Skip to main content

Numerical Algorithms for the Parametric Continuation of Stiff ODEs Deriving from the Modeling of Combustion with Detailed Chemical Mechanisms

  • Conference paper
  • First Online:
Numerical Computations: Theory and Algorithms (NUMTA 2019)

Abstract

The use of detailed chemical mechanisms is becoming increasingly necessary during the actual transition of energy production from fossil to renewable fuels. Indeed, the modern renewable fuels are characterized by a composition more complex than traditional fossil fuels due to the variability of the properties of the primary source, i.e. biomass. The parametric continuation can be a formidable tool to study the behavior of these new fuels allowing to promptly assess equilibrium conditions varying the main operative parameters. However, parametric continuation is a very computationally demanding procedure, both for the number of elementary operations needed and for the memory requirements. Actually, only very recently some approaches that allow affording this computation with chemical mechanisms composed of hundreds of chemical species and thousands of reactions have been proposed [1, 2, 37]. Starting from the procedure presented in [1], this paper illustrates further improvements of key steps that usually represents a bottleneck for the effective computation of parametric continuations and for the identification of bifurcation points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(\alpha \) :

continuation parameter

\(\lambda \) :

eigenvalues

\(\mathbf {f}\) :

right-hand side of system given by Eqs. (1–2)

\(\mathbf {J_f}\) :

Jacobian matrix

\(\mathbf {x}\) :

state vector

\(\psi \) :

test functions

\(\rho \) :

density, \(\text {kg}\,\text {m}^{-3}\)

\(\tau \) :

residence time, s

a :

real part of eigenvalues

b :

complex part of eigenvalues

\(c_p\) :

constant pressure specific heat, \(\mathrm{J\,kg}^{-1}\,\text {K}^{-1}\)

h :

mass specific enthalpy, \(\text {J}\,\text {kg}^{-1}\)

\(N_s\) :

number of chemical species

\(N_{nz}\) :

number of non zero element in a matrix

r :

net production rate, \(\text {kmol}\,\text {s}^{-1}\)

T :

temperature, K

t :

time, s

V :

volume of the reactor, \(\text {m}^{3}\)

W :

molecular weight, \(\text {kg}\,\text {kmol}^{-1}\)

Y :

mass fraction

F :

Fold Bifurcation

f :

feed conditions

H :

Hopf Bifurcation

j :

species index

References

  1. Acampora, L., Marra, F.: Numerical strategies for the bifurcation analysis of perfectly stirred reactors with detailed combustion mechanisms. Comput. Chem. Eng. 82, 273–282 (2015). https://doi.org/10.1016/j.compchemeng.2015.07.008

    Article  Google Scholar 

  2. Acampora, L., Marra, F.: Numerical strategies for detection of bifurcation points in the parametric continuation of model reactors with detailed chemical mechanisms. In: AIP Conference Proceedings, vol. 1906 (2017). https://doi.org/10.1063/1.5012382

  3. Acampora, L., Kooshkbaghi, M., Frouzakis, C.E., Marra, F.S.: Generalized entropy production analysis for mechanism reduction. Combust. Theory Model. 23(2), 197–209 (2019). https://doi.org/10.1080/13647830.2018.1504990

    Article  MathSciNet  Google Scholar 

  4. Acampora, L., Mancusi, E., Marra, F.S.: Bifurcation analysis of perfectly stirred reactors with large reaction mechanisms. Chem. Eng. Trans. 43, 877–882 (2015)

    Google Scholar 

  5. Allgower, E.L., Georg, K.: Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction To Algorithms. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Curran, H.J., Gaffuri, P., Pitz, W.J., Westbrook, C.K.: A comprehensive modeling study of n-heptane oxidation. Combust. Flame 114(1–2), 149–177 (1998). https://doi.org/10.1016/S0010-2180(97)00282-4

    Article  Google Scholar 

  8. Dhooge, A., Govaerts, W., Kuznetsov, Y.A.: MATCONT: a MATLAB package for numerical bifurcation analysis of ODEs. ACM Trans. Math. Softw. 29(2), 141–164 (2003). https://doi.org/10.1145/779359.779362

    Article  MathSciNet  MATH  Google Scholar 

  9. Doedel, E.J.: AUTO: a program for the automatic bifurcation analysis of autonomous systems. Congr. Numer. 30, 265–284 (1981)

