q

Check for
updates

Recompression: Technique for Word
Equations and Compressed Data

Artur Jez(®)

University of Wroctaw, Joliot-Curie 15, 50383 Wroctaw, Poland
aje@cs.uni.wroc.pl

Abstract. In this talk I will present the recompression technique on
the running example of word equations. In word equation problem we
are given an equation u = v, where both u and v are words of letters and
variables, and ask for a substitution of variables by words that equal-
izes the sides of the equation. The recompression technique is based
on employing simple compression rules (replacement of two letters ab
by a new letter ¢, replacement of maximal repetitions of ¢ by a new let-
ter), and modifying the equations (replacing a variable X by bX or Xa)
so that those operations are sound and complete. The simple analysis
focuses on the size of the instance and not on the combinatorial proper-
ties of words that are used. The recompression-based algorithm for word
equations runs in nondeterministic linear space.

The approach turned out to be quite robust and can be applied to
various generalized, simplified and related problems, in particular, to
problems in the area of grammar compressed words. I will comment on
some of those applications.

Keywords: Algorithms on automata and words + Word equations -
Context unification - Equations in groups - Compression - SLPs

1 Introduction

1.1 Word Equations

The word equation problem, i.e. solving equations in the algebra of words, was
first investigated by Markov in the fifties. In this problem we get as an input
an equation of the form

u="v

where u and v are strings of letters (from a fixed alphabet) as well as variables and
a solution is a substitution of words for variables that turns this formal equation
into a true equality of strings of letters (over the same fixed alphabet). It is
relatively easy to show a reduction of this problem to the Hilbert’s 10-th problem,
i.e. the question of solving systems of Diophantine equations. Already then it
was generally accepted that Hilbert’s 10-th problem is undecidable and Markov
wanted to show this by proving the undecidability of word equations.

© Springer Nature Switzerland AG 2020
A. Leporati et al. (Eds.): LATA 2020, LNCS 12038, pp. 44-67, 2020.
https://doi.org/10.1007/978-3-030-40608-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40608-0_4&domain=pdf
http://orcid.org/0000-0003-4321-3105
https://doi.org/10.1007/978-3-030-40608-0_4

Recompression: Technique for Word Equations and Compressed Data 45

Alas, while Hilbert’s 10-th problem is undecidable, the word equation prob-
lem is decidable, which was shown by Makanin [54]. The termination proof of
his algorithm is very complex and yields a relatively weak bound on the com-
putational complexity, thus over the years several improvements and simplifi-
cations over the original algorithm were proposed [27,29,43,79]. Simplifications
have many potential advantages: it seems natural that simpler algorithm can
be generalised or extended more easily (for instance, to the case of equations
in groups) than a complex one. Moreover, simpler algorithm should be more
effective in practical applications and should have a lower complexity bounds.

Subcases. It is easy to show NP-hardness for word equations, so far no bet-
ter computational complexity lower bound is known. Such hardness stimulated
a search for a restricted subclasses of the problem for which efficient (i.e. polyno-
mial) algorithms can be given [4]. One of such subclasses is defined by restricting
the amount of different variables that can be used in an equation: it is known
that equations with one [11,45] and two [4,10,28] variables can be solved in
polynomial time. Already for three variables it is not known, whether they are
in NP or not [71] and partial results require nontrivial analysis [71].

Generalisations. Since Makanin’s original solution much effort was put into
extending his algorithm to other structures. Three directions seemed most nat-
ural:

adding constraints to word equations;
equations in free groups;

— partial commutation;

— equations in terms.

Constraints. From the application point of view, it is advantageous to consider
word equations that can also use some additional constraints, i.e. we require
that the solution for X has some additional properties. This was first done for
regular constraints [79], on the other hand, for several types of constraints,
for instance length-constraints, it is still open, whether the resulting problem
is decidable or not (it becomes undecidable, if we allow counting occurrences
of particular letter in the substitutions and arithmetic operations on such
counts [3]).

Free groups. From the algebraic point of view, the word equation problem is
solving equations in a free semigroup. It is natural to try to extend an algo-
rithm from the free semigroup also to the case of free groups and then per-
haps even to a larger class of groups (observe, that there are groups and semi-
groups for which the word problem is undecidable). The first algorithm for the
group case was given by Makanin [55,56], his algorithm was not primitively-
recursive [44]. Furthermore, Razborov showed that this algorithm can be used
to give a description of all solutions of an equation [68] (more readable descrip-
tion of the Razborov’s construction is available in [41]). As a final comment,
note that such a description was the first step in proving the Tarski’s Con-
jecture for free groups (that the theory of free groups is decidable) [42].

46 A. Jez

Partial commutation. Another natural generalization is to allow partial com-
mutation between the letters, i.e. for each pair of letters we specify, whether
ab = ba or not. Such partially commutative words are usually called traces and
the corresponding groups are usually known as Right-Angled Artin Groups,
RAAGsS for short. Decidability for trace equations was shown by Matiyase-
vich [57] and for RAAGs by Diekert and Muscholl [15]. In both cases, the
main step in the proof was a reduction from a partially commutative case to
a non-commutative one.

Terms. We can view words as very simple terms: each letter is a function symbol
of arity 1. In this way word equations are equations over (very simple) terms.
It is known, that term unification can be decided in polynomial time, assuming
that variables represent closed (full) terms [69]; thus such a problem is unlikely
to generalise word equations.

A natural generalisation of term unification and word equations is a second-
order unification, in which we allow variables to represent functions that take
arguments (which need to be closed terms). However, it is known that this
problem is undecidable, even in many restricted subcases [16,26,47,49]. Con-
text unification [7,8,74] is a natural problem ‘in between’: we allow variables
representing functions, but we insist that they use their argument ezactly
once. It is easy to show that such defined problem generalises word equations,
on the other hand, the undecidability proofs for second-order unification do
not transfer directly to this model.

Being a natural generalisation is not enough to explain the interest in this
problem, more importantly, context unification has natural connections with
other, well-studied problems (equality up to constraints [61], linear second-
order unification [47,50], one-step term rewriting [62], bounded second order
unification [76], ...). Unfortunately, for over two decades the question of
decidability of context unification remained open. Despite intensive research,
not much is known about the decidability of this problem: only results for
some restricted subcases are known: [8,19,47,48,51,75,77,78].

1.2 Compression and Word Equations

For more than 20 years since Makanin’s original solution there was very small
progress in algorithms for word equations: the algorithm was improved in many
places, in particular this lead to a better estimation of the running time; however,
the main idea (and the general complexity of the proof) was essentially the same.

The breakthrough was done by Plandowski and Rytter [67], who, for the
first time, used the compression to solve word equations. They showed, that
the shortest solution (of size N) of the word equation (of size n) has an SLP
representation of size poly(n,log N); here a Straight Line Programme (SLP for
short) is simply a context free grammar generating exactly one word. Using
the algorithm for testing the equality of two SLPs [63] this easily yields a (non-
deterministic) algorithm running in time poly(n, log N). Unfortunately, this work
did not provide any bound on N and the only known bound (4 times exponen-
tial in n) came directly from Makanin’s algorithm, together those two results

Recompression: Technique for Word Equations and Compressed Data 47

yielded a BNEXPTIME algorithm. Soon after the bound on the size of the short-
est solution was improved to triply exponential [27], which immediately yielded
an algorithm from class 2NEXPTIME, however, the same paper [27] improved
Makanin’s algorithm, so that it workd in EXPSPACE.

Next, Plandowski gave a better (doubly exponential) bound on the size of the
shortest solution [64] and thus obtained a NEXPTIME algorithm, in particular,
at that time this was the best known algorithm for this problem. The proof
was based on novel factorisations of words. By better exploiting the interplay
between factorisations and compression, he improved the algorithm so that it
worked in PSPACE [65].

It is worth mentioning, that the solution proposed by Plandowski is essen-
tially different than the one given by Makanin. In particular, it allowed gen-
eralisations more easily: Diekert, Gutiérrez and Hagenah [13] showed, that
Plandowski’s algorithm can be extended to the case in which we allow regu-
lar constraints in the equation (i.e. we want that the word substituted for X
is from a regular language, whose description by a finite automaton is part of
the input) and inversion; such an extended algorithm still works in polynomial
space. It is easy to show that solving equations in free groups reduces to the
above-mentioned problem of word equations with regular constraints and inver-
sion [13] (it is worth mentioning, that in general we do not know whether solving
equations in free groups is easier or harder than solving the ones in a free semi-
group).

