
Reducing the Ambiguity
of Parikh Matrices

Jeffery Dick, Laura K. Hutchinson(B), Robert Mercaş, and Daniel Reidenbach

Department of Computer Science, Loughborough University, Loughborough, UK
{J.Dick,L.Hutchinson,R.G.Mercas,D.Reidenbach}@lboro.ac.uk

Abstract. The Parikh matrix mapping allows us to describe words
using matrices. Although compact, this description comes with a level of
ambiguity since a single matrix may describe multiple words. This work
looks at how considering the Parikh matrices of various transformations
of a given word can decrease that ambiguity. More specifically, for any
word, we study the Parikh matrix of its Lyndon conjugate as well as
that of its projection to a smaller alphabet. Our results demonstrate
that ambiguity can often be reduced using these concepts, and we give
conditions on when they succeed.

Keywords: Combinatorics · Parikh matrix · Ambiguity · Lyndon
conjugate

1 Introduction

An approach for a more compact representation of data can be provided by
histograms, which are also a well established statistical tool used in a wide range
of applications. The concept of a Parikh vector [15] represents a type of such
histograms that is specific to the analysis of sequences of symbols (or: words),
considering the number of occurrences of each letter that exists in a word.

Parikh vectors can be easily computed and are guaranteed to be logarithmic
in the size of the word they represent, but they are ambiguous; that is, multiple
words typically share the same Parikh vector. Following this, in [14] the authors
look at a refinement of the vector notion which is meant to reduce this ambiguity,
and introduce an extension for it in the form of a Parikh matrix. A Parikh matrix
not only contains the Parikh vector of the word, but also information regarding
some of the word’s (scattered) subwords. Such a matrix has the same asymp-
totic compactness as a Parikh vector and is associated to a significantly smaller
number of words. However, it does not normally remove ambiguity entirely.

The bulk of the work done on the Parikh matrix mapping concerns the ambi-
guity that Parikh matrices exhibit. A lot of effort is spent on identifying an alter-
native to the Parikh matrix concept that would make a mapping from a word
injective, or less ambiguous in general [1,2,8–11,18]. These include even more
refined versions of the matrices by inclusion of polynomials, various extensions
on the mappings, or both. For Parikh matrices explicitly, due to the difficulty
c© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 397–411, 2020.
https://doi.org/10.1007/978-3-030-40608-0_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_28&domain=pdf
https://doi.org/10.1007/978-3-030-40608-0_28

398 J. Dick et al.

arising from this ambiguity, the primary focus was on investigating this property
on binary [4–7,17] and ternary [3,13,16,19] alphabets, leaving alphabets of size
greater than three relatively unexplored.

In terms of reducing the ambiguity of a word, the investigation was based
on either gathering more information about the specific word by altering the
order of the alphabet, known as the dual order [6,14], or by considering the
reverse image of the word [6]. Hence an under-studied aspect that may reduce
the ambiguity of a matrix concerns the information acquired by altering the word
itself, or considering other alterations of the alphabet. In this work we present
and investigate two different methods that reduce the ambiguity of the original
Parikh matrices in the form of P-Parikh matrices and L-Parikh matrices.

The first of the two transformations, the P-Parikh matrix mapping, con-
siders the Parikh matrices associated to a projection morphism of the initial
word, where the considered alphabet is reduced to the subset of the alphabet
used within the defined transformation. These represent a particular case of the
extended mapping presented in [18], where we only consider a subset of the orig-
inal alphabet. For example, consider the words abcaabaac and abacabcaa. It is
easy to see that both share the same number of letters, and subwords ab, bc and
abc, respectively, making their Parikh matrices equal and therefore ambiguous.
The P-Parikh matrices associated to them with respect to {a, c} consider the
number of subwords ac, which is 6 in the former, but only 5 in the latter of the
words. Hence, there exist P-Parikh matrices not shared by the words.

We show that, using P-Parikh matrices, we can reduce the ambiguity of the
vast majority of words. We also explore when P-Parikh matrices do not reduce
ambiguity, as well as provide some insight into the types of words that cannot
be uniquely described by a P-Parikh matrix.

However, since P-Parikh matrices are defined for a subset of the initial alpha-
bet, they prove useless when dealing with binary sequences. We therefore con-
sider an alternative transformation of words: the Lyndon conjugate, first intro-
duced in [20], which is defined as the lexicographically smallest circular rota-
tion of a word. Lyndon conjugates were used previously as a tool for ambiguity
reduction. In [17], the authors define the Lyndon image of a Parikh matrix
as the lexicographically smallest word describing such a matrix. Hence every
Parikh matrix has exactly one distinct Lyndon image, which therefore allows
each Parikh matrix to be described uniquely. In the context of this paper, we
use the Lyndon conjugate differently, i. e., we consider the Parikh matrix of the
Lyndon conjugate of a word, and we call the resulting matrix the L-Parikh
matrix of the original word.

Consider the Parikh matrix of the Lyndon conjugates of the two previously
given words. Observe that aabaacabc has 7 occurrences of ab, whereas aaabacabc
has 8, making their Parikh matrices different. Hence, the ambiguity of their
Parikh matrix can be reduced using L-Parikh matrices.

While L-Parikh matrices are a useful concept for any alphabet size, we focus
on the cases where they reduce ambiguity in the binary alphabet and show
that this happens in most cases. We give specific conditions of when L-Parikh

Reducing the Ambiguity of Parikh Matrices 399

matrices do not help reduce the ambiguity of the given word, and investigate
the words for which these criteria apply. This leads us to our main result of
the paper, a characterisation of words whose ambiguity can be reduced using
L-Parikh matrices.

