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Abstract. We investigate the membership problem that one may asso-
ciate to every class of languages C. The problem takes a regular language
as input and asks whether it belongs to C. In practice, finding an algo-
rithm provides a deep insight on the class C. While this problem has a
long history, many famous open questions in automata theory are tied
to membership. Recently, a breakthrough was made on several of these
open questions. This was achieved by considering a more general deci-
sion problem than membership: covering. In the paper, we investigate
how the new ideas and techniques brought about by the introduction
of this problem can be applied to get new insight on earlier results. In
particular, we use them to give new proofs for two of the most famous
membership results: Schützenberger’s theorem and Simon’s theorem.
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Star-free languages · Piecewise testable languages

1 Introduction

Historical Context. A prominent question in formal languages theory is to
solve the membership problem for classes of regular languages. Given a fixed
class C, one must find an algorithm which decides whether an input regular
language belongs to C. Such a procedure is called a C-membership algorithm.
What motivates this question is the deep insight on the class C that is usually
provided by a solution. Intuitively, being able to formulate an algorithm requires
a solid understanding of all languages contained in the class C. In other words,
membership is used as a mathematical tool whose purpose is to analyze classes.

This research effort started with a famous theorem of Schützenberger [36]
which describes the class of star-free languages (SF). These are the languages
that can be expressed by a regular expression using union, concatenation and
complement, but not Kleene star. This is a prominent class which admits natural
alternate definitions. For example, the star-free languages are those which can
be defined in first-order logic [15] or equivalently in linear temporal logic [11].
Schützenberger’s theorem yields an algorithm which decides whether an input
regular language is star-free (i.e. an SF-membership algorithm). This provides
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insight on SF not because of the algorithm itself, but rather because of its proof.
Indeed, it includes a generic construction which builds an expression witnessing
membership in SF for every input language on which the algorithm answers
positively. This result was highly influential and pioneered a very successful line
of research. The theorem itself was often revisited [5,7,8,10,14,16,17,21,23,41]
and researchers successfully obtained similar results for other prominent classes
of languages. Famous examples include the locally testable languages [4,42] or
the piecewise testable languages [38]. However, membership is a difficult question
and despite years of investigation, there are still many open problems.

Among these open problems, a famous one is the dot-depth problem. Brzo-
zowski and Cohen [2] defined a natural classification of the star-free languages:
the dot-depth hierarchy. Each star-free language is assigned a “complexity level”
(called dot-depth) according to the number of alternations between concatena-
tions and complements that are required to define it with an expression. It is
known that this hierarchy is strict [3]. Hence, a natural question is whether
membership is decidable for each level. This has been a very active research
topic since the 70s (see [20,28,32] for surveys). Yet, only the first two levels are
known to be decidable so far. An algorithm for dot-depth one was published
by Knast in 1983 [13]. Despite a lot of partial results along the way, it took
thirty more years to solve the next level: the decidability of dot-depth two was
shown in 2014 [26,33]. This situation is easily explained: in practice, getting new
membership results always required new conceptual ideas and techniques. In the
paper, we are interested in the ideas that led to a solution for dot-depth two.
The key ingredient was a new more general decision problem called covering.

Covering. The problem was first considered implicitly in [26] and properly
defined later in [31]. Given a class C, the C-covering problem is as follows. The
input consists in two objects: a regular language L and a finite set of regular
languages L. One must decide whether there exists a C-cover K of L (a finite set
of languages in C whose union includes L) such that no language in K intersects
all languages in L. Naturally, this definition is more involved than the one of
membership and it is more difficult to find an algorithm for C-covering than for C-
membership. Yet, covering was recently shown to be decidable for many natural
classes (see for example [6,24,25,30,34,35]) including the star-free languages [29].

At the time of its introduction, there were two motivations for investigat-
ing this new question. First, while harder, covering is also more rewarding than
membership: it yields a more robust understanding of the classes. Indeed, a C-
membership algorithm only yields benefits for the languages of C: we manage
to detect them and to build a description witnessing this membership. On the
other hand, a C-covering algorithm applies to arbitrary languages. One may view
C-covering as an approximation problem: on inputs L and L, we want to over-
approximate L with a C-cover while L specifies what an acceptable approxima-
tion is. A second key motivation was the application to the dot-depth hierarchy.
It turns out that all recent membership results for this hierarchy rely heavily
on covering arguments. More precisely, they are based on techniques that allow
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to lift covering results for a level in the hierarchy as membership results for a
higher level (see [32] for a detailed explanation).

Contribution. In the paper, we are not looking to provide new covering algo-
rithms. Instead, we look at a slightly different question. As we explained, finding
an algorithm for C-covering is even harder than for C-membership. Consequently,
the recent breakthroughs that were made on this question required developing
new ideas, new techniques and new ways to formulate intricate proof arguments.
In the paper, we look back at the original membership problem and investigate
how these new developments can be applied to get new insight on earlier results.
We prove that even if one is only interested in membership, reasoning in terms of
“covers” is quite natural and rather intuitive when presenting proof arguments.
In particular, C-covers are a very powerful tool for presenting generic construc-
tions which build descriptions of languages in the class C. We illustrate this point
by using covers to give new intuitive proofs for two of the most important mem-
bership results in the literature: Schützenberger theorem [36] for the star-free
languages and Simon’s theorem [38] for the piecewise testable languages.

Organization of the Paper. We first recall standard terminology about regu-
lar languages and define membership in Sect. 2. We introduce covering in Sect. 3
and explain why reasoning in terms of covers is intuitive and relevant even if
one is only interested in membership. We illustrate this point in Sect. 4 with a
new proof of Schützenberger’s theorem. Finally, we present a second example in
Sect. 5 with a new proof of Simon’s theorem.

2 Preliminaries

In this section, we briefly recall standard terminology about finite words and
classes regular languages. Moreover, we introduce the membership problem.

Regular Languages. An alphabet is a finite set A. As usual, A∗ denotes the set
of all words over A, including the empty word ε. For w ∈ A∗, we write |w| ∈ N

for the length of w (i.e. the number of letters in w). Moreover, for u, v ∈ A∗, we
denote by uv the word obtained by concatenating u and v.

Given an alphabet A, a language (over A) is a subset of A∗. Abusing terminol-
ogy, we shall often denote by u the singleton language {u}. We lift concatenation
to languages: for K,L ⊆ A∗, we let KL = {uv | u ∈ K and v ∈ L}. Finally, we
use Kleene star: if K ⊆ A∗, K+ denotes the union of all languages Kn for n ≥ 1
and K∗ = K+ ∪{ε}. In the paper, we only consider regular languages. These are
the languages that can be equivalently defined by regular expressions, monadic
second-order logic, finite automata or finite monoids. We shall use the definition
based on monoids which we briefly recall now (see [21] for details).

A monoid is a set M endowed with an associative multiplication (s, t) �→ s · t
(also denoted by st) having a neutral element 1M . An idempotent of a monoid
M is an element e ∈ M such that ee = e. It is folklore that for any finite monoid
M , there exists a natural number ω(M) (denoted by ω when M is understood)
such that sω is an idempotent for every s ∈ M . Observe that A∗ is a monoid
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whose multiplication is concatenation (the neutral element is ε). Thus, we may
consider monoid morphisms α : A∗ → M where M is an arbitrary monoid. Given
such a morphism and L ⊆ A∗, we say that L is recognized by α when there exists
a set F ⊆ M such that L = α−1(F ). A language L is regular if and only if it is
recognized by a morphism into a finite monoid.

Classes. We investigate classes of languages. Mathematically speaking, a class of
languages C is a correspondence A �→ C(A) which associates a (possibly infinite)
set of languages C(A) over A to every alphabet A. For the sake of avoiding clutter,
we shall often abuse terminology and omit the alphabet when manipulating
classes. That is, whenever A is fixed and understood, we directly write L ∈ C to
indicate that some language L ⊆ A∗ belongs to C(A).

While this is the mathematical definition, in practice, the term “class” is used
to indicate that C is presented in a specific way. Typically, classes are tied to a
particular syntax used to describe all the languages they contain. For example,
the regular languages are tied to regular expressions and monadic second-order
logic. Consequently, the classes that we consider in practice are natural and have
robust properties that we present now.