On the other hand, Plandowski showed, that his algorithm can be used to gen-
erate a finite representation of all solutions of a word equation [66], which allows
solving several decision problems concerning the set of all solutions (finiteness,
boundedness, boundedness of the exponent of periodicity etc.). It is not known,
whether this algorithm can be generalised so that it generates all solutions also
in the case of regular constraints and inversion (or in a free group).

The new, simpler algorithm for word equations and demonstration of connec-
tions between compression and word equations gave a new hope for solving the
context unification problem. The first results were very promising: by using ‘tree’
equivalents of SLPs [2] computational complexity of some problems related to
context unification was established [9,19,48]. Unfortunately, this approach failed
to fully generalise Plandowski’s algorithm for words: the equivalent of factorisa-
tions that were used in the algorithm were not found for trees.

It is worth mentioning, that Rytter and Plandowski’s approach, in which
we compress a solution using SLPs (or in the non-deterministic case—we guess
the compressed representation of the solution) and then perform the computa-
tion directly on the SLP-compressed representations using known algorithm that
work in polynomial time, turned out to be extremely fruitful in many branches
of computer science. The recent survey by Lohrey gives several such successful
applications [53].

48 A. Jez

1.3 Recompression

Recompression was developed for a specific problem concerning compressed data
(fully compressed membership problem for finite automata [30]) and was later
successfully applied to word equations [36] and other problems related to com-
pressed representations. The usual approach for word equations (and compressed
data in general) is that one tries to extract information about the combinatorics
of the underlying words from the equation (compressed representation) and use
this structure to solve the problem at hand. This is somehow natural: if the word
can be represented compactly (be it as a solution of a word equation or using
some compression mechanism) then it should have a lot of internal structure.

Recompression takes a different approach: our aim is to perform simple com-
pression operations on the solution word of the word equation directly on the
compressed representation. We need to modify the equation a bit in order to do
that, however, the choice of the compression operation and the analysis focuses
on the compressed representation and its properties and (almost) completely
ignores the properties of the solution. The idea of performing the compression
operation is somehow natural in view of the already mentioned Plandowski and
Rytter result [67], that the (length-minimal) solution has a small SLP: since
such an SLP exists, we can try to build it bottom-up, i.e. the SLP has a rule
a — be and so we will replace each be in the solution by a. (There are some
complications in case of b = ¢, as then the compression is ambiguous: we solve
this by replacing the maximal repetitions of b letter instead of replacing bb).

Of course, performing such a compression on the equation might be difficult
or even impossible at all and we sometimes need to modify the equation. How-
ever, it turns out that a greedy choice suffices to guarantee that the kept equation
is of quadratic size. The correctness and size analysis turns out to be surpris-
ingly easy. The method is also very robust, so that it can be applied to various
scenarios related to word equations: one variable word equations [35], equations
in free groups [14], twisted word equations [12], context unification [31], ...See
the following Sections for details of some of those results.

1.4 Algorithms for Grammar-Based Compression

Due to ever-increasing amount of data, compression is widely applied in order
to decrease the data’s size. Still, the stored data is accessed and processed.
Decompressing it on each such an occasion basically wastes the gain of reduced
storage size. Thus there is a demand for algorithms dealing directly with the
compressed data, without explicit decompression. Indeed, efficient algorithms for
fundamental text operations (pattern matching, equality testing, etc.) are known
for various practically used compression methods (LZ77, LZW, their variants,
etc.) [20-25,63].

Note that above the compression can be seen as a source of problem that we
want to overcome. However, as demonstrated by Plandowski and Rytter [67],
the compression can also be seen as a solution to some problems, i.e. if we
can show that the instance or its solutions is (highly) compressible, then we can

Recompression: Technique for Word Equations and Compressed Data 49

compress it and, using the algorithms mentioned above, perform the computation
on the compressed representation. See a recent survey of Lohrey [53], which gives
examples of application of this approach in various fields, ranging from group
theory, computational topology to program verification.

Compression standards differ in the main idea as well as in details. Thus
when devising algorithms for compressed data, quite early one needs to focus
on the exact compression method, to which the algorithm is applied. The most
practical (and challenging) choice is one of the widely used standards, like LZW
or LZ77. However, a different approach is also pursued: for some applications
(and most of theory-oriented considerations) it would be useful to model one
of the practical compression standard by a more mathematically well-founded
and ‘clean’ method. The already mentioned Straight-Line Programs (SLPs), are
such a clean formulation for many block compression methods: each LZ77 com-
pressed text can be converted into an equivalent SLP of size O(nlog(N/n)) and
in O(nlog(N/n)) time [5,70] (where N is the size of the decompressed text),
while each SLP can be converted to an equivalent LZ77-like of O(n) size in
polynomial time. Other reasons of popularity of SLPs is that usually they com-
press well the input text [46,60] Lastly, a greedy grammar compression can be
efficiently implemented and thus can be used as a preprocessing to other com-
pression methods, like those based on Burrows-Wheeler transform [39].

One can treat an SLP as a system of (very simple) word equations, i.e. a pro-
duction X — « is rewritten as X = «, and so the recompression algorithm
generalizes also to such setting. It can be then seen as a variant of locally con-
sistent parsing [1,58,72], and indeed those techniques were one of the sources of
the recompression approach.

It is no surprise that the highly non-deterministic recompression algorithm
determinises when applied to SLPs, what is surprising is that it can be made
efficient. In particular, it can be used to checking the equality of two SLPs
in roughly quadratic time, which is the fastest known algorithm for this prob-
lem [33] (and also for the generalisation of this problem, the fully compressed
pattern matching).

The main drawback of grammar compression is that the size of the small-
est grammar cannot be even approximated within (small enough) constant fac-
tor [5,80]. There are many algorithms that achieve a logarithmic approximation
ratio [5,70,73], recompression can also be used to obtain one (in fact: two dif-
ferent). One of those algorithms [32] seems to have a slightly better practical
behaviour than the other ones, the second has much simpler analysis than other
approximation algorithms [34] (as it is essentially a greedy left-to-right scan).

Just as recompression generalizes from word equations to context unification
(i.e. term equations), the approximation algorithm based on recompression for
strings can be generalized to trees [38], in which case it produces a so-called tree
SLP [2]. This was the first approximation algorithm for this problem.

50 A. Jez

Survey’s Limitations

As this is an informal survey presentations, most of the proofs are only sketched
or omitted. Due to space constraints, only some applications and results are
explained in detail.

2 Recompression for Word Equations

We begin with a formal definition of the word equations problem: Consider
a finite alphabet X and set of variables X’; during the algorithm X will be
extended by new letters, but it will always remain finite. Word equation is
of a form ‘u = v’, where u,v € (X' U X)* and its solution is a homomorphism
S: XY UX — X* which is constant on X, that is S(a) = a, and satisfies the
equation, i.e. words S(u) and S(v) are equal. By n we denote the size of the
equation, i.e. |u| + |v|. The algorithm requires only small improvements so that
it applies also to systems of equations, to streamline the presentation we will
not consider this case.

Fix any solution S of the equation v = v, without loss of generality we can
assume that this is the shortest solution, i.e. the one minimising [S(u)|; let N
denote the length of the solution, that is |S(u)|. By the earlier work of Plandowski
and Rytter [67], we know that S(u) (and also S(X) for each variable X) has an
SLP (of size poly(n,log N)), in fact the same conclusion can be to drawn from
the later works of Plandowski [64-66]. Regardless of the form of S and SLP, we
know, that at least one of the productions in this SLP is of the form ¢ — ab,
where ¢ is a nonterminal of the SLP while a,b € X are letters. Let us ‘reverse’
this production, i.e. replace in S(u) all pairs of letters ab by c. It is relatively
easy to formalise this operation for words, it is not so clear, what should be done
in case of equations, so let us inspect the easier fragment first.