We end this section with a brief breakdown of our paper. In Sect. 2 we present
some basic definitions and notions. Section 3 examines the first of the two notions
we introduce, the P-Parikh matrix, establishing conditions for when they can or
cannot achieve ambiguity reduction. In Sect. 4, we study equivalent questions for
L-Parikh matrices, largely focusing on binary alphabets in some cases. We end
our paper with conclusions as well as directions for future work.

2 Preliminaries

It is assumed the reader is familiar with the basics of combinatorics on words.
If needed, [12] can be consulted. Throughout this paper, N refers to the set of
natural numbers starting with 1.

We refer to a string of arbitrary letters as a word which is formed by con-
catenation of letters. The set of all letters used to create our words is called an
alphabet. We represent an ordered alphabet as Σk = {a1 < · · · < ak}, where
k ∈ N is the size of the alphabet, and by convention ai is the ith letter in the
Latin alphabet. Whenever the alphabet size is irrelevant or understood, we omit
this from notation using only Σ. All alphabets referred to in this paper have an
order imposed on them.

We define the concatenation of two words u and v as uv. The length of a word
is the total number of not necessarily distinct letters it contains and the empty
word of length zero is denoted ε. The Kleene star, denoted ∗, is the operation
that, once applied to a given alphabet, generates the set of all finite words that
result from concatenating any words in that alphabet. Further, we denote the
ith letter in a word w as w[i].

The reversal of a word, denoted rev, is defined as rev(w) = w[m]w[m −
1] · · · w[1], where w = w[1]w[2] · · · w[m] is a word with w[i] ∈ Σ. We say that a
factor v is in w if and only if w can be written as w = w1vw2, where w1, w2 ∈ Σ∗.
We say that u = u[1]u[2] · · · u[m] is a subword of v if we have a factorisation
v = v0u[1]v1u[2] · · · vm−1u[m]vm where v0, . . . , vm ∈ Σ∗, u[1], . . . , u[m] ∈ Σ. We
use |v|u to denote the number of distinct occurrences of u as a subword in v.

The Parikh vector [15] φ associated with a word w is obtained through a
mapping φ : Σ∗ → N

k, defined as φ(w) = [|w|a1 , |w|a2 , . . . , |w|ak
]. For a matrix

M of size k × k, the j-diagonal is defined as all elements of M that are in the
position Mi,i+j for i = 1, . . . , k − j. A word is associated with a matrix, called
its Parikh matrix, if the matrix is obtained from that word following the process
detailed in the following explanatory definition. For a technical version of the
definition we refer to [14].

Definition 1 (Explanatory). Let w ∈ Σ∗
k . The Parikh matrix, denoted Ψ(w),

that w is associated with has size (k +1)× (k +1). The diagonal of the matrix is

400 J. Dick et al.

populated with 1’s and all elements below it are 0. The count of all subwords that
consist of consecutive letters in Σk and are of length n in the word are found on
the n-diagonal, for 1 ≤ n ≤ k.

One notion we introduce in this paper relies on a change in alphabet size. As
such, to emphasise the size n of the alphabet used for a Parikh matrix, we write
Ψn(w). We say that a Parikh matrix describes a word if the word is associated
to the matrix. Notice that due to the associativity of matrix multiplication, the
Parikh matrix of a word can be constructed from the Parikh matrices of its
factors. For a word w = u1u2, we have Ψn(w) = Ψn(u1)Ψn(u2).

Example 1. Consider the word w = abca defined over the alphabet Σ3 = {a <
b < c}. Then by definition our Parikh matrix is of size 4 × 4 and we have

Ψ(abca) =
(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
·
(

1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

)
·
(

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
·
(

1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
=

(
1 2 1 1
0 1 1 1
0 0 1 1
0 0 0 1

)
.

For the rest of this work we refine our notation for a Parikh matrix where we
remove the elements not depending on the associated word. By definition a
Parikh matrix is an upper triangular matrix with 1’s on the diagonal regardless
of the word described. For aesthetics, removing the redundant part leaves us with
a triangular structure that holds the same information as the original matrix,

Ψ(abca) =
〈

2 1 1
1 1
1

〉
. �

Two words w and w′ are conjugates if we can write w = uv and w′ = vu. For
a word w, we say that the conjugacy class of w, denoted C(w) is the class of all
of its possible conjugates. A conjugacy class is associated to a Parikh matrix if
at least one word belonging to that class is associated to the matrix.

Example 2. The matrix 〈 4 4
2 〉 has only the words aabbaa, abaaba, baaaab associ-

ated to it. The words aabbaa and baaaab are members of the same conjugacy
class, while abaaba belongs to a different conjugacy class. Hence this matrix has
two conjugacy classes associated to it. �

A Parikh matrix can be associated to multiple words, as seen above, although
cases exist where a matrix describes a single word, e. g., aabb is the unique word
associated to 〈 2 4

2 〉. We say that two words are amiable if they are associated to
the same Parikh matrix. If two or more words are associated to a single Parikh
matrix, we say that the matrix is ambiguous. Later in this paper, we reduce
the ambiguity of a word using both its Parikh matrix and the Parikh matrix
of an altered form of that word to describe it. As such, we introduce a formal
definition of the ambiguity that multiple functions may have based on the set of
all words that satisfy all functions. We are then able to use this when considering
the ambiguity of the notions we introduce later.