A lattice is a class C which is closed under finite union and intersection:
for every alphabet A, we have ∅, A∗ ∈ C(A) and for every K,L ∈ C(A), we
have H ∪ L,H ∩ L ∈ C(A). Moreover, a Boolean algebra is a lattice C which is
additionally closed under complement: for every alphabet A and K ∈ C(A), we
have A∗ \ K ∈ C(A). Finally, we say that a class C is quotient-closed when for
every alphabet A, every L ∈ C(A) and every w ∈ A∗, the following two languages
belong to C(A) as well:

w−1L
def= {u ∈ A∗ | wu ∈ L},

Lw−1 def= {u ∈ A∗ | uw ∈ L}.

The techniques that we discuss in the paper are meant to be applied for classes
that are quotient-closed lattices and contain only regular languages. The two
examples that we detail are quotient-closed Boolean algebras of regular lan-
guages.

Membership. When encountering a new class C, a natural objective is to pre-
cisely understand the languages it contains. In other words, we want to under-
stand what properties can be expressed with the syntax defining C. Of course,
this is an informal objective. In practice, we rely on a decision problem called
membership which we use as a mathematical tool to approach this question.

The problem is parameterized by an arbitrary class of languages C: we speak
of C-membership. It takes as input a regular language L and asks whether L
belongs to C. The key idea is that obtaining an algorithm for C-membership
is not possible without a solid understanding of C. In the literature, such an
algorithm is also called a decidable characterization of C.

Remark 1. We are not only interested in C-membership algorithms themselves
but also in their correctness proofs. In practice, the deep insight that we obtain
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on the class C comes from these proofs. Typically, the difficult part in such an
argument is to prove that a membership is sound: when it answers positively,
prove that the input language does belong to C. Typically, this requires a generic
construction for building a syntactic description of the language witnessing its
membership in C. 
�

Finding membership algorithms has been an important quest for a long time
in formal languages theory. The solutions that were obtained for important
classes are milestones in the theory of regular languages [13,22,33,36,38,40].
In the paper, we prove two of them: Schützenberger’s theorem [36] and Simon’s
theorem [38]. We frame these proofs using a new formalism based on a more
general problem which was recently introduced [31]: covering.

3 The Covering Problem

The covering problem generalizes membership. It was first considered implic-
itly in [26,27] and was later formalized in [31] (along with a detailed framework
designed for handling it). At the time, its introduction was motivated by two
reasons. First, an algorithm for covering is usually more rewarding than an algo-
rithm for membership as the former provides more insight on the investigated
class of languages. Second, covering was introduced as a key ingredient for han-
dling difficult membership questions. For several important classes, membership
is effectively reducible to covering for another simpler class. Recently, this idea
was applied to prominent hierarchies of classes called “concatenation hierarchies”
(see the surveys [28,32] for details on these results).

In the paper, we are interested in covering for a slightly different reason.
In particular, we do not present any covering algorithm. Instead, we look at
how the new ideas that were recently introduced with covering in mind can be
applied in the simpler membership setting. It turns out that even for the early
membership results, reasoning in terms of covers is quite natural and allows to
present arguments in a very intuitive way. We manage to formulate new proof
arguments for two famous membership algorithms.

We first define covering and explain why it generalizes membership as a
decision problem. Then, we come back to membership and briefly recall the
general approach that is usually followed in order to handle it. We show that
this approach can actually be formulated in a convenient and natural way with
covering. For the sake of avoiding clutter, we fix an arbitrary alphabet A for the
presentation: all languages that we consider are over A.

3.1 Definition

Similarly to membership, covering is parameterized by an arbitrary class of lan-
guages C: we speak of C-covering. It is designed with the same objective in mind:
it serves as a mathematical tool for investigating the class C.
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For a class C, the C-covering takes a language L and a finite set of languages L
as input. It asks whether there exists a C-cover of L which is separating for L.
Let us first define these two notions.

Given a language L, a cover of L is a finite set of languages K such that
L ⊆ ⋃

K∈K K. Additionally, given some class C, a C-cover of L is a cover K of
L such that every K ∈ K belongs to C.

Moreover, given two finite sets of languages K and L, we say that K is
separating for L if for every K ∈ K, there exists L ∈ L which satisfies K∩L = ∅.
In other words, there exists no language in K which intersects all languages in L.
Given a class C, the C-covering problem is now defined as follows:

INPUT: A regular language L and a finite set of regular languages L.
OUTPUT: Does there exist a C-cover of L which is separating for L?
A simple observation is that covering generalizes another well-known decision

problem called separation. Given a class C and two languages L1 and L2, we say
that L1 is C-separable from L2 when there exists a third language K ∈ C such
that L1 ⊆ K and K∩L2 = ∅. We have the following lemma (see [31] for a proof).

Lemma 2. Let C be a lattice and L1, L2 two languages. Then L1 is C-separable
from L2, if and only if there exist a C-cover of L1 which is separating for {L2}.

Lemma 2 proves that C-covering generalizes C-membership as a decision prob-
lem. Indeed, given as input a regular language L, it is immediate that L belongs
to C if and only if L is C-separable from A∗ \ L (which is also regular). Thus,
there exists an effective reduction from C-membership to C-covering.

Yet, this not the only connection between membership and covering. More
importantly, this is not how we use covering in the paper. While each membership
algorithm existing in the literature is based on unique ideas (specific to the class
under investigation), most of them are formulated and proved within a standard
common framework. It turns out that this framework boils down to a particular
kind of covering question: this is the property that we shall exploit in the paper.

3.2 Application to Membership

We first summarize the standard general approach that is commonly used to
handle membership questions and formulate solutions. Historically, this app-
roach was initiated by Schützenberger who applied it to obtain the first known
membership algorithm [36] (for the class of star-free languages). We shall detail
and prove this result in Sect. 4.

The syntactic approach. Obtaining a membership algorithm for a given
class C is intuitively hard, as it requires to decide a semantic property which
may not be apparent on the piece of syntax that defines the input regular lan-
guage L (be it a regular expression, an automaton or a monoid morphism). To
palliate this issue, the syntactic approach relies on the existence of a canonical
recognizer for any given regular language. The idea is that while belonging to C

may not be apparent on an arbitrary syntax for L, it should be apparent on a
canonical representation of L. Typically, the syntactic morphism of L serves as
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this canonical representation. As the name suggests, this object is a canonical
morphism into a finite monoid which recognizes L (and can be computed from
any representation of L).

Let us first define the syntactic morphism properly. Consider a language L.
One may associate a canonical equivalence relation ≡L over A∗ to L. Given two
words u, v ∈ A∗, we write,

u ≡L v if and only if for every x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L

Clearly, ≡L is an equivalence relation and one may verify that it is a congruence
for word concatenation: for every u, v, u′, v′ ∈ A∗, if u ≡L v and u′ ≡L v′,
then uu′ ≡L vv′. Consequently, the quotient set A∗/≡L is a monoid called the
syntactic monoid of L. Moreover, the map α : A∗ → A∗/≡L which maps each
word to its ≡L-class is a monoid morphism called the syntactic morphism of L.
In particular, this morphism recognizes the language L: L = α−1(F ) where F is
the set of all ≡L-classes which intersect L. It is well-known and simple to verify
that L is regular if and only if its syntactic monoid is finite. Moreover, in that
case, one may compute the syntactic morphism of L from any representation
of L (such as an automaton or an arbitrary monoid morphism recognizing L).

We are ready to present the key result behind the syntactic approach: for
every quotient-closed Boolean algebra C, membership of an arbitrary regular
language in C depends only on its syntactic morphism. This claim is formalized
with the following standard result.

Proposition 3. Let C be a quotient-closed Boolean algebra, L a regular language
and α its syntactic morphism. Then L belongs to C if and only if every language
recognized by α belongs to C.