Algorithm 1. PairComp(ab, w) Compression of pair ab

1: let ¢ € X be an unused letter
2: replace all occurrences of ab in w by ¢

Consider an explicitly given word w. Performing the ‘ab-pair compression’
on it is easy (we replace each pair ab by c), as long as a # b: replacing pairs aa
is ambiguous, as such pairs can ‘overlap’. Instead, we replace mazimal blocks of
a letter a: block a’ is mazimal, when there is no letter a to left nor to the right
of it (in particular, there could be no letter at all).

Formally, the operations are defined as follows:

— ab pair compression For a given word w replace all occurrences of ab in w by
a fresh letter c.

— a block compression For a given word w replace all occurrences of maximal
blocks a’ for £ > 1 in w by fresh letters ay.

Recompression: Technique for Word Equations and Compressed Data 51

We always assume, that in the ab-pair compression the letters a and b are dif-
ferent.

Observe, that those operations are indeed ‘inverses’ of SLP productions:
replacing ab with ¢ corresponds to a production ¢ — ab, similarly replacing

a’ with a, corresponds to a production a; — a’.

Algorithm 2. BlockComp(a,w) Block compression for a
1: for £>1do

2: let a; € X be an unused letter

3: replace all maximal blocks a’ in w by a¢

Iterating the pair and blocks compression results in a compression of word
w, assuming that we treat the introduced symbols as normal letters. There are
several possible ways to implement such iteration, different results are obtained
by altering the order of the compressions, exact treatment of new letters and so
on. Still, essentially each ‘reasonable’ variant works.

Observe, that if we compress two words, say w; and ws, in parallel then
the resulting words wj and w} are equal if and only if w; and wy are. This
justifies the usage of compression operations to both sides of the word equation
in parallel, it remains to show, how to do that.

Let us fix a solution S, a pair ab (where a # b); consider how does a particular
occurrence of ab got into S(u).

Definition 1. For an equation u = v, solution S and pair ab an occurrence of
ab in S(u) (or S(v)) is

— explicit, if it consists solely of letters coming from u (or v);

— implicit, if it consists solely of letters coming from a substitution S(X) for a
fixed occurrence of some variable X ;

— crossing, otherwise.

A pair ab is crossing (for a solution S) if it has at least one crossing occurrence
and non-crossing (for a solution S) otherwise.

We similarly define explicit, implicit and crossing occurrences for blocks of
letter a; a is crossing, if at least one of its blocks has a crossing occurrence. (In
other words: aa is crossing).

Ezample 1. Equation
aaXbbabababa = Xaabby abX

has a unique solution S(X) = a, S(Y) = abab, under which sides evaluate to
aaabbabababa = aaabbabababa.

Pair ba is crossing (as the first letter of S(Y) is a and first Y is preceded by
a letter b, moreover, the last letter of S(Y') is b and the second Y is succeeded by

52 A. Jez

a letter a), pair ab is non-crossing. Letter b is non-crossing, letter a is crossing
(as X is preceded by a letter a on the left-hand side of the equation and on the
right-hand side of the equation X is succeeded by a letter a).

Algorithm 3. PairComp(ab,‘u = v’) Pair compression for ab in an equation
U=

1: let ¢ € X be a fresh letter

2: replace all occurrences of ab in ‘u = v’ by ¢

Algorithm 4. BlockComp(a, ‘u = v’) Block compression for a letter a in an
equation ‘u = v’

1: for £>1do

2: let a;, € X be a fresh letter

3: replace all occurrences of maximal blocks a’ in ‘u = v’ by ay

Fix a pair ab and a solution S of the equation u = v. If ab is non-crossing, per-
forming PairComp(ab, S(u)) is easy: we need to replace every explicit occurrence
(which we do directly on the equation) as well as each implicit occurrence, which
is done ‘implicitly’, as the solution is not stored, nor written anywhere. Due to
the similarities to PairComp we will simply use the name PairComp(ab,'u = v’),
when we make the pair compressions on the equation. The argument above
shows, that if the equation had a solution for which ab is non-crossing then
also the obtained equation has a solution. The same applies to the block com-
pression, called BlockComp(a,‘u = v’) for simplicity. On the other hand, if the
obtained equation has a solution, then also the original equation had one (this
solution is obtained by replacing each letter ¢ by ab, the argument for the block
compressions the same).

Lemma 1. Let the equation uw = v have a solution S, such that ab is non-
crossing for S. Then v’ = v’ obtained by PairComp (ab,'u = v’) is satisfiable. If
the obtained equation u' = v’ is satisfiable, then also the original equation u = v
is. The same applies to BlockComp(a,‘'u = v’).

Unfortunately Lemmal is not enough to simulate Compression(w) directly
on the equation: In general there is no guarantee that the pair ab (letter a) is
non-crossing, moreover, we do not know which pairs have only implicit occur-
rences. It turns out, that the second problem is trivial: if we restrict ourselves to
the shortest solutions then every pair that has an implicit occurrence has also
a crossing or explicit one, a similar statement holds also for blocks of letters.

Recompression: Technique for Word Equations and Compressed Data 53

Lemma 2 ([67]). Let S be a shortest solution of an equation ‘u = v’. Then:

— If ab is a substring of S(u), where a # b, then a, b have explicit occurrences
in the equation and ab has an explicit or crossing occurrence.

- If a* is a mazimal block in S(u) then a has an explicit occurrence in the
equation and a® has an explicit or crossing occurrence.

The proof is simple: suppose that a pair has only implicit occurrences. Then
we could remove them and the obtained solution is shorter, contradicting the
assumption. The argument for blocks is a bit more involved, as they can overlap.

Getting back to the crossing pairs (and blocks), if we fix a pair ab (letter a),
then it is easy to ‘uncross’ it: by Definition 1 we can conclude that the pair ab
is crossing if and only if for some variables X and Y (not necessarily different)
one of the following conditions holds (we assume that the solution does not
assign an empty word to any variable—otherwise we could simply remove such
a variable from the equation):

(CP1) aX occurs in the equation and S(X) begins with b;
(CP2) Yb occurs in the equation and S(Y) ends with a;
(CP3) Y X occurs in the equation, S(X) begins with b and b S(Y) ends with a.

In each of these cases the ‘uncrossing’ is natural: in (1) we ‘pop’ from X
a letter b to the left, in (2) we pop a to the right from Y, in (3) we perform
both operations. It turns out that in fact we can be even more systematic: we
do not have to look at the occurrences of variables, it is enough to consider the
first and last letter of S(X) for each variable X:

— If S(X) begins with b then we replace X with bX (changing implicitly the
solution S(X) = bw to S'(X) = w), if in the new solution S(X) = ¢, i.e. it is
empty, then we remove X from the equation;

— if S(X) ends with a then we apply a symmetric procedure.

Such an algorithm is called Pop.

Algorithm 5. Pop(a, b, ‘u = v’)
1: for X: variable do

2: if the first letter of S(X) is b then > Guess
3: replace every X w ‘u = v’ by bX

> Implicitly change solution S(X) = bw to S(X) = w
4: if S(X) =€ then > Guess
5: remove X from u and v
6: e > Perform a symmetric operation for the last letter and a

It is easy to see, that for appropriate non-deterministic choices the obtained
equation has a solution for which ab is non-crossing: for instance, if aX occurs
in the equation and S(X) begins with b then we make the corresponding non-
deterministic choices, popping b to the left and obtaining abX; a simple proof
requires a precise statement of the claim as well as some case analysis.

54 A. Jez

Lemma 3. If the equation ‘u = v’ has a solution S then for an appropriate
run of Pop(a, b, ‘u = v’) (for appropriate non-deterministic choices) the obtained
equation u' = v’ has a corresponding solution S’, i.e. S(u) = S'(v'), for which
ab is a non-crossing pair. If the obtained equation has a solution then also the
original equation had one.

Thus, we know how to proceed with a crossing ab-pair compression: we first
turn ab into a non-crossing pair (Pop) and then compress it as a non-crossing
pair (PairComp).