Definition 2. For a word w and functions f1, . . ., fn we define A(w, f1, . . .,
fn) = {v|fi(v) = fi(w) for 1 ≤ i ≤ n}. If |A(w, f1, . . ., fn)| = 1, then we

Reducing the Ambiguity of Parikh Matrices 401

call w unambiguous on f1, . . ., fn, and say that f1(w), . . ., fn(w) uniquely define
w. However, if |A(w, f1, . . ., fn)| > |A(w, f1, . . ., fm)| for m > n and func-
tions fn+1, . . ., fm, then we say that fn+1, . . ., fm reduce the ambiguity of w
on f1, . . ., fn.

Observe that we always have |A(w, f1, . . ., fn)| ≥ |A(w, f1, . . ., fm)|. Fur-
thermore, if |A(w, f1, . . ., fn)| = |A(w, f1, . . ., fm)| = 1, then A(w, f1, . . ., fn) is
unambiguous and it is not possible to further reduce ambiguity.

First we introduce the P-Parikh matrix. This matrix is in essence the Parikh
matrix of a projection of a word, and represents a particular case of the extension
of the Parikh matrix mapping presented in [19]. For n ∈ N, w ∈ Σ∗

n and S ⊂ Σn,
the P-Parikh matrix of w with respect to S is defined as follows.

Definition 3. For m,n ∈ N with 1 ≤ m ≤ n, let S ⊂ Σn such that S =
{ak1 , ak2 , . . . akm

}, where 0 < k1 < · · · < km ≤ n. We define the P-Parikh
matrix of the word w with respect to S as ΨS

n (w) := Ψ|S|(πS(w)), where the
morphism π : Σ∗

n → Σ∗
m is defined as

πS(aj) :=

{
ai : aj = aki

ε : aj /∈ S
.

To gain some intuition about the above definition, consider an example.

Example 3. Let Σ5 = {a, b, c, d, e}, S = {a, d, e}, and w = bacbebda. For the
index sequence of S, since a is the lexicographically smallest letter in S, we
obtain k1 = 1, k2 = 4 and k3 = 5. Hence πS(a) = a, πS(d) = b and πS(e) = c.

With the transformation defined we apply this to the word, and calculate the
corresponding P-Parikh matrix as the Parikh matrix of the transformed word,

πS(w) = πS(b)πS(a)πS(c)πS(b)πS(e)πS(b)πS(d)πS(a) = εaεεcεba = acba

Ψ
{a,d,e}
5 (bacbebda) = Ψ3(π{a,d,e}(bacbebda)) = Ψ3(acba) =

〈
2 1 0
1 0
1

〉
. �

The Lyndon conjugate of a word is the conjugate that is lexicographically
smallest based on the order on the alphabet. The Lyndon conjugate of a word
w is denoted L(w). In an attempt to reduce the ambiguity of Parikh matrices,
we modify the original Parikh matrix mapping to gain more information about
a given word. Next, we introduce the L-Parikh matrix associated to a word.

Definition 4. Given a word w, we define its L-Parikh matrix, ΨL, as the Parikh
matrix associated with its Lyndon conjugate, L(w).

It was shown in [4] that there exist transformations that, when applied to
a word, create a new word that is amiable with the original. For non-binary
alphabets, a Type 1 transformation is given.

Lemma 1 ([4]). Let w,w′ ∈ Σ∗
n with n ≥ 3. Then w transforms into w′ using a

Type 1 transformation if w = u1aiaju2 and w′ = u1ajaiu2, where u1, u2 ∈ Σ∗
n,

ai, aj ∈ Σn, and |i − j| ≥ 2.

402 J. Dick et al.

For binary alphabets, a second type of transformation is described, referred
to as a Type 2, that allows us to check if certain words are amiable without
constructing their matrices.

Lemma 2 ([4]). Let w,w′ ∈ Σ∗
2 . Then w transforms into w′ through a Type 2

transformation if w = xa1a2ya2a1z and w′ = xa2a1ya1a2z, or vice-versa, where
x, y, z ∈ Σ∗

2 and a1, a2 ∈ Σ2.

3 P-Parikh Matrices

In this section, we examine when and how much P-Parikh matrices reduce the
ambiguity of a given word. When we refer to a reduction in ambiguity using
P-Parikh matrices, we mean that the number of words described by the orig-
inal Parikh matrix and their respective P-Parikh matrices is strictly less than
the total number of words described by the original Parikh matrix alone, i. e.,
|A{w,Ψn, ΨS

n }| < |A{w,Ψn}|, for some S ⊂ Σn. First we present an example of
P-Parikh matrices removing the ambiguity of a Parikh matrix entirely.

Example 4. Consider the word w = abca from Example 1, which is amiable with
the word w′ = abac and no others. Then we choose our set S = {a, c}, and get
that: Ψ

{a,c}
3 (w) = Ψ2(aba) = 〈 2 1

1 〉 and Ψ
{a,c}
3 (w′) = Ψ2(aab) = 〈 2 2

1 〉 . Thus w
and w′ have different P-Parikh matrices and we can uniquely describe them. �

We first introduce some terms that are useful when describing how effective
a given P-Parikh matrix is at reducing ambiguity.

Definition 5. Given a word w ∈ Σ∗
n, we call Ψ(w) P-distinguishable if either

|A(w,Ψ)| = 1 or there exists a word u ∈ Σ∗
n and a set S ⊂ Σn such that

Ψ(w) = Ψ(u) and ΨS
n (w) 	= ΨS

n (u). In the latter case we say that w and u are P-
distinct. Furthermore, we call w P-unique if there exist sets S1, S2, . . . , Sm ⊂ Σn

such that |A(w,Ψ, ΨS1
n , ΨS2

n , . . . , ΨSm
n)| = 1.