Proof. The right to left implication is immediate since L is recognized by its
syntactic morphism. We concentrate on the converse one. Assume that L ∈ C.
We show that every language recognized by α belongs to C as well. By definition,
these languages are exactly the unions of ≡L-classes. Thus, since C is closed
under union, it suffices to show that every ≡L-class belongs to C. Observe that
the definition of ≡L can be reformulated as follows. Given u, v ∈ A∗, we have,

u ≡L v if and only if u ∈ x−1Ly−1 ⇔ v ∈ x−1Ly−1 for every x, y ∈ A∗.

Let x, y ∈ A∗. Since L is recognized by α, it is clear that whether some word
w ∈ A∗ belongs to x−1Ly−1 depends only on its image α(w). In other words,
x−1Ly−1 is recognized by α. Moreover, since L is regular, its syntactic monoid is
finite which implies that α recognizes finitely many languages. Thus, while there
are infinitely many words x, y ∈ A∗, there are finitely many languages x−1Ly−1.

Altogether, we obtain that every ≡L-class is a finite Boolean combination of
languages x−1Ly−1 where x, y ∈ A∗. Since L ∈ C and C is quotient-closed, every
such language belongs to C. Hence, since C is a Boolean algebra, we conclude
that every ≡L-class belongs to C, completing the proof. 
�
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Proposition 3 implies that membership of a regular language L in some fixed
quotient-closed Boolean algebra is equivalent to some property of an algebraic
abstraction of L: its syntactic morphism. In particular, this is independent from
the accepting set F = α(L). By itself, this is a simple result. Yet, it captures the
gist of the syntactic approach.

Naturally, the proposition tells nothing about the actual the property on the
syntactic morphism that one should look for. This question is specific to each
particular class C: one has to find the right decidable property characterizing C.

Remark 4. This may seem counterintuitive. We replaced the question of deciding
whether a single language belongs to the class C by an intuitively harder one:
deciding whether all languages recognized by a given monoid morphism belong
to C. The idea is that the set of languages recognized by a morphism has a
structure which can be exploited in membership arguments. 
�
Remark 5. Proposition 3 is restricted quotient-closed Boolean algebras. This
excludes quotient-closed lattices that are not closed under complement. One
may generalize the syntactic approach to such classes (as done by Pin [19]). We
do not discuss this as our two examples are quotient-closed Boolean algebras. 
�

Back to Covering. We proved that for every quotient-closed Boolean algebra C,
the associated membership problem boils down to deciding whether all languages
recognized by an input morphism belong to C. It turns out that this new question
is a particular instance of C-covering. In order to explain this properly, we require
a last definition.

Consider a morphism α : A∗ → M into a finite monoid M and a finite set
of languages K. We say that K is confined by α if it is separating for the set
{α−1(M \ {s}) | s ∈ M}. The following fact can be verified from the definitions
and reformulates this property in a way that is easier to manipulate.

Fact 6. Let α : A∗ → M be a morphism into a finite monoid and K a finite
set of languages. Then K is confined by α if and only if for every K ∈ K, there
exists s ∈ M such that K ⊆ α−1(s).

Proof. By definition K is confined by α if and only if for every K ∈ K, there
exists s ∈ M such that K ∩α−1(M \{s}) = ∅. Since α−1(M \{s}) = A∗ \α−1(s),
the fact follows. 
�

We show that given a lattice C and a morphism α : A∗ → M into a finite
monoid, all languages recognized by α belong to C if and only if there exists a
C-cover of A∗ which is confined by α. The latter question is a particular case of
C-covering. In fact, we prove a slightly more general result that we shall need
later when dealing with our two examples.

Proposition 7 Let C be a lattice, α : A∗ → M a morphism into a finite monoid
and H ∈ C a language. The two following properties are equivalent:

1. For every language L recognized by α, we have L ∩ H ∈ C.
2. There exists a C-cover of H which is confined by α.
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Proof. Assume first that L ∩ H ∈ C for every language L recognized by α. We
define K = {α−1(s) ∩ H | s ∈ M}. Clearly, K is a cover of H and it is a C-cover
by hypothesis. Moreover, it is clear from Fact 6 that K is confined by α.

For the converse direction, assume that there exists a C-cover K of H which
is confined by α. Let L be a language recognized by α, we show that,

L ∩ H =

⎛

⎝
⋃

{K∈K|K∩L�=∅}
K

⎞

⎠ ∩ H

This implies that L ∩ H ∈ C since H ∈ C, every language in K belongs to C and
C is a lattice. The left to right inclusion is immediate since K is a cover of H.
We prove the converse one. Let K ∈ K such that K ∩ L �= ∅, we show that
K ∩ H ⊆ L ∩ H. Let u ∈ K ∩ H. Consider v ∈ K ∩ L (which is nonempty by
definition of K). Since u, v ∈ K and K is confined by α, we have α(u) = α(v)
by Fact 6. Thus, since v ∈ L and L is recognized by α, it follows that u ∈ L,
concluding the proof: we obtain K ∩ H ⊆ L ∩ H. 
�

Let us combine Propositions 3 and 7. When put together, they imply that
for every quotient-closed Boolean algebra C, a regular language L belongs to C

if and only if there exists a C-cover of A∗ which is confined by the syntactic
morphism of L.

The key point is that this formulation is very convenient when writing proof
arguments. As we explained in Remark 1, the technical core of membership proofs
consists in generic constructions which build descriptions of languages in C. It
turns out that building a C-cover which is confined by some input morphism
is an objective that is much easier to manipulate than directly proving that all
languages recognized by the morphism belong to C. We illustrate this point in
the next section with new proofs for two well-known membership algorithms:
the star-free languages and the piecewise testable languages.

4 Star-Free Languages and Schützenberger’s Theorem

We now illustrate the discussion of the previous section with a first example:
Schützenberger’s theorem [36]. This result is important as it started the quest
for membership algorithms. It provides such an algorithm for a very famous
class: the star-free languages (SF). Informally, these are the languages which
can be defined by a regular expression in which the Kleene star is disallowed
(hence the name “star-free”) but a new operator for the complement operation
is allowed instead. This class is important as it admits several natural alternate
definitions. For example, the star-free languages are those which can be defined
in first-order logic [15] or equivalently in linear temporal logic [11].

Schützenberger’s theorem states an algebraic characterization of SF: a regular
language is star-free if and only if its syntactic monoid is aperiodic. This yields
an algorithm for SF-membership as aperiodicity is a decidable property of finite
monoids. Historically, Schützenberger’s theorem was the first result of its kind. It
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motivated the systematic investigation of the membership problem for important
classes of languages. It is often viewed as one of the most important results of
automata theory. This claim is supported by the number of times this theorem
has been revisited over the years and the wealth of existing proofs [5,7,8,10,14,
16,17,21,23,41].

In this section, we present our own proof, based on SF-covers. Let us point
out that while the formulation is new, the original ideas behind the argument
can be traced back to the proof of Wilke [41]. We first recall the definition of the
star-free languages. Then, we state the theorem properly and present the proof.

4.1 Definition

Let us define the class of star-free languages (SF). For every alphabet A, SF(A)
is the least set containing ∅ and all singletons {a} for a ∈ A, which is closed
under union, complement and concatenation. That is, for every K,L ∈ SF(A),
the languages K ∪ L, A∗ \ K and KL belong to SF(A) as well.

Example 8. For every sub-alphabet B ⊆ A, we have B∗ ∈ SF(A). Indeed, by
closure under complement, A∗ = A∗ \ ∅ ∈ SF(A). We then get A∗aA∗ ∈ SF(A)
by closure under concatenation. Finally, this yields,

B∗ = A∗ \
⎛

⎝
⋃

a∈A\B

A∗aA∗

⎞

⎠ ∈ SF(A)

Another standard example is (ab)∗ (where a, b are two distinct letters of A).
Indeed, (ab)∗ is the complement of bA∗ ∪A∗aaA∗ ∪A∗bbA∗ ∪A∗a (provided that
A = {a, b}) which is clearly star-free. 
�

By definition, SF is a Boolean algebra and one may verify that it is quotient-
closed (the details are left to the reader). We complete the definition with a stan-
dard property that we require to prove the “easy” direction of Schützenberger’s
theorem (every star-free language has an aperiodic syntactic monoid). Another
typical application of this property is to show that examples of languages are
not star-free. For example, (AA)∗ (words with even length) is not star-free since
since it does not satisfy the following lemma.

