Boolean combi-
nations (Proposition 1) and by the discussion at the beginning of Subsect. 4.1.

5 Conclusion

Although P(J) is very small compared to AC0, we have shown that programs
over monoids in J are an interesting subject of study in that they allow to
do quite unexpected things. The “feedback-sweeping” technique allows one to
detect presence of a factor thanks to such programs as long as this factor does
not appear too often as a subword: this is the basic principle behind threshold
dot-depth one languages, that our article shows to belong wholly to P(J).

Whether threshold dot-depth one languages with additional positional mod-
ular counting do correspond exactly to the languages in L(QDA)∩L(Q(J ∗ D))
seems to be a challenging question, that we leave open. In his Ph.D. thesis [7],
the author proved that all strongly unambiguous monomials (the basic building
blocks in L(DA)) that are imposed to belong to L(J ∗ D) at the same time are in
fact threshold dot-depth one languages. However, the proof looks much too com-
plex and technical to be extended to, say, all languages in L(DA) ∩ L(J ∗ D).
New techniques are probably needed, and we might conclude by saying that
proving (or disproving) this conjecture could be a nice research goal in algebraic
automata theory.

326 N. Grosshans

Acknowledgements. The author thanks the anonymous referees for their helpful
comments and suggestions.

References

1. Ajtai, M.: Σ1
1 -formulae on finite structures. Ann. Pure Appl. Logic 24(1), 1–48

(1983)
2. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-

nize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)
3. Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of NC1. J.

ACM 35(4), 941–952 (1988)
4. Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, New

York (1974)
5. Eilenberg, S.: Automata, Languages, and Machines, vol. B. Academic Press, New

York (1976)
6. Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hier-

archy. Math. Syst. Theory 17(1), 13–27 (1984)
7. Grosshans, N.: The limits of Nečiporuk’s method and the power of programs over

monoids taken from small varieties of finite monoids. Ph.D. thesis, University of
Paris-Saclay, France (2018)

8. Grosshans, N., McKenzie, P., Segoufin, L.: The power of programs over monoids in
DA. In: MFCS 2017, Aalborg, Denmark, 21–25 August 2017, pp. 2:1–2:20 (2017)

9. Klíma, O., Polák, L.: Hierarchies of piecewise testable languages. Int. J. Found.
Comput. Sci. 21(4), 517–533 (2010)

10. Lautemann, C., Tesson, P., Thérien, D.: An algebraic point of view on the Crane
Beach property. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 426–440.
Springer, Heidelberg (2006). https://doi.org/10.1007/11874683_28

11. Maciel, A., Péladeau, P., Thérien, D.: Programs over semigroups of dot-depth one.
Theor. Comput. Sci. 245(1), 135–148 (2000)

12. McKenzie, P., Péladeau, P., Thérien, D.: NC1: the automata-theoretic viewpoint.
Comput. Complex. 1, 330–359 (1991)

13. Péladeau, P.: Classes de circuits booléens et variétés de monoïdes. Ph.D. thesis,
Université Pierre-et-Marie-Curie (Paris-VI), Paris, France (1990)

14. Péladeau, P., Straubing, H., Thérien, D.: Finite semigroup varieties defined by
programs. Theor. Comput. Sci. 180(1–2), 325–339 (1997)

15. Pin, J.: The dot-depth hierarchy, 45 years later. In: The Role of Theory in Com-
puter Science - Essays Dedicated to Janusz Brzozowski, pp. 177–202 (2017)

16. Pin, J.: Varieties of Formal Languages. Plenum Publishing Co., New York (1986)
17. Pin, J., Straubing, H.: Some results on C-varieties. ITA 39(1), 239–262 (2005)
18. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.

LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4_23

19. Straubing, H.: Finite semigroup varieties of the form V ∗D. J. Pure Appl. Algebra
36, 53–94 (1985)

20. Straubing, H.: When can one finite monoid simulate another? In: Birget, J.C.,
Margolis, S., Meakin, J., Sapir, M. (eds.) Algorithmic Problems in Groups and
Semigroups, pp. 267–288. Springer, Boston (2000). https://doi.org/10.1007/978-
1-4612-1388-8_15

21. Straubing, H.: Languages defined with modular counting quantifiers. Inf. Comput.
166(2), 112–132 (2001)

https://doi.org/10.1007/11874683_28
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/978-1-4612-1388-8_15
https://doi.org/10.1007/978-1-4612-1388-8_15

The Power of Programs over Monoids in J 327

22. Tesson, P.: Computational complexity questions related to finite monoids and semi-
groups. Ph.D. thesis, McGill University, Montreal (2003)

23. Tesson, P., Thérien, D.: The computing power of programs over finite monoids. J.
Autom. Lang. Comb. 7(2), 247–258 (2001)

	The Power of Programs over Monoids in
	1 Introduction
	2 Preliminaries
	2.1 Various Mathematical Materials
	2.2 Tameness and the Variety

	3 Fine Hierarchy
	3.1 Strict Hierarchy
	3.2 Collapse

	4 Regular Languages in P()
	4.1 Non-tameness of
	4.2 Threshold Dot-Depth One Languages

	5 Conclusion
	References