Now we use these terms to examine words whose ambiguity can be reduced
using P-Parikh matrices, namely those that contain any length two factor where
those two letters are not equal or consecutive in the alphabet.

Proposition 1. For any word w ∈ Σ∗
n with a factor aiaj where |i − j| > 1, we

have that Ψ(w) is P-distinguishable.

Proof. Since |i − j| > 1, if w = u1aiaju2 where u1, u2 ∈ Σ∗
n, then w′ = u1ajaiu2

is also associated to w, following Lemma 1. Without loss of generality, take S =
{ai < aj}. Then ΨS

n (w) 	= ΨS
n (w′), since |w|aiaj

and |w′|aiaj
are elements in

ΨS
n (w) and ΨS

n (w′), respectively, and |w|aiaj
	= |w′|aiaj

.
�
It is simple to identify words that have such factors by comparing adjacent

positions in the word. We can use this to find a lower bound for the proportion
of words that are uniquely identified for a given alphabet and word length.

Reducing the Ambiguity of Parikh Matrices 403

Proposition 2. The number of words of length m in Σn that are reduced in
ambiguity by P-Parikh matrices is bounded below by (nm) − (n × 3m−1).

Notice especially that as n and m get larger, the proportion of words which
are reduced in ambiguity by P-Parikh matrices also gets larger. We therefore
conclude that the use of P-Parikh matrices reduces ambiguity for a larger ratio
of words for bigger alphabets rather than smaller.

There also exist words for which P-Parikh matrices do not reduce ambiguity.
Our following result says that if our choice of a subset consists of only consecutive
letters of the initial alphabet, the P-Parikh matrices are not P-distinguishable.

Remark 6. If all elements of the set S ⊂ Σn are consecutive in the alphabet
Σn, then |A(w,Ψn)| = |A(w,Ψn, ΨS

n)|.
The result of Remark 6 strengthens the one of Proposition 1 by telling us

that the ambiguity of words defined over binary alphabets is not reducible by
P-Parikh matrices.

Corollary 1. There does not exist a Parikh matrix that describes binary words
whose ambiguity can be reduced by P-Parikh matrices.

Furthermore, there exist non-binary words for which P-Parikh matrices do
not remove ambiguity, namely those that are not P-unique. Finally, we end this
section by giving two classes of words which are not uniquely described by P-
Parikh matrices, no matter how we choose the set S.

Proposition 3. Take two words w,w′ ∈ Σ∗
n with the form w = u1aiajvajaiu2

and w′ = u1ajaivaiaju2, where ai ≤ aj ∈ Σn and u1, u2 ∈ Σ∗
n. If v ∈ {ak ∈

Σn|ai ≤ ak ≤ aj}∗, then for all S ⊆ Σn, we have ΨS
n (w) = ΨS

n (w′).

Proof. Firstly, if ai = ak = aj , equivalence follows, as w = w′. Now, let ai < aj .
In the case where S contains either ai or aj , then πS(w) = πS(w′) since

ai and aj are the only letters that swap places in w′ compared to w. Since
πS(w) = πS(w′), clearly ΨS

n (w) = ΨS
n (w′) follows.

If S = {ai, aj}, then, πS(w) is a binary word and can be transformed via a
Type 2 transformation, from Lemma 2, into πS(w′), so ΨS

n (w) = ΨS
n (w′).

Next consider that {ai, aj} ⊂ S, |S| > 2, and S has no elements between ai

and aj . Then πS(w)=πS(u1)aiajajaiπS(u2) and πS(w′)=πS(u1)ajaiaiajπS(u2).
Using an extension from [3] of the Type 2 transformations we can transform
πS(w) into πS(w′), and get that ΨS

n (w) = ΨS
n (w′).

Finally, consider the case where S contains ai, aj , and at least one letter that
comes lexicographically between ai and aj . Then, πS(w) can be transformed
into πS(w′) via two Type 1 transformations on ai and aj , since ai and aj are
not lexicographically adjacent in S (see Lemma 1).
�

The ideas from Proposition 3 give rise to another class of words that are not
P-unique, by loosening the condition on v and extending the length of the word.

404 J. Dick et al.

Proposition 4. Take two words of the form w = u1aiajv1ajaiajaiv2aiaju2,
and w′ = u1ajaiv1aiajaiajv2ajaiu2, where ai < aj ∈ Σn and u1, u2, v1, v2 ∈ Σ∗

n.
Let v1 = v1[1]v1[2] · · · v1[x] and v2 = v2[1]v2[2] · · · v2[y]. Then, w and w′ are not
P-distinct if and only if |v1|a�

= |v2|a�
for all a� /∈ {ak|ai ≤ ak ≤ aj}, and at

least one of the following conditions is true:

1. v1, v2 ∈ {ak|ak ≤ aj}∗, and for � < p, if v2[p], v2[�] ∈ {ak|ak < ai}, then
v2[p] ≤ v2[�], and if v1[p], v1[�] ∈ {ak|ak < ai}, then v1[p] ≥ v1[�];

2. v1, v2 ∈ {ak|ak ≥ ai}∗, and for � < p, if v2[p], v2[�] ∈ {ak|ak > aj}, then
v2[p] ≥ v2[�], and if v1[p], v1[�] ∈ {ak|ak > aj}, then v1[p] ≤ v1[�].