We would like to perform similar operations for block compression. For non-
crossing blocks we can naturally define a similar algorithm BlockComp(a,‘u = v”).
It remains to show how to ‘uncross’ a letter a. Unfortunately, if aX occurs in
the equation and S(X) begins with a then replacing X with aX is not enough,
as S(X) may still begin with a. In such a case we iterate the procedure until
the first letter of X is not a (this includes the case in which we remove the
whole variable X). Observe, that instead of doing this letter by letter, we can
uncross a in one step: it is enough to remove from variable X its whole a-prefix
and a-suffix of S(X) (if w = a‘w’a”, where w’ does not begin nor end with a,
a-prefix w is a* and a-suffix is a”; if w = a’ then a-suffix and w’ are empty).
Such an algorithm is called CutPrefSuff.

Algorithm 6. CutPrefSuff(a, ‘u = v’) Popping prefixes and suffixes
1: for X: variable do

2: guess the lengths ¢, r of a-prefix and suffix of S(X) > S(X) = a‘wa”
> If S(X) = a’ then r = 0

3: replace occurrences of X in u and v by a*Xa"

> af, a” are stored in a compressed way
4: > Implicitly change the solution S(X) = a‘wb” to S(X) = w
5: if S(X) = e then > Guess
6: remove X from u and v

Similarly as in Pop, we can show that after an appropriate run of CutPrefSuff
the obtained equation has a (corresponding) solution for which a is non-crossing.
Unfortunately, there is another problem: we need to write down the lengths ¢ and
r of a-prefixes and suffixes. We can write them as binary numbers, in which case
they use O(log ¥ + logr) bits of memory. However in general those still can be
arbitrarily large numbers. Fortunately, we can show that in some solution those
values are at most exponential (and so their description is polynomial-size). This
easily follows from the exponential bound on exponent of periodicity [43]. For
the moment it is enough that we know that:

Lemma 4 ([43]). In the shortest solution of the equation ‘u = v’ each a-prefix
and a-suffiz has at most exponential length (in terms of |u| + |v]).

Thus in Pop we can restrict ourselves to a-prefixes and suffixes of at most
exponential length.

Recompression: Technique for Word Equations and Compressed Data 55

Lemma 5. Let S be a shortest solution of ‘u =v’. For some non-deterministic
choices, i.e. after some run of CutPrefSuff(a, ‘u = v’), the obtained equation ‘u’ =
v’ has a corresponding solution S', such that S’(u') = S(u), and a is a non-
crossing letter for S’, moreover, the explicit a blocks in ‘v’ = v” have at most
exponential length. If the obtained equation has a solution then also the original
equation had one.

After Pop we can compress a-blocks using BlockComp(a,‘u = v’), observe
that afterwards long a-blocks are replaced with single letters.

We are now ready to simulate Compression directly on the equation. The
question is, in which order we should compress pairs and blocks? We make the
choice nondeterministically: if there are any non-crossing pairs or letters, we
compress them. This is natural, as such compression decreases both the size of
the equation and the size of the length-minimal solution of the equation. If all
pairs and letters are crossing, we choose greedily, i.e. the one that leads to the
smallest equation (in one step). It is easy to show that such a strategy keeps
the equation quadratic, more involved strategy, in which we compress many
pairs/blocks in parallel, leads to a linear-length equation.

Algorithm 7. WordEqSAT Deciding the satisfiability of word equations
1: while |u| > 1 or |u| > 1 do

2: L «+ list of letters in u, v

3 Choose a pair ab € P? or a letter a € P > Guess
4 if it is crossing then > Guess
5: uncross it
6
7

compress it
Solve the problem naively

Call one iteration of the main loop a phase.

The correctness of the algorithm follows from the earlier discussion on the
correctness of BlockComp, CutPrefSuff, PairComp and Pop. In particular, the
length of the length-minimal solution drops by at least 1 in each iteration, thus
the algorithm terminates.

Lemma 6. Algorithm WordEqSAT has O(N) phases, where N is the length of
the shortest solution of the input equation.

Let us bound the space needed by the algorithm: we claim that for appropriate
nondeterministic choices the stored equation has at most 8n? letters (and n
variables). To see this, observe first that each Pop introduces at most 2n letters,
one at each side of the variable. The same applies to CutPrefSuff (formally,
CutPrefSuff introduces long blocks but they are immediately replaced with single
letters, and so we can think that in fact we introduce only 2n letters). By (1)—(3)
we know that there are at most 2n crossing pairs and crossing letters (as each
crossing pair/each crossing letter corresponds to one occurrence of a variable

56 A. Jez

and one ‘side’ of such an occurrence). If the equation has m letters (and at most
n occurrences of variables) and there is an occurrence of a non-crossing pair
or block then we choose it for compression. Otherwise, there are m letters in
the equation and each is covered by at least one pair/block, so for one of 2n
choice at least g~ letters are covered, so at least 7 letters are removed by some
compression. Thus the new equation has at most

m 1
m - = + 2n m<14n>+2n

previous ~~ popped
9 1
<8 |1——|+2n
an

removed
= 8n? — 2n + 2n = 8n?

letters, where the inequality follows by the inductive assumption that m < 8n?.
Going for the bit-size, each symbol requires at most logarithmic number of bits,
and so

Lemma 7. WordEqSAT runs in O(n?logn) (bit) space.

With some effort we can make the above if analysis much tighter, see Sect. 4.1.

Theorem 1 ([36]). The recompression based algorithm (nondeterministically)
decides word equations problem in O(nlogn) bit-space; moreover, the stored
equation has linear length.

Moreover, with some extra effort one can remove also the logarithmic depen-
dency, and show that satisfiability of word equations is in non-deterministic
linear space, i.e. the problem is context sensitive. Surprisingly, it is enough to
employ Huffman coding for the equation and run a variant of the algorithm.
However, the analysis requires a deeper understanding of how fragments of the
equation are changed during the algorithm and how they depend one on another.

Theorem 2 ([37]). A variant of recompression based algorithm which encodes
the equation using Huffman coding (nondeterministically) decides word equations
problem in O(m) bit-space; where m is the bit-size encoding of the input using
any prefix-free code.
Note that we allow some bit-optimization in the size of the input problem.

As a reminder: a PSPACE algorithm for this problem was already known [65].
Its memory consumption is not stated explicitly in that work, however, it is much

larger than O(nlogn): the stored equations are of length O(n?) and during the
transformations the algorithm uses essentially more memory.

3 Extensions of the Algorithm for Word Equations

3.1 O(nlogn) Space

In order to improve the space consumption from quadratic to O(nlogn) we want
to perform several compressions in parallel. To make it more precise, observe that

Recompression: Technique for Word Equations and Compressed Data 57

— All block compressions (also for different letters) can be performed in parallel,
as such blocks do not overlap. Moreover, uncrossing different letters can also
be done in parallel: if a is the first letter of S(X) and b the last, then we pop
from X the a-prefix and b-suffix.

— If Xy and X, are disjoint, then the pair compressions for ab with a € X~y and
b € X, can be done in parallel. Similarly as in the previous case, uncrossing
can be done in parallel, by popping first letter if it is from Y. and last if it is
from ;.

— We do not compress all pairs, only those from O(1) partitions Xp, X, that
cover ‘many’ occurrences of pairs in the equation and in the solution.

The crucial things is the choice of partitions. It turns out that choosing
a random partition reduces the length of the solution by a constant fraction:
consider two consecutive letters ab in S(X). If a = b then they will be compressed
as part of the maximal block. If a # b then there is 1/4 chance that ab € XX,
Thus, in expectation, the length of the word shortens by one fourth of its length.

A similar argument also shows that the number of letters in the equation
remains linear, when a random partition is chosen. Thus, the equation will be
of linear size (though each letter may need O(logn) bits for the encoding).

3.2 Equations with Regular Constraints and Inversion; Equations
in Free Groups

As already mentioned, it is natural and important to extend the word equations
by regular constraints and inversion, in particular this leads to an algorithm
for equations in free groups [13] (the reduction between those two problems is
fully syntactical and does not depend on the particular algorithm for solving
word equations). Note that it is not known, whether the algorithm generating
a representation of all solutions can be also extended by regular constraints and
inversion. Thus the only previously known algorithm for representation of all
solutions of an equation in a free group was due to Razborov [68], and it was
based on Makanin’s algorithm for word equations in free groups.