Lemma 9 Let A be an alphabet and L ∈ SF(A). There exists a number k ≥ 1
such that for every � ≥ k and w ∈ A∗, we have w� ≡L w�+1.

Proof. We proceed by structural induction on the definition of L as a star-free
language. When L = ∅, it is clear that the lemma holds for k = 1. When
L = {a} for a ∈ A, one may verify that the lemma holds for k = 2. We turn
to the inductive cases. Assume first that L = L1 ∪ L2 where L1, L2 ∈ SF are
simpler languages. Induction yields k1, k2 ≥ 1 such that for i = 1, 2, if � ≥ ki

and w ∈ A∗, we have w� ≡Li
w�+1. Hence, the lemma holds for k = max(k1, k2)

in that case. We turn to complement: L = A∗ \ H where H ∈ SF is a simpler
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language. By induction, we get h ≥ 1 such that for every w ∈ A∗ and � ≥ h, we
have w� ≡H w�+1. Clearly, the lemma holds for k = h.

We now consider concatenation: L = L1L2 where L1, L2 ∈ SF are simpler
languages. Induction yields k1, k2 ≥ 1 such that for i = 1, 2, if � ≥ ki and
w ∈ A∗, we have w� ≡Li

w�+1. Let m be the maximum between k1 and k2. We
prove that the lemma holds for k = 2m + 1. Let w ∈ A∗ and � ≥ k, we have to
show that w� ≡L w�+1, i.e. xu�y ∈ L ⇔ xu�+1y ∈ L for every x, y ∈ A∗. We
concentrate on the right to left implication (the converse one is symmetrical).
Assume that xu�+1y ∈ L. Since L = L1L2, we get w1 ∈ L1 and w2 ∈ L2 such
that xuk+1y = w1w2. Since k ≥ 2m + 1, it follows that either xum+1 is a prefix
of w1 or um+1y is a suffix of w2. By symmetry, we assume that the former
property holds: we have w1 = xum+1z for some z ∈ A∗. Observe that since
xuk+1y = w1w2, it follows that zw2 = uk−my. Moreover, we have m ≥ k1 by
definition of m. Since xum+1z = w1 ∈ L1, we know therefore that xumz ∈ L1

by definition of k1. Thus, xumzw2 ∈ L1L2 = L. Since zw2 = uk−my, this yields
xuky ∈ L, concluding the proof. 
�

4.2 Schützenberger’s Theorem

We may now present and prove Schützenberger’s theorem. Let us first define
aperiodic monoids. There are several equivalent definitions in the literature.
We use an equational one based on the idempotent power ω available in finite
monoids. A finite monoid M is aperiodic when it satisfies the following property:

for every s ∈ M, sω = sω+1 (1)

We are ready to state Schützenberger’s theorem.

Theorem 10 (Schützenberger [36]). A regular language is star-free if and
only if its syntactic monoid is aperiodic.

Theorem 10 illustrates of the syntactic approach presented in Sect. 3. It val-
idates Proposition 3: the star-free languages are characterized by a property of
their syntactic morphism. In fact, for this particular class, one does not even
need the full morphism, the syntactic monoid suffices.

The main application is a membership algorithm for the class of star-free
languages. Given as input a regular language L, one may compute its syntactic
monoid and check whether it satisfies Eq. (1): this boils down to testing all
elements in the monoid. By Theorem 10, this decides whether L is star-free.
However, as we explained in Remark 1 when we first introduced membership,
this theorem is also important for the arguments that are required to prove it.
Indeed, providing these arguments requires a deep insight on SF. The right to left
implication is of particular interest: “given a regular language whose syntactic
monoid is aperiodic, prove that it is star-free”. This involves devising a generic
way to construct a star-free description for every regular language recognized by
a monoid satisfying a syntactic property. This is the implication that we handle
with covers. On the other hand, the converse implication is simple and standard
(essentially, we already proved it with Lemma 9).
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Proof. We fix an alphabet A and a regular language L ⊆ A∗ for the proof. Let
α : A∗ → M be the syntactic morphism of L. We prove that L ∈ SF(A) if and
only if M is aperiodic. Let us first handle the left to right implication.

From star-free languages to aperiodicity. Assume that L ∈ SF(A). We
prove that M is aperiodic, i.e. that (1) is satisfied. Let s ∈ M , we have to show
that sω = sω+1.

Since α is a syntactic morphism, it is surjective and there exists w ∈ A∗

such that α(w) = s. Moreover, since L ∈ SF(A), Lemma 9 yields k ≥ 1 such
that wkω ≡L wkω+1. By definition of the syntactic morphism, this implies that
α(wkω) = α(wkω+1). Since α(w) = s, this yields sω = sω+1 as desired.

From aperiodicity to star-free languages. Assume that M is aperiodic. We
show that L is star-free. We rely on the notions introduced in the Sect. 3 and
directly prove that every language recognized by α is star-free.

Remark 11. Intuitively, this property is stronger than L being star-free. Yet, since
SF is a quotient-closed Boolean algebra, it is equivalent by Proposition 3. 
�

The argument is based on Proposition 7: we use induction to construct an
SF-cover K of A∗ which is confined by α. By the proposition, this implies that
every language recognized by α belongs to SF(A). We start with a preliminary
definition that we require to formulate the induction.

Let B be an arbitrary alphabet, β : B∗ → M a morphism and s ∈ M . We
say that a finite set of languages K (over B) is (s, β)-safe if for every K ∈ K
and every w,w′ ∈ K, we have sβ(w) = sβ(w′).

Lemma 12. Let B be an alphabet. Consider a morphism β : B∗ → M , C ⊆ B
and s ∈ M . There exists an SF-cover of C∗ which is (s, β)-safe.

We first use Lemma 12 to conclude the main argument. We apply the lemma
for B = A, β = α and s = 1M . This yields an SF-cover K of A∗ which is (1M , α)-
safe. By definition, it follows that for every K ∈ K, we have α(w) = α(w′) for
all K ∈ K. By Fact 6, this implies that K is confined by α, completing the main
argument.

It remains to prove Lemma 12. Let B be an alphabet, β : B∗ → M a mor-
phism, C ⊆ B and s ∈ M . We build an SF-cover K of C∗ which is (s, β)-safe
using induction on the three following parameters listed by order of importance:

1. The size of β(C+) ⊆ M .
2. The size of C.
3. The size of sβ(C∗) ⊆ M .

Remark 13. The aperiodic monoid M remains fixed throughout the whole proof.
On the other hand, the alphabets B and C, the morphism β : B∗ → M and
s ∈ M may change when applying induction. 
�
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We distinguish two cases depending on the following property of β, C and s.
We say that s is (β,C)-stable when the following holds:

for every c ∈ C, sβ(C∗) = sβ(C∗c). (2)

We first consider the case when s is (β,C)-stable. This is the base case which
we handle using the hypothesis that M is aperiodic.

Base case: s is (β,C)-stable. In that case, we define K = {C∗} which is clearly
an SF-cover of C∗ (we have C∗ ∈ SF(B) as seen in Example 8). It remains to
show that K is (s, β)-safe. For w,w′ ∈ C∗, we have to show that sβ(w) = sβ(w′).
We actually prove that sβ(w) = s for every w ∈ C∗ which implies the desired
result. Since s is (β,C)-stable, we have the following fact.

Fact 14. For every u ∈ C∗, there exists t ∈ β(C∗) such that stβ(u) = s.

Proof. We use induction on the length of u ∈ C∗. If u = ε, the fact holds for
t = 1M . Assume now that u ∈ C+. We have u = cu′ for u′ ∈ C∗ and c ∈ C.
Induction yields t′ ∈ β(C∗) such that st′β(u′) = s. Moreover, since s is (β,C)-
stable, (2) yields t ∈ β(C∗) such that stβ(c) = st′. Altogether, we obtain that
stβ(u) = stβ(c)β(u′) = st′β(u′) = s which concludes the proof. 
�

Consider the word wω ∈ C∗ (with ω as the idempotent power of M). We
apply Fact 14 for u = wω. This yields t ∈ β(C∗) such that s = st(β(w))ω.
Since M is aperiodic, we have (β(w))ω = (β(w))ω+1 by Eq. (1). This yields
sβ(w) = st(β(w))ω+1 = st(β(w))ω = s, concluding the base case.