In other words, the above statement says that two words are not P-distinct
if both v1 and v2 are defined on the subset of the alphabet which is either lexi-
cographically bigger than ai or smaller than aj , and they share the same Parikh
vector for the subset of letters which are not in between ai and aj . Further-
more, if v1 ∈ {ai+1, . . . , an}∗, then all the letters which are lexicographically
greater than aj must occur in v1 in decreasing lexicographical order and in v2
in increasing order. On the other hand, if v1 ∈ {a1, . . . , aj−1}∗, then all the let-
ters which are lexicographically smaller than ai must occur in v1 in increasing
lexicographically order and in v2 in decreasing lexicographical order.

4 L-Parikh Matrices

Proposition 2 shows that in many cases, the set of words that share both a
Parikh matrix and a P-Parikh matrix is smaller than the set of those that share
only a Parikh matrix. However, following Corollary 1 we also know that this
never happens for binary alphabets. Hence we now study L-Parikh matrices as
an alternative method of ambiguity reduction. While they can be effective for
any non-unary alphabet, we focus on binary alphabets specifically. We begin
this section by explaining the motivation for choosing the Lyndon conjugate of
a word and then build to our main result where we characterise words whose
ambiguity is reduced by the use of L-Parikh matrices.

As indicated by Definition 4, the concept of L-Parikh matrices is based on
a modification to a word that results in a change in the order of letters. The
following theorem implies that the strategy of altering a word is not always a
successful method of ambiguity reduction. Note that Ψrev refers to the Parikh
matrix of the reversal of a word.

Theorem 1 ([4]). For a word w, we have that A(w,Ψ) = A(w,Ψ, Ψrev).

Unlike Theorem 1, L-Parikh matrices use the conjugate of a word. The next
proposition implies that such conjugates need to be chosen wisely.

Proposition 5. Given words v, w ∈ Σ∗ with Ψ(v) = Ψ(w), for any fac-
torisations v = v1v2 and w = w1w2 such that |v2| = |w2|, we have that
Ψ(v2v1) = Ψ(w2w1) implies φ(v2) = φ(w2). For Σ2, the reverse direction also
stands, namely φ(v2) = φ(w2) implies Ψ(v2v1) = Ψ(w2w1).

Reducing the Ambiguity of Parikh Matrices 405

Proof Outline. We can prove the statement that holds for every size alphabet by
contradiction, by assuming that Ψ(v) = Ψ(w), Ψ(v2v1) = Ψ(w2w1) and φ(v2) 	=
φ(w2). We examine the total number of ab subwords in v, w, v2v1 and w2w1 to
obtain a set of equations. We then consider the total number of b’s in v2 and w2

to find a contradiction within these equations.
For the statement that holds just for the binary alphabet we examine the total

number of ab subwords in v2v1, w2w1, v1, v2, w1 and w2 and get a contradiction in
the equations we obtain by initially assuming that φ(v2) = φ(w2), Ψ(v) = Ψ(w)
and Ψ(v2v1) 	= Ψ(w2w1).
�

Below example shows that |v2| = |w2| is necessary for Proposition 5.

Example 5. Consider the words v = aabaabbb with v2 = aabbb and w =
aaabbabb with w2 = abb. One can easily find that Ψ(v2v1) = Ψ(w2w1) = 〈 4 10

4 〉.
Furthermore, we have that Ψ(v) = Ψ(w), Ψ(v2v1) = Ψ(w2w1) and |v2| 	= |w2|.
However φ(v2) 	= φ(w2), since φ(v2) = [2, 3] and φ(w2) = [1, 2], and therefore
|v2| = |w2| is a necessary condition in the context of Proposition 5. �

An example for the ternary alphabet where Ψ(v2v1) 	= Ψ(w2w1) even though
we have that Ψ(v) = Ψ(w) and φ(v2) = φ(w2) is given below. Note that if
φ(v2) = φ(w2), then we must also have |w2| = |v2|. Since any alphabet of size
greater than 3 would rely on the result of the ternary alphabet always being
true, we can deduce that the backwards direction from Proposition 5 only holds
for the binary alphabet.

Example 6. Let v = cbbaaabb and w = cabbbaab. We have that Ψ(v) = Ψ(w).
Now let v2 = aabb and w2 = baab. Then we have that |w2| = |v2| and φ(v2) =
φ(w2). Note that Ψ(v2) 	= Ψ(w2), since |v2|ab = 4 and |w2|ab = 2. But this gives
us Ψ(v2v1) = Ψ(aabbcbba) 	= Ψ(baabcabb) = Ψ(w2w1). �

Proposition 5 shows that when looking for a modification that we can apply to
a word to find a new and different Parikh matrix, we need to consider conjugates
of amiable words where it is less likely that the Parikh vectors of their right
factors are the same, i. e., conjugates obtained by shifting the original words a
different number of times, respectively.

Let us now consider how using L-Parikh matrices reduces ambiguity. The
rest of this section ignores any word w where |A(w,Ψ)| = 1, since there is no
ambiguity to be reduced here. For a word w, we calculate Ψ(w) and ΨL(w) and
use both of these matrices to describe the original word. The ambiguity of a word
w, with respect to its Parikh and L-Parikh matrices, according to Definition 2,
is the total number of words that share a Parikh matrix and an L-Parikh matrix
with w, namely |A(w,Ψ, ΨL)|. We use the next definitions and propositions to
build to our main result where we characterise binary words whose ambiguity
is reduced using L-Parikh matrices. In line with Definition 5 we introduce the
following definitions.

Definition 7. Given a word w ∈ Σ∗, we call Ψ(w) L-distinguishable if either
|A(w,Ψ)| = 1 or there exists a word u ∈ Σ∗ with Ψ(w) = Ψ(u), such that

406 J. Dick et al.

ΨL(w) 	= ΨL(u). In the latter case we say that w and u are L-distinct. A word
w is L-unique if |A(w,Ψ, ΨL)| = 1.