Adding the regular constraints to the recompression based algorithm Word-
EqSAT is fairly standard: We can encode all constraints using one non-
deterministic finite automaton (the constraints for particular variables differ
only in the set of accepting states). For each letter ¢ we store its transition
function, i.e. a function f.: Q — 2%, which says that the automaton in state ¢
after reading a letter ¢ reaches a state in f.(q). This function naturally extends
to words: it still defines which states can be reached from ¢ after reading w.
Formally fua = (fwo fa)(q) ={p|3¢" € fu(q) ip € fu(¢)} for aletter a. If we
introduce a new letter ¢ (which replaces a word w) then we naturally define the
transition function f. «— f,,. We can express the regular constraints in terms
of this function: saying that S(X) is accepted by an automaton means that
fs(x)(qo) is one of the accepting states. So it is enough to guess the value of
fs(x) which satisfies this condition; in this way we can talk about the value fx
for a variable X. Popping letters from a variable means that we need to adjust

58 A. Jez

the transition function, i.e. when we replace X by aX then fx = f, o fx/, we
similarly define fx when we pop letters to the right.

More problems are caused by the inversion: intuitively it corresponds to
taking the inverse element in the group and on the semigroup level we this is
simulated by requiring that @ = a for each letter a and @iasz ... @ = G, - . . 207
This has an impact on the compression: when we compress a pair ab to ¢, then
we should also replace ab = ba by a letter €. At the first sight this looks easy, but
becomes problematic, when those two pairs are not disjoint, i.e. when @ = a (or
b = b); in general we cannot exclude such a case and if it happens, in a sequence
bab during the pair compression for ba we want to simultaneously replace ba
and ab, which is not possible. Instead, we replace maximal fragments that can
be fully covered with pairs ab or ba, in this case this: the whole triple bab. In
the worst case (when @ = @ and b = b) we need to replace whole sequences
of the form (ab)™, which is a common generalisation of both pairs and blocks
compression.

Theorem 3 ([6,14]). A recompression based algorithm generates in polynomial
space the description of all solutions of a word equation in free semigroups with
tnversion and reqular constraints.

3.3 Context Unification

Recall that the context unification is a generalisation of word equations to the
case of terms (Fig. 2). What type of equations we would like to consider? Clearly
we consider terms over a fixed signature (which is usually part of the input),
and allow occurrences of constants and variables. If we allow only that the vari-
ables represent full terms, then the satisfiability of such equations is decidable
in polynomial time [69] and so probably does not generalise the word equations
(which are NP-hard). This is also easy to observe when we look closer at a word
equation: the words represented by the variables can be concatenated at both
ends, i.e. they represent terms with a missing argument.

We arrive at a conclusion that our generalisation should use variables with
arguments, i.e. the (second-order) variables take an argument that is a full term
and can use it, perhaps several times. Such a definition leads to a second-order
unification, which is known to be undecidable even in very restricted subcases [16,
26,47,49].

Thus we would like to have a subclass of second order unification that still
generalises word equations. In order to do that we put additional restriction on
the solutions: each argument can be used by the term exactly once. Observe
that this still generalises the word equations: using the argument exactly once
naturally corresponds to concatenation (Fig.1).

Formally, in the context unification problem [7,8,74], we consider an equation
u = v in which we use term variables (representing closed terms), which we
denote by letters x,y, as well as context variables (representing terms with one
‘hole’ for the argument, they are usually called contezts), which we denote by
letters X, Y. Syntactically, u and v are terms that use letters from signature X

Recompression: Technique for Word Equations and Compressed Data 59

Fig. 1. A context and the same context applied on an argument.

(which is part of the input), term variables and context variables, the former are
treated as symbols of arity 0, while the latter as symbols of arity 1. A substitution
S assigns to each variable a closed term over X' and to each context variable it
assigns a context, i.e. a term over X' U {2} in which the special symbol {2 has
arity 0 and is used exactly once. (Intuitively it corresponds to a place in which we
later substitute the argument). S is extended to u, v in a natural way, note that
for a context variable X the term S(X (t)) is obtained by replacing in S(X) the
unique symbol 2 by S(t). A solution is a substitution satisfying S(u) = S(v).

Ezample 2. Consider a signature {f,c, '}, where f has arity 2 while ¢, ¢’ have
arity 0 and consider an equation X(c) = Y(¢’), where X and Y are context
variables. The equation has a solution S(X) = f(£2,¢),S(Y) = f(¢,£2) and
then S(X(c)) = f(c,) = S(Y(c)).

Fig. 2. Term f(h(c, ¢, c), f(c, f(c,¢))) viewed as a tree, f is of arity 2, h: 3 and ¢: 0.

We try to apply the main idea of the recompression also in the case of
terms: we iterate local compression operations and we guarantee that the word
(term) equation is polynomial size. Since several term problems were solved
using compression-based methods [9,17-19,48], there is a reasonable hope that
our approach may succeed.

60 A. Jez

Pair and block compression easily generalise to sequences of letters of arity 1
(we can think of them as words), unfortunately, there is no guarantee that a term
has even one such letter. Intuitively, we rather expect that it has mostly leaves
and symbols of larger arity. This leads us to another local compression operation:
leaf compression. Consider a node labelled with f and its i-th child that is a leaf.
We want to compress f with this child, leaving other children (and their subtrees)
unchanged. Formally, given f of arity at least 1, position 1 < i < ar(f) and a let-
ter ¢ of arity 0 the LeafComp(f,i,c,t) operation (leaf compression) replaces in

term ¢ nodes labelled with f and subterms t1,...,%;_1,¢,tiy1,...,tar(s) (Where ¢
and position i are fixed, while other terms ¢1,...,t;_1,ti11,...,ta(p)—varying)
by a term labelled with f’ and subterms t1,...,t;_y,t;,y,...,1,) that are

obtained by applying recursively LeafComp to terms t1,...,t;1,tiv1,. .., tar(p);
in other words, we first change the label from f to f/ and then remove the i-th
child, which has a label ¢ and we apply such a compression to all occurrences of
f and c in parallel.

The notion of crossing pair generalizes to this case in a natural way and
the uncrossing replaces a term variable with a constant or replaces X (t) with
X(f(x1,..., 2 t, %41, .-, 2¢)). Note that this introduces new variables.

Now the whole algorithm looks similar as in the case of word equations, we
simply use additional compression operation. However, the analysis is much more
involved, as the new uncrossing introduces fresh term variables. However, their
number at any point can be linearly bounded and the polynomial upper-bound
follows.

Theorem 4 ([31]). Recompression based algorithm solves context unification in
nondeterministic polynomial space.

4 Recompression and Compressed Data

The recompression technique is (partially) inspired by methods coming from the
algorithm’s design [1,58]. In this section we show that it is able to contribute
back to algorithmics: some algorithmic questions for compressed data can be
solved using a recompression technique. The obtained solutions are as good
and sometimes better than the known ones, which is surprising taking into the
account the robustness of the method.

4.1 Straight Line Programs and Recompression

Recall that the Straight Line Programme (SLP) was defined as a context-free
grammar whose each nonterminal generates exactly one word. We employ the
following naming conventions for SLPs: its nonterminals are ordered (without
loss of generality: X5, Xs, ..., X;,), each nonterminal has exactly one production
and if X; occurs in the production for X; then j < i; we will use symbols A,
B, etc. to denote an SLP. The unique word generated by a nonterminal X is
denoted by val(X;), while the whole SLP A defines a word val(A) = val(X,,).

Recompression: Technique for Word Equations and Compressed Data 61

We can treat SLP as a system of word equations (in variables Xi,..., X,,):
production X; — «; corresponds to an equation X; = «;; observe that such an
equality is meaningful as val(X) = val(«) (where val is naturally extended to
strings of letters and nonterminals), moreover, this is the unique solution of this
equation. Thus the recompression technique can be applied to SLPs as well (so
far we used recompression only to one equation but it easily generalises also to
a system of equations).

However, there are two issues that need to be solved: non-determinism and
efficiency: the recompression for word equations is highly non-deterministic while
algorithms for SLPs should, if possible, be deterministic and we usually want
them to be efficient, i.e. we want as small polynomial degree as possible.

Let us inspect the source of non-determinism of recompression-based app-
roach, it is needed to:

1. establish, whether val(X;) = ¢;

2. establish the first (and last) letter of val(X;);

3. establish the length of a-prefix and suffix of val(X;);
4. the choice of the partition to compress.