Inductive case: s is not (β,C)-stable. By hypothesis, there exists a letter
c ∈ C such that the following strict inclusion holds sβ(C∗c) � sβ(C∗). We fix
c ∈ C for the remainder of the argument.

Let D be the sub-alphabet D = C \ {c}. By definition, |D| < |C|. Hence,
induction on our second parameter in Lemma12 (i.e., the size of C) yields an SF-
cover H of D∗ which is (1M , β)-safe. Note that it is clear that our first induction
parameter (the size of α(C+)) has not increased since D ⊆ C.

We distinguish two independent sub-cases. Clearly, we have β(C∗c) ⊆ β(C+).
The argument differs depending on whether this inclusion is strict or not.

Sub-case 1: β(C∗c) = β(C+). Consider a language H ∈ H. Since H is a cover
of D∗ which is (1M , β)-safe by definition, there exists some element tH ∈ β(D∗)
such that β(w) = tH for every w ∈ H. The construction of the desired SF-cover
K of C∗ is based on the following fact which we prove using induction on our
third parameter (the size of sβ(C∗)).

Fact 15. For every language H ∈ H, there exists an SF-cover UH of C∗ which
is (stHβ(c), β)-safe.

Proof. Since tH ∈ β(D∗), it is immediate that stHβ(c) ∈ sβ(D∗c). Hence,
stHβ(c)β(C∗) ⊆ sβ(C+). Moreover, β(C∗c) = β(C+) by hypothesis in Sub-
case 1. Thus, stHβ(c)β(C∗) ⊆ sβ(C∗c). Finally, recall that the letter c satisfies
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sβ(C∗c) � sβ(C∗) by definition. Consequently, we have the strict inclusion
stHβ(c)β(C∗) � sβ(C∗). Hence, we may apply induction on our third parame-
ter in Lemma 12 (i.e. the size of sβ(C∗)) to obtain the desiredn SF-cover UH of
C∗ which is (stHβ(c), β)-safe. Note that here, our first two parameters have not
increased (they only depend on β and C which remain unchanged). 
�

We may now use Fact 15 to build the desired cover K of C∗. We define
K = H ∪ {HcU | H ∈ H and U ∈ UH}. Clearly, K is an SF-cover of C∗ by
hypothesis on H and UH since D = C\{c} and SF is closed under concatenation.
We need to show that K is (s, β)-safe. Let K ∈ K and w,w′ ∈ K, we need
to show that sβ(w) = sβ(w′). By definition of K, there are two cases. When
K ∈ H, the result is immediate since H is (1M , β)-safe by definition. Otherwise,
K = HcU for H ∈ H and U ∈ UH . Thus, we get x, x′ ∈ H and u, u′ ∈ U such
that w = xcu and w′ = x′cu′. By definition, β(x) = β(x′) = tH . Moreover, since
UH is (stHβ(c), β)-safe by definition in Fact 15, we have stHβ(cu) = stHβ(cu′).
Altogether, this yields sβ(xcu) = sβ(x′cu′), i.e. sβ(w) = sβ(w′) as desired.

Sub-case 2: β(C∗c) � β(C+). Let us first explain informally how the cover
K of C∗ is built in this case. Let w ∈ C∗. Since D = C \ {c}, w admits a
unique decomposition w = uv such that u ∈ (D∗c)∗ and v ∈ D∗ (i.e., v is the
largest suffix of w in D∗ and u is the corresponding prefix). Using induction,
we construct SF-covers of the possible prefixes and suffixes. Then, we combine
them to construct a cover of the whole set C∗. Actually, we already covered
the suffixes: we have an SF-cover H of C∗ which is (1M , β)-safe. It remains to
cover the prefixes. We do so this in the following lemma which we prove using
induction on our first parameter (the size of β(C+)).

Lemma 16. There exists an SF-cover V of (D∗c)∗ which is (1M , β)-safe.

Proof. Let E = β(D∗c). Using E as a new alphabet, we apply induction on
the first parameter in Lemma 12 (i.e., the size of β(C+)) to build an auxiliary
SF-cover of E∗ which we then use to construct V.

Since E = β(D∗c) ⊆ M , there exists a natural morphism γ : E∗ → M defined
by γ(e) = e for every e ∈ E. Clearly, γ(E+) ⊆ β(C∗c). Since β(C∗c) � β(C+)
by hypothesis of Sub-case 2, this implies γ(E+) � β(C+) and induction on the
first parameter in Lemma 12 yields an SF-cover W of E∗ which is (1M , γ)-safe.
We use W to construct V. First, we define a map μ : (D∗c)∗ → E∗.

We let μ(ε) = ε. Otherwise, let w ∈ (D∗c)+ be a nonempty word. Since
c �∈ D, w admits a unique decomposition w = w1 · · · wn with w1, . . . , wn ∈ D∗c.
Hence, we may define μ(w1 · · · wn) = e1 · · · en with ei = β(wi) for every i ≤ n
(recall that E = β(D∗c) by definition). We are ready to define W. We let,

V = {μ−1(W ) | W ∈ W}
It remains to show that V is an SF-cover of (D∗c)∗ which is (1M , β)-safe. It is
immediate that V is a cover of (D∗c)∗ since W was a cover of E∗.

Let us prove that V is (1M , β)-safe. Let V ∈ V and v, v′ ∈ V . We prove that
β(v) = β(v′). By definition, there exists w ∈ W such that V = μ−1(W ). Thus,
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μ(v), μ(v′) ∈ W which implies that γ(μ(v)) = γ(μ(v′)) since W is (1M , γ)-safe
by definition. One may now verify from the definitions that γ(μ(v)) = β(v) and
γ(μ(v′)) = β(v′). Thus, we obtain β(v) = β(v′) as desired.

It remains to show that every V ∈ V is star-free. By definition of V, it suffices
to show that for every W ∈ SF(E), we have μ−1(W ) ∈ SF(B). We proceed by
induction on the definition of W as a star-free language. When W = ∅, it is
clear that μ−1(W ) = ∅ ∈ SF(B). Assume now that W = {e} for some e ∈ E. By
definition, μ−1(e) = {w ∈ D∗c | β(w) = e}. This may be reformulated as follows:
μ−1(e) = Uc with U = {u ∈ D∗ | β(uc) = e}. Clearly, U is the intersection of
D∗ with a language recognized by β. Recall that we have an SF-cover H of D∗

which is (1M , β)-safe (and therefore confined by β). Hence, Proposition 7 implies
that U ∈ SF(B). It follows that μ−1(e) = Uc ∈ SF(B) as desired. We turn to
the inductive cases.

First, assume that there are simpler languages W1,W2 ∈ SF(E) such that
either W = W1W2 or W = W1∪W2. By induction, μ−1(Wi) ∈ SF(B) for i = 1, 2.
Moreover, the definition of μ implies that μ−1(W1W2) = μ−1(W1)μ−1(W2) and
μ−1(W1 ∪ W2) = μ−1(W1) ∪ μ−1(W2). Hence, we obtain μ−1(W ) ∈ SF(B).
Finally, assume that W = E∗ \ W ′ for a simpler language W ′ ∈ SF(E). By
induction, μ−1(W ′) ∈ SF(E). Moreover, μ−1(W ) = (D∗c)∗ \ μ−1(W ′). Clearly,
(D∗c)∗ = C∗ \ (C∗D) ∈ SF(B). Thus, we get μ−1(W ) ∈ SF(B) as desired. 
�

We are ready to construct the desired SF-cover K of C∗. Let V be the
(1M , β)-safe SF-cover of (D∗c)∗ given by Lemma 16 and consider our (1M , β)-
safe SF-cover H of D∗. We define K = {V H | V ∈ V and H ∈ H}. It is
immediate by definition that K is an SF-cover of C∗ since D = C \{c} and SF is
closed under concatenation. It remains to verify that K is (s, β)-safe (it is in fact
(1M , β)-safe). Let K ∈ K and w,w′ ∈ K, we show that β(w) = β(w′) (which
implies sβ(w) = sβ(w′)). By definition, K = V U with V ∈ V and U ∈ U.
Therefore, w = vu and w′ = v′u′ with u, u′ ∈ U and v, v′ ∈ V . Since U and V
are both (1M , β)-safe by definition, we have β(u) = β(u′) and β(v) = β(v′). It
follows that β(w) = β(w′). This concludes the proof of Lemma 12. 
�

5 Piecewise Testable Languages and Simon’s Theorem

We turn to our second example: Simon’s theorem [38]. This results states an
algebraic characterization of another prominent class of regular languages: the
piecewise testable languages (PT). It is quite important in the literature as it
was among the first results of this kind after Schützenberger’s theorem (which
we proved in Sect. 4). Over the years, many different proofs have been found
(examples include [1,9,12,18,38,39]). We present a new proof, based on PT-
covers and entirely independent from previously known arguments. It relies on
a concatenation principle for the piecewise testable languages that can only be
formulated with PT-covers.