Note that if w and v are L-distinct, then A(w,Ψ) = A(v, Ψ) and
A(w,Ψ, ΨL) 	= A(v, Ψ, ΨL). The example below demonstrates the effectiveness
of L-Parikh matrices for ambiguity reduction.

Example 7. Consider the words w = babbbaa, u = bbababa and v = bbbaaab
with Ψ(w) = Ψ(u) = Ψ(v). However, for the conjugates L(w) = aababbb, L(u) =
abababb and L(v) = aaabbbb we have that ΨL(w) = 〈 3 11

4 〉, ΨL(u) = 〈 3 9
4 〉,

and ΨL(v) = 〈 3 12
4 〉. Thus their L-Parikh matrices are all different and we can

uniquely describe each of the words by using L-Parikh matrices. �

L-distinguishability is necessary for ambiguity reduction in this case.

Corollary 2. For w ∈ Σ∗, |A(w,Ψ)|>|A(w,Ψ, ΨL)| if and only if Ψ(w) is
L-distinguishable.

The above characterisation of ambiguity reduction leads us to investigate
sufficient conditions for a matrix to be ambiguous, and therefore for any pair of
words it describes not to be L-distinct. Our next results consider the situations
when the Parikh matrix of a word is not L-distinguishable. We show that words
that meet the criteria outlined in each proposition within the binary alphabet
are rare either later in the paper or directly following the next proposition.

Proposition 6. For a word w ∈ Σ∗, if all words in A(w,Ψ) belong to the same
conjugacy class, then Ψ(w) is not L-distinguishable.

Example 8. Let w = aababa and w′ = abaaab. These two words are amiable
with each other and nothing else. Furthermore, L(w) = aaabab = L(w′), and
since both words share a Lyndon conjugate, both words also share an L-Parikh
matrix. Therefore Ψ(w) is not L-distinguishable. �

Now we move on to explore, for binary alphabets, the case where all words
in A(w,Ψ) belong to the same conjugacy class in more detail. Recall that C(w)
refers to the conjugacy class of w.

Proposition 7. Let w ∈ Σ∗
2 . Then L(u) = L(w), for all u ∈ A(w,Ψ), if and

only if L(w) ∈ {aabb, ababbb, aababb, aabbab, aaabab}.
Proof Outline. The forwards direction is proven by examining every element
of the conjugacy class of w. We can first prove that if L(u) = L(w), for all
u ∈ A(w,Ψ), then words in the conjugacy class of w are only amiable with other
conjugates of w. We then show that this is only true when L(w) is in the set
{aabb, ababbb, aababb, aabbab, aaabab}. For this we define a block of a letter to be
a unary factor of a word which is not extendable to the right or left and argue
that applying a Type 2 transformation to any Lyndon conjugate that is not in
the above set either alters the size of the block of a’s at the start of the word, or

Reducing the Ambiguity of Parikh Matrices 407

changes the total number of blocks of a’s in the word altogether. This therefore
gives us a word that is amiable to, but not a conjugate of, the original.

The backwards direction is proven by finding the Parikh matrices of all con-
jugates of words in the set {aabb, ababbb, aababb, aabbab, aaabab}. We then find
that the only words described by these matrices are these conjugates.
�

We now look at the case where all words associated to a Parikh matrix are
the Lyndon representatives of their respective conjugacy classes, which again
makes this matrix not L-distinguishable.

Proposition 8. For a word w ∈ Σ∗, if |A(w,Ψ)| ≥ 2 and A(w,Ψ) = A(w,ΨL),
then Ψ(w) is not L-distinguishable.

Example 9. The words w = aaaabaabbb and w′ = aaaaabbabb are only amiable
with each other, Ψ(w) = Ψ(w′), and both are the Lyndon representatives of their
respective conjugacy classes. Therefore, Ψ(w) = Ψ(w′) = ΨL(w) = ΨL(w′) and
Ψ(w) is not L-distinguishable. �

For binary alphabets, we examine in greater detail when all words in A(w,Ψ)
are the Lyndon representatives of their conjugacy classes. The next result pro-
vides a necessary and sufficient condition, and therefore the complete character-
isation, for this case to occur for the binary alphabet.

Proposition 9. Let w ∈ Σ∗
2 . Then the following statements are equivalent.

– For all u ∈ A(w,Ψ), we have that u = L(u).
– w = a∗vb∗ and for n = |v|ba we have that |v|a = 2n and |v|b = n + 1.

Proof Outline. To show that these two statements are equivalent, we begin by
showing that the second statement implies the former. We do this by first show-
ing that if a word is of the form w = a∗vb∗ and, for n = |v|ba, we have that
|v|a = 2n and |v|b = n + 1, then w = L(w), and next move on to prove that
only words of this form are described by Ψ(w). We prove that w = L(w) by
observing that v = L(v). Adding more a’s to the start of v and more b’s to the
end means that the Lyndon conjugate is still the word itself, and hence obtain
w = L(w). We prove that words of the form described in the second point are
only amiable with each other by calculating the total number of ab subwords in
v and extrapolating this to w.

To prove that the first statement implies the second, we use the fact that our
words share a Parikh matrix and that they must begin with the largest number
of consecutive a’s in the word and end with at least one b. We also rewrite
w = a+w′

ib
+ where w′

i begins with the first occurrence of a b and ends with the
last occurrence of an a in w, and examine the form that this must take given the
fixed number of ab subwords we must have in w. This gives us the total number
of a’s and b’s in a word relative to the total number of ba subwords.
�

The next example shows how the above result can be used to identify the form
of the words that always share a Parikh matrix with other Lyndon conjugates.