The first three question ask about some basic properties of the solution and
can be easily answered in case of SLPs: assuming that we already know the
answers for X; for j < i: let X; — a4, then we first remove from o; all nonter-
minals X, for which val(X;) = ¢, and then

1. val(X;) = € if and only if «; = €;

2. the first letter of val(Xj;) is the first letter of a; or the first letter of val(X;),
if the first symbol of o is Xj;

3. the length of the a-prefix depends only on the letters a in a; and the lengths
of a-prefixes in nonterminals in «;.

All those conditions can be verified in linear time. The last question is of different
nature. However, the argument used to show that a good choice of a partition
exists actually shown that in expectation the choice is a good one and this
approach can be easily derandomised using conditional expectation approach.
In particular, this subprocedure can be implemented in linear time.

Concerning the running time, the generalisations of Pop, PairComp, CutPref-
Suff and BlockComp can be implemented in linear time, thus the recompression
for SLPs runs in polynomial (in SLP’s size) time, so polynomial in total.

Lemma 8. The recompression for SLPs runs in O(nlog N) < O(n?) time,
where n is the size of the input SLP and N is the length of the defined word.
4.2 SLP Equality and Fully Compressed Pattern Matching

One of the first (and most important) problems considered for SLPs is the equal-
ity testing, i.e. for two SLPs we want to decide if they define the same word. The
first polynomial algorithm for this problem was given in 1994 by Plandowski [63],

62 A. Jez

to be more precise, his algorithm run in O(n?) time. Afterwards research was
mostly focused on the more general problem of fully compressed pattern match-
ing: for given SLPs A and B we want to decide, whether val(A) occurs in
val(B) (as a subword). The first solution to this problem was given by Karpinski
et al. [40] in 1995. Gasieniec et al. [21] gave a faster randomised algorithm. In
1997 Miyazaki et al. [59] constructed an O(n?) algorithm. Finally, Lifshits gave
an O(n?3) algorithm for this problem [52]. All of the mentioned papers were based
on the same original idea as Plandowski’s algorithm.

Recompression can be naturally applied to equality testing of SLPs: given two
SLPs A and B we add an equation X,, , = Yy, , and ask about the satisfiability of
the whole system. As already observed, the recompression based algorithm will
work in polynomial time. It turns out that the proper implementation (using
many nontrivial algorithmic techniques) runs in time O(nlog N), where N =
| val(A)| = | val(B)| (if | val(A)| # | val(B)| then clearly A and B are not equal)
and n the sum of sizes of SLPs A and B. In order to obtain such a running time,
we need several optimisations.

Theorem 5 ([33]). The recompression based algorithm for equality testing for
SLPs runs in O(nlog N) time, where n is the sum of SLPs’ sizes while N the
size of the defined (decompressed) words.

In order to use the recompression technique for the fully compressed pattern
matching problem, we need some essential modifications: consider ba-pair com-
pression on a pattern ab and text bab. We obtain the same pattern ab and text
cb, loosing the only occurrence of the pattern in the text. This happens because
the compression (on the text) is done partially on the pattern occurrence and
partially outside it. To remedy this, we perform the compression operations in a
particular order, which takes into the account what are the first and last letters
of pattern and text. (In the considered example, we make the ab-pair compres-
sion first and this preserves the occurrences of the pattern.) Similar approach
works also for block compression.

Theorem 6 ([33]). The recompression based algorithm for fully compressed pat-
tern matching runs in O(nlog M) time, where n is the sum of SLPs’ sizes while
M the length of the (uncompressed) pattern.

References

1. Alstrup, S., Brodal, G.S., Rauhe, T.: Pattern matching in dynamic texts. In:
Shmoys, D.B. (ed.) SODA, pp. 819-828. ACM/SIAM (2000). https://doi.org/10.
1145/338219.338645, http://dl.acm.org/citation.cfm?id=338219.338645

2. Busatto, G., Lohrey, M., Maneth, S.: Efficient memory representation of XML
document trees. Inf. Syst. 33(4-5), 456-474 (2008)

3. Biichi, J.R., Senger, S.: Definability in the existential theory of concatenation
and undecidable extensions of this theory. Math. Log. Q. 34(4), 337-342 (1988).
https://doi.org/10.1002/malq.19880340410

https://doi.org/10.1145/338219.338645
https://doi.org/10.1145/338219.338645
http://dl.acm.org/citation.cfm?id=338219.338645
https://doi.org/10.1002/malq.19880340410

10.

11.

12.

13.

14.

15.

16.

17.

18.

Recompression: Technique for Word Equations and Compressed Data 63

Charatonik, W., Pacholski, L.: Word equations with two variables. In: IWWERT,
pp. 43-56 (1991). https://doi.org/10.1007/3-540-56730-5_30

Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554-2576 (2005). https://doi.org/10.1109/TIT.2005.850116

Ciobanu, L., Diekert, V., Elder, M.: Solution sets for equations over free groups
are EDTOL languages. IJAC 26(5), 843-886 (2016). https://doi.org/10.1142/
S0218196716500363

Comon, H.: Completion of rewrite systems with membership constraints. Part
I: deduction rules. J. Symb. Comput. 25(4), 397-419 (1998). https://doi.org/10.
1006/jsc0.1997.0185

Comon, H.: Completion of rewrite systems with membership constraints. Part II:
constraint solving. J. Symb. Comput. 25(4), 421-453 (1998). https://doi.org/10.
1006/jsc0.1997.0186

Creus, C., Gascén, A., Godoy, G.: One-context unification with STG-compressed
terms is in NP. In: Tiwari, A. (ed.) 23rd International Conference on Rewrit-
ing Techniques and Applications (RTA 2012). LIPIcs, vol. 15, pp. 149-
164. Schloss Dagstuhl — Leibniz Zentrum fuer Informatik, Dagstuhl, Germany
(2012). https://doi.org/10.4230/LIPIcs.RTA.2012.149, http://drops.dagstuhl.de/
opus/volltexte/2012/3490

Dabrowski, R., Plandowski, W.: Solving two-variable word equations. In: Diaz, J.,
Karhumaéki, J., Lepistd, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
408-419. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
836

Dabrowski, R., Plandowski, W.: On word equations in one variable. Algorithmica
60(4), 819-828 (2011). https://doi.org/10.1007/s00453-009-9375-3

Diekert, V., Elder, M.: Solutions of twisted word equations, EDTOL languages,
and context-free groups. In: Chatzigiannakis, 1., Indyk, P., Kuhn, F., Muscholl, A.
(eds.) ICALP. LIPIcs, vol. 80, pp. 96:1-96:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.ICALP.2017.96

Diekert, V., Gutiérrez, C., Hagenah, C.: The existential theory of equations with
rational constraints in free groups is PSPACE-complete. Inf. Comput. 202(2), 105—
140 (2005). http://dx.doi.org/10.1016/.ic.2005.04.002

Diekert, V., Jez, A., Plandowski, W.: Finding all solutions of equations in free
groups and monoids with involution. Inf. Comput. 251, 263-286 (2016). https://
doi.org/10.1016/j.ic.2016.09.009

Diekert, V., Muscholl, A.: Solvability of equations in free partially commutative
groups is decidable. Int. J. Algebr. Comput. 16, 1047-1070 (2006). https://doi.org/
10.1142/S0218196706003372. Conference version in Proceedings of ICALP 2001,
pp. 543-554, LNCS 2076

Farmer, W.M.: Simple second-order languages for which unification is undecid-
able. Theor. Comput. Sci. 87(1), 25-41 (1991). https://doi.org/10.1016/S0304-
3975(06)80003-4

Gascén, A., Godoy, G., Schmidt-Schauf3, M.: Context matching for compressed
terms. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in
Computer Science, LICS 2008, 24—27 June 2008, Pittsburgh, PA, USA, pp. 93-102.
IEEE Computer Society (2008). https://doi.org/10.1109/LICS.2008.17