We first recall the definition of piecewise testable languages. Then, we state
the theorem properly and present the proof.



104 T. Place

5.1 Definition

Let us define the class of piecewise testable languages (PT). Given an alpha-
bet A and u, v ∈ A∗, we say that u is a piece of v and write u � v
when u can be obtained from v by removing letters and gluing the remain-
ing ones together. More precisely, u � v when there exist a1, . . . , an ∈ A and
v0, . . . , vn ∈ A∗ such that,

u = a1a2 · · · an and v = v0a1v1a2v2 · · · vn−1anvn.

For instance, acb is a piece of bbabcbcbba. Note that by definition, the empty
word “ε” is a piece of every word (this is the case n = 0). Furthermore, it is
clear that the relation � is a preorder on A∗.

For every word u ∈ A∗, we write ↑u ⊆ A∗ for the language consisting of all
words v such that u is a piece of v. If u = a1 · · · an, we have by definition:

↑u = {v ∈ A∗ | u � v} = A∗a1A
∗a2A

∗ · · · an−1A
∗anA∗.

We may now define PT. A language L ⊆ A∗ is piecewise testable (i.e. L ∈ PT(A))
when L is a (finite) Boolean combination of languages ↑w for w ∈ A∗.

Example 17. We let A = {a, b} as the alphabet. Then a+b+ ∈ PT(A). Indeed,
a+b+ = A∗aA∗bA∗ \ A∗bA∗aA∗. Moreover, observe that every finite language
is piecewise testable. Since PT is closed under union, it suffices to show that
every singleton is piecewise testable. Consider a word w = a1 · · · an. By defini-
tion, w is the only word belonging to A∗a1A

∗a2A
∗ · · · an−1A

∗anA∗ but not to
A∗b1A∗b2A∗ · · · bnA∗bn+1A

∗, where b1, . . . , bn+1 denotes any sequence of n + 1
letters. Hence, {w} is piecewise testable. 
�

Clearly PT is a Boolean algebra and one may verify that it is quotient-
closed (the details are left to the reader). We complete the definition with two
properties of PT. The first one is standard and we shall need it to prove that
“easy” direction of Simon’s theorem (every piecewise testable language satisfies
the characterization).

Lemma 18. Let A be an alphabet and L ∈ PT(A). There exists k ≥ 1 such that
for every � ≥ k and u, v ∈ A∗, we have (uv)�u ≡L (uv)� ≡L v(uv)�.

Proof. Since L ∈ PT, there exists k ≥ 1 such that L is a Boolean combinations
of language ↑w with w ∈ A∗ such that |w| ≤ k (i.e. w has length at most k).
We prove that the lemma holds for this number k. Let u, v ∈ A∗ and � ≥ k.
We show that (uv)�u ≡L (uv)� ≡L v(uv)�. By symmetry, we concentrate on
(uv)�u ≡L (uv)�: given x, y ∈ A∗, we show that x(uv)�uy ∈ L ⇔ x(uv)�y ∈ L.
Since � ≥ k, one may verify that for every w ∈ A∗ such that |w| ≤ k, we have
w � x(uv)�uy ⇔ w � x(uv)�y. In other words, x(uv)�uy ∈ ↑w ⇔ x(uv)�y ∈ ↑w.
Since L is a Boolean combination of such languages, this implies the equivalence
x(uv)�uy ∈ L ⇔ x(uv)�y ∈ L as desired. 
�
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The second result is specific to our covering-based approach for proving
Simon’s theorem. It turns out that elegant proof arguments for membership
algorithms often apply to classes that are closed under concatenation (or some
weak variant thereof). As seen in the previous section, the star-free languages are
an example. Unfortunately, PT is not closed under concatenation. For example,
consider the alphabet A = {a, b}. We have A∗ ∈ PT and {a} ∈ PT as seen in
Example 17. Yet, one may verify with Lemma 18 that A∗a �∈ PT.

We solve this issue with a “weak concatenation principle” for piecewise
testable languages. This result can only be formulated using PT-covers. While
its proof is rather technical, an interesting observation is that it characterizes
the piecewise testable languages. In the proof of Simon’s theorem, we only use
this concatenation principle and the hypothesis that PT is a Boolean algebra
(we never come back to the original definition of PT).

Proposition 19. Let u, v ∈ A∗ and a ∈ A. Moreover, let Ku and Kv be PT-
covers of ↑u and ↑v respectively. There exists a PT-cover K of ↑(uav) such that
for every K ∈ K we have Ku ∈ Ku and Kv ∈ Kv satisfying K ⊆ KuaKv.

Proof. We start with standard definitions that we need to describe K. For every
k ∈ N, we associate a preorder �k over A∗. For w,w′ ∈ A∗, we write w �k w′

to indicate that for every x ∈ A∗ such that |x| ≤ k, we have x � w ⇒ x � w′.
Clearly, �k is a preorder which is coarser than �: for every w,w′ such that
w � w′, we have w �k w′. Moreover, we write ∼k for the equivalence generated
by this preorder: w ∼k w′ if and only if x � w ⇔ x � w′ for every x ∈ A∗ such
that |x| ≤ k. Clearly, ∼k has finite index.

Since Ku and Kv are PT-covers, there exists some number k ∈ N every
language K ∈ Ku ∪ Kv is a finite Boolean combination of languages ↑x for
x ∈ A∗ such that |x| ≤ k. In other words, every such language K is a union of
∼k-classes. Moreover, we may choose k so that |u| ≤ k and |v| ≤ k. We shall
define the cover K as a set of ∼h-classes for an appropriate number h that we
choose using the following technical lemma.

Lemma 20. Let h ≥ 2|A|k+1+1, a ∈ A and u′, v′, w ∈ A∗ such that u′av′ �h w.
There exist u′′, v′′ ∈ A∗ such that w = u′′av′′, u′ �k u′′ and v′ �k v′′.

Proof. We claim that there exist y, z ∈ A∗ with length at most |A|k+1 such that
y � u′ �k y and z � v′ �k z. We first use this claim to prove the lemma. Clearly,
|yaz| ≤ 2|A|k+1 + 1 ≤ h and yaz � u′av′. Therefore, since u′av′ �h w, it follows
that yaz � w. This yields a decomposition w = u′′av′′ such that y � u′′ and
z � v′′. Since u′ �k y and v′ �k z, this implies u′ �k u′′ and v′ �k v′′ as desired.

It remains to prove the claim. We only construct a piece y ∈ A∗ such that
|y| ≤ |A|k+1 and y � u′ �k y, as the construction of z is analogous. Let F be
the set of all pieces of u′ of size at most k, that is,

F = {u′′ ∈ A∗ | u′′ � u′ and |u′′| ≤ k}.