408 J. Dick et al.

Example 10. Following Proposition 9, Lyndon representatives of different con-
jugacy classes share a Parikh matrix only if they are of the form a∗vb∗, where
for n = |v|ba we have that |v|a = 2n and |v|b = n + 1. Let us find all words
of this form where n = 3. We begin by finding all binary words that con-
tain 3 subwords ba. These are baaa, baba and bbba. Next add a’s to the front
and b’s to the end of each word, respectively, so that we have a total of 6
a’s and 4 b’s per word: aaabaaabbb, aaaabababb, aaaaabbbab. Finally, any num-
ber of a’s and b’s can be added to the front and end of each word, respec-
tively: a∗aaabaaabbbb∗, a∗aaaabababbb∗, a∗aaaaabbbabb∗. Hence we know that
any word of this form is the Lyndon representative of its conjugacy class and
shares a Parikh matrix with the two other words stated above. For example,
Ψ(a2aaabaaabbbb3) = Ψ(a2aaaabababbb3) = Ψ(a2aaaaabbbabb3) = 〈 8 53

7 〉. �

Thus far, we presented sufficient conditions for two amiable words not to
be L-distinct. Our main result shows that these conditions are in fact also the
necessary ones. The following lemmas are used in the proof of the final result,
but are included here as they are also interesting results on their own. The
first lemma tells us that if the Parikh vectors of the proper right factors of two
amiable words are different, then the size of these factors must also be unequal.

Lemma 3. Consider the words w = w1w2 = xabybaz and v = v1v2 = xbayabz
with w, v ∈ Σ2, such that w1, w2, v1, v2 	= ε and w2w1 = L(w) 	= L(v) = v2v1. If
φ(w2) 	= φ(v2), then |w2| 	= |v2|.

Furthermore, if two amiable binary words are not the Lyndon representa-
tives of their conjugacy classes, then to either of them we can apply a Type 2
transformation to obtain an amiable word whose Lyndon conjugate begins in a
different position from the original one.

Lemma 4. Let w = w1w2 ∈ Σ∗
2 with L(w) = w2w1 	= w. If |A(w,Ψ)| ≥ 2,

then there exists u = u1u2 ∈ A(w,Ψ), where L(u) = u2u1, such that |u2| 	= |w2|.
Proof Outline. The statement can be proven by contradiction, by first assum-
ing that the Lyndon conjugate of every word associated to Ψ(w) begins in the
same position within those words. We then show that for the Lyndon conjugate
to begin at any position within a given binary word, it is possible to apply a
Type 2 transformation to obtain a new word whose Lyndon conjugate begins in
a different position.
�

Next we show that all words that are conjugates of any word w such that
A(w,Ψ) = A(w,ΨL) are also amiable with a word that is not a conjugate of any
of the words in A(w,Ψ).

Lemma 5. Let w, u, v ∈ Σ∗
2 , where A(w,Ψ) = A(w,ΨL). For any u ∈ C(w)

there exists v ∈ A(u, Ψ) such that A(w,ΨL) ∩ C(v) = ∅.
Proof Outline. This statement can be proven by considering every form that a
word w can take, such that A(w,Ψ) = A(w,ΨL), from Proposition 9 and then

Reducing the Ambiguity of Parikh Matrices 409

examining all conjugates of these words. We show that a Type 2 transformation
can be applied to every conjugate to obtain a word that is not a conjugate of
any word in our original set A(w,Ψ).
�

We end this section by giving our main result that characterises all binary
words whose Parikh matrix is not L-distinguishable.

Theorem 2. For Σ2, a Parikh matrix is not L-distinguishable if and only if
any of the words it describes meet at least one of the following criteria:

– w ∈ {aabb, ababbb, aababb, aabbab, aaabab, bbabbaaa, bbbaabaa}
– w = a∗vb∗ and for n = |v|ba we have that |v|a = 2n and |v|b = n + 1

Proof Outline. For the set of words B = {bbabbaaa, bbbaabaa}, the forward
direction is easily proven by finding these words’ Parikh and L-Parikh matrices,
respectively. The backward direction is proved using the fact that for words
w,w′ ∈ Σ∗

2 such that w is the reverse of w′ and A(w′, Ψ) = A(w′, ΨL), then
w ∈ B if and only if A(w,Ψ) = A(w,Ψ, ΨL).

For the rest of the words, the ‘if’ direction was mostly proven earlier when
Propositions 6, 7, 8 and 9, describing these situations, were introduced.

The ‘only if’ direction is proven by first examining the consequences of Propo-
sition 5, which tells us that two words are L-distinct if their Lyndon conjugates
begin in different positions, respectively. We use Lemmas 3 and 4 to conclude
that no set of amiable binary words exists where the Lyndon conjugates of all
words in the set begin in the same position of each word, respectively. Hence all
Parikh matrices would be L-distinguishable if it were not for some cases that
arise as a result of us using the Lyndon conjugate. These cases are namely the
ones where the set of amiable words are all Lyndon conjugates, are all members
of the same conjugacy class, or are all conjugates of words whose Lyndon con-
jugates share a Parikh matrix. We showed in Propositions 7 and 9 that the first
two cases are characterised by words of the form w = a∗vb∗ where for n = |v|ba

we have that |v|a = 2n and |v|b = n + 1, and by words where their Lyndon con-
jugate is in the set {aabb, ababbb, aababb, aabbab, aaabab}, respectively. We use
Lemma 5 to conclude that no words exist such that the third case is true.
�

5 Conclusion and Future Work

In this paper, we have shown that using P-Parikh matrices and L-Parikh matrices
reduces the ambiguity of a word in most cases. From Corollary 1, we learn that
P-Parikh matrices cannot reduce the ambiguity of a Parikh matrix that describes
words in a binary alphabet, but are very powerful when it comes to reducing the
ambiguity of words in larger alphabets (Proposition 2). On the other hand, we
find that L-Parikh matrices reduce the ambiguity of most binary words, with the
few exceptions from Theorem 2, which have all been shown to be rare occurrences
within the binary alphabet. Thus, using both tools together leads to a reduction
in ambiguity in most cases.