Gascén, A., Godoy, G., Schmidt-Schauf}; M.: Unification and matching on com-
pressed terms. ACM Trans. Comput. Log. 12(4), 26 (2011). https://doi.org/10.
1145/1970398.1970402

https://doi.org/10.1007/3-540-56730-5_30
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1142/S0218196716500363
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0185
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.1006/jsco.1997.0186
https://doi.org/10.4230/LIPIcs.RTA.2012.149
http://drops.dagstuhl.de/opus/volltexte/2012/3490
http://drops.dagstuhl.de/opus/volltexte/2012/3490
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/978-3-540-27836-8_36
https://doi.org/10.1007/s00453-009-9375-3
https://doi.org/10.4230/LIPIcs.ICALP.2017.96
http://dx.doi.org/10.1016/j.ic.2005.04.002
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1016/j.ic.2016.09.009
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.1142/S0218196706003372
https://doi.org/10.1016/S0304-3975(06)80003-4
https://doi.org/10.1016/S0304-3975(06)80003-4
https://doi.org/10.1109/LICS.2008.17
https://doi.org/10.1145/1970398.1970402
https://doi.org/10.1145/1970398.1970402

64

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

A. Jez

Gascén, A., Godoy, G., Schmidt-Schauf}, M., Tiwari, A.: Context unification with
one context variable. J. Symb. Comput. 45(2), 173-193 (2010). https://doi.org/
10.1016/j.jsc.2008.10.005

Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for
Lempel-Ziv encoding. In: SWAT, pp. 392-403 (1996). https://doi.org/10.1007/3-
540-61422-2_148

Gasieniec, L., Karpiniski, M., Plandowski, W., Rytter, W.: Randomized efficient
algorithms for compressed strings: the finger-print approach. In: CPM, pp. 3949
(1996). https://doi.org/10.1007/3-540-61258-0-3

Gasieniec, L., Rytter, W.: Almost optimal fully LZW-compressed pattern match-
ing. In: DCC, pp. 316-325. IEEE Computer Society (1999)

Gawrychowski, P.: Pattern matching in Lempel-Ziv compressed strings: fast, sim-
ple, and deterministic. In: Demetrescu, C., Halldérsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 421-432. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-23719-5_36

Gawrychowski, P.: Tying up the loose ends in fully LZW-compressed pattern
matching. In: Diirr, C., Wilke, T. (eds.) STACS. LIPIcs, vol. 14, pp. 624-635.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik (2012). https://doi.org/10.
4230/LIPIcs.STACS.2012.624

Gawrychowski, P.: Optimal pattern matching in LZW compressed strings. ACM
Trans. Algorithms 9(3), 25 (2013). https://doi.org/10.1145/2483699.2483705
Goldfarb, W.D.: The undecidability of the second-order unification problem. Theor.
Comput. Sci. 13, 225-230 (1981). https://doi.org/10.1016,/0304-3975(81)90040-2
Gutiérrez, C.: Satisfiability of word equations with constants is in exponential
space. In: FOCS, pp. 112-119 (1998). https://doi.org/10.1109/SFCS.1998.743434
Ilie, L., Plandowski, W.: Two-variable word equations. ITA 34(6), 467-501 (2000).
https://doi.org/10.1051 /ita:2000126

Jaffar, J.: Minimal and complete word unification. J. ACM 37(1), 47-85 (1990)
Jez, A.: The complexity of compressed membership problems for finite automata.
Theory Comput. Syst. 55, 685-718 (2014). https://doi.org/10.1007/s00224-013-
9443-6

Jez, A.: Context unification is in PSPACE. In: Koutsoupias, E., Esparza, J., Fraig-
niaud, P. (eds.) ICALP. LNCS, vol. 8573, pp. 244-255. Springer (2014). https://
doi.org/10.1007/978-3-662-43951-7_21, full version at http://arxiv.org/abs/1310.
4367

Jez, A.: Approximation of grammar-based compression via recompression. Theor.
Comput. Sci. 592, 115-134 (2015). https://doi.org/10.1016/j.tcs.2015.05.027

Jez, A.: Faster fully compressed pattern matching by recompression. ACM Trans.
Algorithms 11(3), 20:1-20:43 (2015). https://doi.org/10.1145/2631920

Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141-150 (2016). https://doi.org/10.1016/j.tcs.2015.12.032

Jez, A.: One-variable word equations in linear time. Algorithmica 74, 1-48 (2016).
https://doi.org/10.1007/s00453-014-9931-3

Jez, A.: Recompression: a simple and powerful technique for word equations. J.
ACM 63(1), 4:1-4:51 (2016). https://doi.org/10.1145/2743014

Jez, A.: Word equations in nondeterministic linear space. In: Chatzigiannakis,
I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) ICALP. LIPIcs, vol. 80, pp. 95:1-
95:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017). https://doi.org/
10.4230/LIPIcs.ICALP.2017.95

Jez, A., Lohrey, M.: Approximation of smallest linear tree grammar. Inf. Comput.
251, 215-251 (2016). https://doi.org/10.1016/j.ic.2016.09.007

https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1016/j.jsc.2008.10.005
https://doi.org/10.1007/3-540-61422-2_148
https://doi.org/10.1007/3-540-61422-2_148
https://doi.org/10.1007/3-540-61258-0_3
https://doi.org/10.1007/978-3-642-23719-5_36
https://doi.org/10.1007/978-3-642-23719-5_36
https://doi.org/10.4230/LIPIcs.STACS.2012.624
https://doi.org/10.4230/LIPIcs.STACS.2012.624
https://doi.org/10.1145/2483699.2483705
https://doi.org/10.1016/0304-3975(81)90040-2
https://doi.org/10.1109/SFCS.1998.743434
https://doi.org/10.1051/ita:2000126
https://doi.org/10.1007/s00224-013-9443-6
https://doi.org/10.1007/s00224-013-9443-6
https://doi.org/10.1007/978-3-662-43951-7_21
https://doi.org/10.1007/978-3-662-43951-7_21
http://arxiv.org/abs/1310.4367
http://arxiv.org/abs/1310.4367
https://doi.org/10.1016/j.tcs.2015.05.027
https://doi.org/10.1145/2631920
https://doi.org/10.1016/j.tcs.2015.12.032
https://doi.org/10.1007/s00453-014-9931-3
https://doi.org/10.1145/2743014
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.4230/LIPIcs.ICALP.2017.95
https://doi.org/10.1016/j.ic.2016.09.007

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

Recompression: Technique for Word Equations and Compressed Data 65

Karkkéinen, J., Mikkola, P., Kempa, D.: Grammar precompression speeds up
Burrows—Wheeler compression. In: Calderén-Benavides, L., Gonzélez-Caro, C.,
Chévez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 330-335. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34109-0_34

Karpinski, M., Rytter, W., Shinohara, A.: Pattern-matching for strings with short
descriptions. In: Galil, Z., Ukkonen, E. (eds.) CPM 1995. LNCS, vol. 937, pp.
205-214. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60044-2_44
Kharlampovich, O., Myasnikov, A.: Irreducible affine varieties over a free group.
II: systems in triangular quasi-quadratic form and description of residually free
groups. J. Algebra 200, 517-570 (1998)

Kharlampovich, O., Myasnikov, A.: Elementary theory of free non-abelian groups.
J. Algebra 302, 451-552 (2006)

Koscielski, A., Pacholski, L.: Complexity of Makanin’s algorithm. J. ACM 43(4),
670-684 (1996). https://doi.org/10.1145/234533.234543

Koécielski, A., Pacholski, L.: Makanin’s algorithm is not primitive recursive.
Theor. Comput. Sci. 191(1-2), 145-156 (1998). https://doi.org/10.1016,/S0304-
3975(96)00321-0

Laine, M., Plandowski, W.: Word equations with one unknown. Int. J. Found.
Comput. Sci. 22(2), 345-375 (2011). https://doi.org/10.1142/S0129054111008088
Larsson, N.J., Moffat, A.: Offline dictionary-based compression. In: Data Compres-
sion Conference, pp. 296-305 (1999). https://doi.org/10.1109/DCC.1999.755679
Levy, J.: Linear second-order unification. In: Ganzinger, H. (ed.) RTA 1996. LNCS,
vol. 1103, pp. 332-346. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-61464-8_63

Levy, J., Schmidt-Schauf}, M., Villaret, M.: On the complexity of bounded second-
order unification and stratified context unification. Log. J. IGPL 19(6), 763-789
(2011). https://doi.org/10.1093/jigpal/jzq010