Clearly, |F | ≤ |A|k+1. For x ∈ A∗, let LF (x) be the set of words of F that are pieces
of x. Let u′ = u1au2 be some decomposition of u′. Note that LF (u1) ⊆ LF (u1a).
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We say that the occurrence of a given by the decomposition u′ = u1au2 is bad if
LF (u1) = LF (u1a). Let y be the word obtained from u′ by deleting all bad letters
(and keeping the other ones). By construction, y � u′ and LF (y) = LF (u′). The
latter property implies that u′ � y for every u′ ∈ F . By definition of F , this means
that u′ �k y. Furthermore, letters of y are not bad, and one may verify that there
are at most |LF (u′)| = |F | such letters. Therefore, |y| ≤ |F | ≤ |A|k+1, which
concludes the proof. 
�

We define h = 2|A|k+1 + 1. It is immediate that every ∼h-class is a language
of PT (it is a Boolean combination of languages ↑x for x ∈ A∗ such that |x| ≤ h).
Hence, the set K containing all ∼h-classes which intersect ↑(uav) is a PT-cover
of ↑(uav). It remains to show that for every K ∈ K, there exist Ku ∈ Ku and
Kv ∈ Kv such that K ⊆ KuaKv. We fix the language K ∈ K for the proof. We
need the following result.

Lemma 21. Let H ⊆ K be a finite language. There exist K ′ ∈ Ku and K ′′ ∈
Kv such that H ⊆ K ′aK ′′.

Proof. Let w1, . . . , wn ∈ A∗ be the words in H, i.e., H = {w1, . . . , wn}. Our goal
is to find K ′ ∈ Ku and K ′′ ∈ Kv such that wi ∈ K ′aK ′′ for all i = 1, . . . , n.
Therefore, we first have to find a suitable decomposition of each word wi as
uiavi, and then to show that all ui’s belong to some K ′ ∈ Ku and all vi’s belong
to some K ′′ ∈ Kv.

By definition, K is a ∼h-class and it intersects ↑(uav). This yields a word
x ∈ ↑(uav) such that x ∼h w1 ∼h · · · ∼h wn. Since x ∈ ↑(uav), there exist
u′ ∈ ↑u and v′ ∈ ↑v such that x = u′av′. Let � = |w1| + 1. We may write the
relations x ∼h w1 ∼h · · · ∼h wn as follows:

u′av′ �h w1 �h · · · �h wn︸ ︷︷ ︸
block 1

�h w1 �h · · · �h wn︸ ︷︷ ︸
block 2

�h · · · �h w1 �h · · · �h wn︸ ︷︷ ︸
block �

︸ ︷︷ ︸
n� words

.

Since h ≥ 2|A|k+1 + 1 by definition, may apply Lemma 20 n� times to get
u1,1, . . . , un,1, . . . , u1,�, . . . , un,� ∈ A∗ and v1,1, . . . , vn,1, . . . , v1,�, . . . , vn,� ∈ A∗

such that,

– for every i ≤ n and j ≤ �, we have wi = ui,javi,j , and,
– u′ �k u1,1 �k · · · �k un,1 �k · · · �k u1,� �k · · · �k un,�, and,
– v′ �k v1,1 �k · · · �k vn,1 �k · · · �k v1,� �k · · · �k vn,�.

Since � = |w1|+1, the first property and the pigeonhole principle yield j1 < j2 ≤ �
such that u1,j1 = u1,j2 and v1,j1 = v1,j2 . For every i ≤ n, we let ui = ui,j1 and
vi = vi,j1 . Therefore, for all i = 1, . . . , n, we have wi = uiavi.

The second and third properties now yield u′ �k u1 �k · · · �k un �k u1 and
v′ �k v1 �k · · · �k vn �k v1, whence:

u′ �k u1 ∼k · · · ∼k un and v′ �k v1 ∼k · · · ∼k vn.

Recall that |u| ≤ k by definition of k. Since u′ ∈ ↑u and u′ �k u1, it follows
that u1 ∈ ↑u. Since Ku is a cover of ↑u, this yields K ′ ∈ Ku such that u1 ∈ K ′.



Deciding Classes of Regular Languages: The Covering Approach 107

Since K ′ is a union of ∼k-classes by choice of k and since u1 ∼k · · · ∼k un,
we deduce that u1, . . . , un ∈ K ′. Symmetrically, we obtain K ′′ ∈ Kv such that
v1, . . . , vn ∈ K ′′. Finally, since wi = uiavi for every i ≤ n, this yields H =
{w1, . . . , wn} ⊆ K ′aK ′′, as desired. 
�

We may now finish the proof. For every n ∈ N, we let Hn ⊆ K be the (finite)
language containing all words of length at most n in K. Clearly, K =

⋃
n∈N

Hn

and Hn ⊆ Hn+1 for every n ∈ N. Moreover, Lemma 21 implies that for every
n ∈ N, we have K ′

n ∈ Ku and K ′′
n ∈ Kv such that Hn ⊆ K ′

naK ′′
n . Since Ku

and Kv are finite sets, there exist Ku ∈ Ku and Kv ∈ Kv such that K ′
n = Ku

and K ′′
n = Kv for infinitely many n. Since Hn ⊆ Hn+1 for every n ∈ N, it then

follows that Hn ⊆ KuaKv for every n ∈ N. Finally, since K =
⋃

n∈N
Hn, this

implies K ⊆ KuaKv which concludes the proof. 
�

5.2 Simon’s Theorem

We may now present and prove Simon’s theorem. It characterizes the star-free
languages as those whose syntactic monoid is J-trivial. The original definition
of this notion is based on the Green relation J defined on every finite monoid.
Here, we do not consider this relation. Instead, we use an equational definition.
A finite monoid M is J-trivial when it satisfies the following property:

for every s, t ∈ M (st)ωs = (st)ω = t(st)ω. (3)

Theorem 22 (Simon [38]). A regular language is piecewise testable if and only
if its syntactic monoid is J-trivial.

As expected, the main application of Simon’s theorem is the decidability of
PT-membership. Given a regular language L as input, one may compute its
syntactic monoid and check whether it satisfies Eq. (3) by testing all possible
combinations. By Theorem22, this decides whether L is piecewise testable. Yet,
as for the star-free languages in Sect. 4, this theorem is also important for the
arguments that are required to prove it. We present such a proof now.

Proof. We fix an alphabet A and a regular language L ⊆ A∗ for the proof.
Let α : A∗ → M be the syntactic morphism of L. We prove that L ∈ PT(A)
if and only if M is J-trivial. We start with the left to right implication which
is essentially immediate from Lemma 18. As expected, the difficult and most
interesting part of the proof is the converse implication.

From piecewise testable languages to J-triviality. Assume that we have
L ∈ PT(A). We prove that M is J-trivial: (3) holds. Let s, t ∈ M , we have to
show that (st)ωs = (st)ω = t(st)ω.

Since α is a syntactic morphism, it is surjective and there exists u, v ∈ A∗

such that α(u) = s and α(v) = t. Moreover, since L ∈ SF(A), Lemma 18 yields
k ≥ 1 such that (uv)kωu ≡L (uv)kω ≡L v(uv)kω. By definition of the syntac-
tic morphism, this implies that α((uv)kωu) = α((uv)kω) = α(v(uv)kω). Since
α(u) = s and α(v) = t, this yields (st)ωs = (st)ω = t(st)ω as desired.



108 T. Place

From J-triviality to piecewise testable languages. Assume that M is J-
trivial. We show that L is piecewise testable. We rely on the notions introduced
in the Sect. 3 and directly prove that every language recognized by α is piecewise
testable. The argument is based on Proposition 7: we use induction to construct
a PT-cover K of A∗ which is confined by α. By the proposition, this implies that
every language recognized by α belongs to PT(A). We start with a preliminary
definition that we require to formulate the induction.

Given a finite set of languages K, and s, t ∈ M , we say that K is (s, t)-safe
if for every K ∈ K and w,w′ ∈ K, we have sα(w)t = sα(w′)t. The argument is
based on the following lemma.

Lemma 23. Let s, t ∈ M and w ∈ A∗. There exists a PT-cover of ↑w which is
(s, t)-safe.