410 J. Dick et al.

Going forward, we wish to characterise words that are described uniquely
by both types of matrices, respectively, as well as quantifying the ambiguity
reduction permitted by both notions. Theorem2 tells us that there are very few
binary words whose Parikh matrix ambiguity cannot be reduced by L-Parikh
matrices. Future research on L-Parikh matrices could also include an analysis
similar to the one done in Proposition 2.

Finally we present a conjecture on the types of words that might be described
by a Parikh matrix that is P-distinguishable. We know that the presence of
a certain type of factor, described in Proposition 1, in a word means that its
Parikh matrix is P-distinguishable. This conjecture implies that the presence of
this factor is the only way that the ambiguity of a word could be reduced by
P-Parikh matrices.

Conjecture 8. For any word w ∈ Σ∗
n, if Ψ(w) is P-distinguishable, then there

exists a word amiable with w which contains a factor aiaj, where |i − j| > 1.

References

1. Alazemi, H.M.K., Černý, A.: Counting subwords using a trie automaton. Int. J.
Found. Comput. Sci. 22(6), 1457–1469 (2011)

2. Alazemi, H.M.K., Černý, A.: Several extensions of the Parikh matrix L-morphism.
J. Comput. Syst. Sci. 79(5), 658–668 (2013)

3. Atanasiu, A.: Parikh matrix mapping and amiability over a ternary alphabet. In:
Discrete Mathematics and Computer Science, pp. 1–12 (2014)

4. Atanasiu, A., Atanasiu, R., Petre, I.: Parikh matrices and amiable words. Theoret.
Comput. Sci. 390(1), 102–109 (2008)

5. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: Codifiable languages and the Parikh
matrix mapping. J. UCS 7, 783–793 (2001)

6. Atanasiu, A., Mart́ın-Vide, C., Mateescu, A.: On the injectivity of the Parikh
matrix mapping. Fund. Inform. 49(4), 289–299 (2002)

7. Atanasiu, A., Teh, W.C.: A new operator over Parikh languages. Int. J. Found.
Comput. Sci. 27(06), 757–769 (2016)

8. Bera, S., Mahalingam, K.: Some algebraic aspects of Parikh q-matrices. Int. J.
Found. Comput. Sci. 27(4), 479–500 (2016)

9. Egecioglu, Ö.: A q-matrix encoding extending the Parikh matrix mapping. Tech-
nical report 14, Department of Computer Science at UC Santa Barbara (2004)

10. Egecioglu, O., Ibarra, O.H.: A matrix q-analogue of the Parikh map. In: Levy,
J.-J., Mayr, E.W., Mitchell, J.C. (eds.) TCS 2004. IIFIP, vol. 155, pp. 125–138.
Springer, Boston (2004). https://doi.org/10.1007/1-4020-8141-3 12

11. Egecioglu, Ö., Ibarra, O.H.: A q-analogue of the Parikh matrix mapping. In: For-
mal Models, Languages and Applications [this volume commemorates the 75th
birthday of Prof. Rani Siromoney]. In: Series in Machine Perception and Artificial
Intelligence, vol. 66, pp. 97–111 (2007)

12. Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge
(1997)

13. Mahalingam, K., Subramanian, K.G.: Product of Parikh matrices and commuta-
tivity. Int. J. Found. Comput. Sci. 23(01), 207–223 (2012)

https://doi.org/10.1007/1-4020-8141-3_12

Reducing the Ambiguity of Parikh Matrices 411

14. Mateescu, A., Salomaa, A., Salomaa, K., Yu, S.: On an extension of the Parikh
mapping. Turku Centre for Computer Science (2000)

15. Parikh, R.J.: On context-free languages. J. ACM 13(4), 570–581 (1966)
16. Poovanandran, G., Teh, W.C.: Strong (2·t) and strong (3·t) transformations for

strong M-equivalence. Int. J. Found. Comput. Sci. 30(05), 719–733 (2019)
17. Salomaa, A., Yu, S.: Subword occurrences, Parikh matrices and Lyndon images.

Int. J. Found. Comput. Sci. 21, 91–111 (2010)
18. Şerbănuţă, T.F.: Extending Parikh matrices. Theor. Comput. Sci. 310(1–3), 233–

246 (2004)
19. Şerbănuţă, V.N.: On Parikh matrices, ambiguity, and prints. Int. J. Found. Com-

put. Sci. 20(01), 151–165 (2009)
20. Širšov, A.I.: Subalgebras of free Lie algebras. Mat. Sbornik N.S. 33(75), 441–452

(1953)

	Reducing the Ambiguity of Parikh Matrices
	1 Introduction
	2 Preliminaries
	3 P-Parikh Matrices
	4 L-Parikh Matrices
	5 Conclusion and Future Work
	References