Levy, J., Veanes, M.: On the undecidability of second-order unification. Inf. Com-
put. 159(1-2), 125-150 (2000). https://doi.org/10.1006/inco.2000.2877

Levy, J., Villaret, M.: Linear second-order unification and context unification with
tree-regular constraints. In: Bachmair, L. (ed.) RTA 2000. LNCS, vol. 1833, pp.
156-171. Springer, Heidelberg (2000). https://doi.org/10.1007/10721975_11

Levy, J., Villaret, M.: Currying second-order unification problems. In: Tison,
S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 326-339. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45610-4_23

Lifshits, Y.: Processing compressed texts: a tractability border. In: Ma, B., Zhang,
K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228-240. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73437-6_24

Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241-299 (2012)

Makanin, G.: The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik 2(103), 147236 (1977). (in Russian)

Makanin, G.: Equations in a free group. Izv. Akad. Nauk SSR Ser. Math. 46,
1199-1273 (1983). English translation in Math. USSR Izv. 21 (1983)

Makanin, G.: Decidability of the universal and positive theories of a free group. Izv.
Akad. Nauk SSSR Ser. Mat. 48, 735-749 (1984). in Russian. English translation.
In: Math. USSR Izvestija 25(75-88) (1985)

Matiyasevich, Y.: Some decision problems for traces. In: Adian, S., Nerode, A.
(eds.) LFCS 1997. LNCS, vol. 1234, pp. 248-257. Springer, Heidelberg (1997).
https://doi.org/10.1007/3-540-63045-7_25

https://doi.org/10.1007/978-3-642-34109-0_34
https://doi.org/10.1007/3-540-60044-2_44
https://doi.org/10.1145/234533.234543
https://doi.org/10.1016/S0304-3975(96)00321-0
https://doi.org/10.1016/S0304-3975(96)00321-0
https://doi.org/10.1142/S0129054111008088
https://doi.org/10.1109/DCC.1999.755679
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1007/3-540-61464-8_63
https://doi.org/10.1093/jigpal/jzq010
https://doi.org/10.1006/inco.2000.2877
https://doi.org/10.1007/10721975_11
https://doi.org/10.1007/3-540-45610-4_23
https://doi.org/10.1007/978-3-540-73437-6_24
https://doi.org/10.1007/3-540-63045-7_25

66

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

2.

73.

74.

A. Jez

Mehlhorn, K., Sundar, R., Uhrig, C.: Maintaining dynamic sequences under equal-
ity tests in polylogarithmic time. Algorithmica 17(2), 183-198 (1997). https://doi.
org/10.1007/BF02522825

Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Apostolico, A., Hein, J. (eds.)
CPM 1997. LNCS, vol. 1264, pp. 1-11. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63220-4_45

Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. J. Artif. Intell. Res. (JAIR) 7, 67-82 (1997). https://doi.
org/10.1613 /jair.374

Niehren, J., Pinkal, M., Ruhrberg, P.: On equality up-to constraints over finite
trees, context unification, and one-step rewriting. In: McCune, W. (ed.) CADE
1997. LNCS, vol. 1249, pp. 34-48. Springer, Heidelberg (1997). https://doi.org/10.
1007/3-540-63104-6_4

Niehren, J., Pinkal, M., Ruhrberg, P.: A uniform approach to under specification
and parallelism. In: Cohen, P.R., Wahlster, W. (eds.) ACL, pp. 410-417. Morgan
Kaufmann Publishers/ACL (1997). https://doi.org/10.3115/979617.979670
Plandowski, W.: Testing equivalence of morphisms on context-free languages. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460-470. Springer, Heidelberg
(1994). https://doi.org/10.1007/BFb0049431

Plandowski, W.: Satisfiability of word equations with constants is in NEXPTIME.
In: STOC, pp. 721-725. ACM (1999). https://doi.org/10.1145/301250.301443
Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J.
ACM 51(3), 483-496 (2004). https://doi.org/10.1145/990308.990312

Plandowski, W.: An efficient algorithm for solving word equations. In: Kleinberg,
J.M. (ed.) STOC, pp. 467-476. ACM (2006). https://doi.org/10.1145/1132516.
1132584

Plandowski, W., Rytter, W.: Application of Lempel-Ziv encodings to the solution
of word equations. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998.
LNCS, vol. 1443, pp. 731-742. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055097

Razborov, A.A.: On systems of equations in free groups. Ph.D. thesis, Steklov
Institute of Mathematics (1987). (in Russian)

Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23-41 (1965)

Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211-222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

Saarela, A.: On the complexity of Hmelevskii’s theorem and satisfiability of three
unknown equations. In: Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol.
5583, pp. 443-453. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02737-6_36

Sahinalp, S.C., Vishkin, U.: Symmetry breaking for suffix tree construction. In:
Leighton, F.T., Goodrich, M.T. (eds.) SODA, pp. 300-309. ACM (1994). https://
doi.org/10.1145/195058.195164

Sakamoto, H.: A fully linear-time approximation algorithm for grammar-based
compression. J. Discrete Algorithms 3(2-4), 416-430 (2005). https://doi.org/10.
1016/j.jda.2004.08.016

Schmidt-Schau, M.: Unification of stratified second-order terms (1994). Internal
Report 12/94, Johann-Wolfgang-Goethe-Universitat

https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/BF02522825
https://doi.org/10.1007/3-540-63220-4_45
https://doi.org/10.1007/3-540-63220-4_45
https://doi.org/10.1613/jair.374
https://doi.org/10.1613/jair.374
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.1007/3-540-63104-6_4
https://doi.org/10.3115/979617.979670
https://doi.org/10.1007/BFb0049431
https://doi.org/10.1145/301250.301443
https://doi.org/10.1145/990308.990312
https://doi.org/10.1145/1132516.1132584
https://doi.org/10.1145/1132516.1132584
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1007/BFb0055097
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.1007/978-3-642-02737-6_36
https://doi.org/10.1145/195058.195164
https://doi.org/10.1145/195058.195164
https://doi.org/10.1016/j.jda.2004.08.016
https://doi.org/10.1016/j.jda.2004.08.016

75.

76.

7T.

78.

79.

80.

Recompression: Technique for Word Equations and Compressed Data 67

Schmidt-Schauf, M.: A decision algorithm for stratified context unification. J. Log.
Comput. 12(6), 929-953 (2002). https://doi.org/10.1093/logcom/12.6.929
Schmidt-Schauf3; M.: Decidability of bounded second order unification. Inf. Com-
put. 188(2), 143-178 (2004). https://doi.org/10.1016/j.ic.2003.08.002
Schmidt-Schaufl; M., Schulz, K.U.: On the exponent of periodicity of minimal solu-
tions of context equations. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp.
61-75. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0052361
Schmidt-Schaufl; M., Schulz, K.U.: Solvability of context equations with two con-
text variables is decidable. J. Symb. Comput. 33(1), 77-122 (2002). https://doi.
org/10.1006 /jsco.2001.0438

Schulz, K.U.: Makanin’s algorithm for word equations-two improvements and a
generalization. In: Schulz, K.U. (ed.) IWWERT 1990. LNCS, vol. 572, pp. 85-150.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55124-7_4

Storer, J.A., Szymanski, T.G.: The macro model for data compression. In: STOC,
pp. 30-39 (1978)

https://doi.org/10.1093/logcom/12.6.929
https://doi.org/10.1016/j.ic.2003.08.002
https://doi.org/10.1007/BFb0052361
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1006/jsco.2001.0438
https://doi.org/10.1007/3-540-55124-7_4

	Recompression: Technique for Word Equations and Compressed Data
	1 Introduction
	1.1 Word Equations
	1.2 Compression and Word Equations
	1.3 Recompression
	1.4 Algorithms for Grammar-Based Compression

	2 Recompression for Word Equations
	3 Extensions of the Algorithm for Word Equations
	3.1 O(n logn) Space
	3.2 Equations with Regular Constraints and Inversion; Equations in Free Groups
	3.3 Context Unification

	4 Recompression and Compressed Data
	4.1 Straight Line Programs and Recompression
	4.2 SLP Equality and Fully Compressed Pattern Matching

	References