We first use Lemma 23 to complete the main argument. We apply the lemma
for s = t = 1M and w = ε. Since ↑ε = A∗, this yields a PT-cover K of A∗ which
is (1M , 1M )-safe. Thus, for every K ∈ K and w,w′ ∈ A∗, we have α(w) = α(w′).
By Fact 6, this implies that K is confined by α, concluding the proof.

It remains to prove Lemma 23. Let s, t ∈ M and w ∈ A∗. We construct a
PT-cover K of ↑w which is (s, t)-safe. We write P [s, w, t] ⊆ M × M for the
following set:

P [s, w, t] =
{
(sα(x), α(y)t) | x, y ∈ A∗ and xy ∈ ↑w

}
.

We proceed by induction on the two following parameters, listed by order of
importance:

1. The size of P [s, w, t].
2. The length of w.

We consider two cases depending on whether w is empty or not. We first assume
that this property holds.

First case: w = ε. We handle this case using induction on our first parameter.
Let H ⊆ A∗ be the language of all words v ∈ A∗ such that (s, t) �∈ P [s, v, t].
We use induction to build a PT-cover of H (note that it may happen that H is
empty in which case we do not need induction).

Fact 24. There exists a PT-cover KH of H which is (s, t)-safe.

Proof. One may verify with a pumping argument that there exists a finite set
F ⊆ H such that H ⊆ ⋃

v∈F (↑v) (this is also an immediate consequence of
Higman’s lemma). Hence, it suffices to prove that for every v ∈ H, there exists
a PT-cover Kv of ↑v which is (s, t)-safe. Indeed, one may then choose KH to be
the union of all covers Kv for v ∈ F . We fix v ∈ H for the proof.

Since w = ε, we have ↑w = A∗. Since α is surjective (it is a syntactic
morphism), it follows that P [s, w, t] = {(sq, rt) | q, r ∈ M}. Therefore, we have
P [s, v, t] ⊆ P [s, w, t] and (s, t) ∈ P [s, w, t]. Since (s, t) �∈ P [s, v, t] by definition
of H, we get |P [s, v, t]| < |P [s, w, t]|. Hence, induction on the first parameter in
Lemma 23 (the size of P [s, w, t]) yields a PT-cover Kv of ↑v which is (s, t)-safe,
as desired. 
�
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We let KH be the PT-cover KH of H given by Fact 24. We define,

K⊥ = A∗ \
(

⋃

K∈KH

K

)

.

Finally, we let K = {K⊥}∪KH . It is immediate that K is a PT-cover of A∗ = ↑ε
since PT is a Boolean algebra. It remains to verify that K is (s, t)-safe. Consider
K ∈ K and let u, u′ ∈ K. We prove that sα(u)t = sα(u′)t. If K ∈ KH , this is
immediate since KH is (s, t)-safe by construction. Hence, it suffices to show that
K⊥ is (s, t)-safe. This is a direct consequence of the following fact. Note that this
is the only place in the proof where we use the hypothesis that M satisfies (3).

Fact 25. For every word v ∈ K⊥, we have sα(v)t = st.

Proof. Let v ∈ K⊥. By definition of K⊥, v �∈ K ′ for every K ′ ∈ KH . Since KH

is a cover of H, it follows that v �∈ H. By definition of H, it follows that (s, t) ∈
P [s, v, t]. By definition, this yields x, y ∈ A∗ such that sα(x) = s, t = α(y)t and
xy ∈ ↑v. The latter property yields x′, y′ ∈ A∗ such that v = x′y′, x ∈ ↑x′ and
y ∈ ↑y′. We prove that sα(x′) = s and t = α(y′)t, which yields as desired that
sα(v)t = sα(x′y′)t = st. By symmetry, we only show that s = sα(x′).

Since s = sα(x), we have s = s(α(x))ω. Moreover, since x ∈ ↑x′, we
have x0, . . . , xn ∈ A∗ and a1, . . . , an ∈ A such that x′ = a1 · · · an and
x = x0a1x1 · · · anxn. It follows from (3) that for every 1 ≤ i ≤ n, we have:

(α(x))ω = (α(x))ωα(x0a1x1 · · · xi−1) = (α(x))ωα(x0a1x1 · · · xi−1ai).

This yields (α(x))ω = (α(x))ωα(ai). Therefore, since we know that s = s(α(x))ω,
we obtain sα(ai) = s(α(x))ωα(ai) = s(α(x))ω = s. Finally, this yields,

s = sα(an) = sα(an−1an) = · · · = sα(a1 · · · an−1an) = sα(x′).

This concludes the proof. 
�
Second case: w ∈ A+. In that case, we have u, v ∈ A∗ and a ∈ A such that
w = uav (the choice of u, v and a is arbitrary). Consider the two following
subsets of M :

Mu = {α(xa) | x ∈ ↑u} and Mv = {α(ay) | y ∈ ↑v}.

Moreover, we say that a cover K of some language H is tight when K ⊆ H for
every K ∈ K. We use induction to prove the following fact.

Fact 26. There exist tight PT-covers Ku and Kv of ↑u and ↑v which satisfy the
following properties:

– for every r ∈ Mu, the cover Kv of ↑v is (sr, t)-safe.
– for every r ∈ Mv, the cover Ku of ↑u is (s, rt)-safe.
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Proof. We construct Kv (the construction of Ku is symmetrical). Let Mu =
{r1, . . . , rn}. For every i ≤ n, assume that we already have a PT-cover Hi of ↑v
which is (sri, t)-safe. We define,

Kv = {↑v ∩ H1 ∩ · · · ∩ Hn | Hi ∈ Hi for every i ≤ n} .

Since PT is a Boolean algebra, it is immediate that Kv is a tight PT-cover of ↑v
which is (sr, t)-safe for every r ∈ Mu. Thus, it remains to build for every i ≤ n
such a PT-cover Hi.

We fix i ≤ n for the proof. By definition of Mu, we have ri = α(uia) for
some word ui ∈ ↑u. Observe that since w = uav, we have P [sri, v, t] ⊆ P [s, w, t]
by definition: our first induction parameter (i.e., the size of P [s, w, t]) has not
increased. Hence, since |v| < |w|, it follows by induction on our second parameter
in Lemma 23 (the length of w) that there exists a PT-cover Hi of ↑v which is
(sri, t)-safe. This concludes the proof. 
�

We are ready to construct the desired PT-cover K of ↑w. Consider the tight
PT-covers Ku and Kv of ↑u and ↑v described in Fact 26. Since w = uav, Propo-
sition 19 yields a PT-cover K of ↑w such that for every K ∈ K, there exist
Ku ∈ Ku and Kv ∈ Kv satisfying K ⊆ KuaKv. It remains to prove that K is
(s, t)-safe. Let K ∈ K and x, x′ ∈ K. We prove that sα(x)t = sα(x′)t.

By definition, K ⊆ KuaKv for Ku ∈ Ku and Kv ∈ Kv. Hence, there exist
y, y′ ∈ Ku and z, z′ ∈ Kv such that x = yaz and x′ = y′az′. Since Ku is a tight
cover of ↑u, we know that y ∈ ↑u, which implies that α(ya) ∈ Mu by definition.
It follows that Kv is (sα(ya), t)-safe by Fact 26. Therefore, since z, z′ ∈ Kv

and Kv ∈ Kv, we obtain sα(yaz)t = sα(yaz′)t. Symmetrically, one may verify
that sα(yaz′)t = sα(y′az′)t. Altogether, it follows that sα(yaz)t = sα(y′az′)t,
meaning that sα(x)t = sα(x′)t. This concludes the proof of Lemma 23. 
�

6 Conclusion

We explained how covering provides a natural and convenient framework for
handling membership questions. We illustrated this point by using covers to for-
mulate new proofs for Schützenberger’s theorem and Simon’s theorem. We chose
these two examples as they are arguably the two most famous characterization
theorems of this kind. However, this approach is also relevant for other prominent
characterization theorems. A first promising example is the class of unambiguous
languages. It was also characterized by Schützenberger [37] and it also famous
as the class of languages that can be define in two-variable first-order logic (this
was shown by Thérien and Wilke [40]). Another interesting example is Knast’s
theorem [13] which characterizes the languages of dot-depth one. This class is
natural generalization of the piecewise testable languages.
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