    MathSciNet  MATH  Google Scholar 

  10. Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P.: Land clearing and the biofuel carbon debt. Science 319(5867), 1235–1238 (2008). https://doi.org/10.1126/science.1152747

    Article  Google Scholar 

  11. Glarborg, P., Miller, J.A., Kee, R.J.: Kinetic modeling and sensitivity analysis of nitrogen oxide formation in well-stirred reactors. Combust. Flame 65(2), 177–202 (1986). https://doi.org/10.1016/0010-2180(86)90018-0

    Article  Google Scholar 

  12. Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

    MATH  Google Scholar 

  13. Goodwin, D.G.: An open-source, extensible software suite for CVD process simulation. In: Allendorf, M., Maury, F., Teyssandier, F. (eds.) Chemical Vapor Deposition XVI and EUROCVD 14, vol. 2003-08, pp. 155–162. The Electrochemical Society ECS, Pennington (2003)

    Google Scholar 

  14. Govaerts, W.: Numerical bifurcation analysis for ODEs. J. Comput. Appl. Math. 125(1–2), 57–68 (2000). https://doi.org/10.1016/S0377-0427(00)00458-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Govaerts, W., Kuznetsov, Y.A., Dhooge, A.: Numerical continuation of bifurcations of limit cycles in MATLAB. SIAM J. Sci. Comput. 27(1), 231–252 (2005). https://doi.org/10.1137/030600746

    Article  MathSciNet  MATH  Google Scholar 

  16. Guckenheimer, J., Myers, M., Sturmfels, B.: Computing hopf bifurcations I. SIAM J. Numer. Anal. 34(1), 1–21 (1997)

    Article  MathSciNet  Google Scholar 

  17. Kalamatianos, S., Vlachos, D.G.: Bifurcation behavior of premixed hydrogen/air mixtures in a continuous stirred tank reactor. Combust. Sci. Technol. 109(1–6), 347–371 (1995). https://doi.org/10.1080/00102209508951909

    Article  Google Scholar 

  18. Kee, R.J., Rupley, F.M., Meeks, E., Miller, J.A.: CHEMKIN-III: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. Technical report, SAND-96-8216, Sandia National Laboratories (1996)

    Google Scholar 

  19. Keller, H.: Lectures on Numerical Methods in Bifurcation Problems. Lectures on Mathematics and Physics. Springer, Berlin (1987). Published for the TATA Institute of Fundamental Research

    Google Scholar 

  20. Kooshkbaghi, M., Frouzakis, C.E., Boulouchos, K., Karlin, I.V.: n-Heptane/air combustion in perfectly stirred reactors: dynamics, bifurcations and dominant reactions at critical conditions. Combust. Flame 162(9), 3166–3179 (2015). https://doi.org/10.1016/j.combustflame.2015.05.002

    Article  Google Scholar 

  21. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences. Springer, Berlin (1998). https://doi.org/10.1007/b98848

    Book  MATH  Google Scholar 

  22. Lengyel, I., West, D.H.: Numerical bifurcation analysis of large-scale detailed kinetics mechanisms. Curr. Opin. Chem. Eng. 21, 41–47 (2018). https://doi.org/10.1016/j.coche.2018.02.013

    Article  Google Scholar 

  23. Lindstedt, R.P., Maurice, L.Q.: Detailed kinetic modelling of n-Heptane combustion. Combust. Sci. Technol. 107(4–6), 317–353 (1995). https://doi.org/10.1080/00102209508907810

    Article  Google Scholar 

  24. Lu, T., Ju, Y., Law, C.K.: Complex CSP for chemistry reduction and analysis. Combust. Flame 126(1–2), 1445–1455 (2001). https://doi.org/10.1016/S0010-2180(01)00252-8

    Article  Google Scholar 

  25. Lu, T., Law, C.K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005). https://doi.org/10.1016/j.proci.2004.08.145

    Article  Google Scholar 

  26. Lu, T., Law, C.K.: A criterion based on computational singular perturbation for the identification of quasi steady state species: a reduced mechanism for methane oxidation with NO chemistry. Combust. Flame 154(4), 761–774 (2008). https://doi.org/10.1016/j.combustflame.2008.04.025

    Article  Google Scholar 

  27. Lu, T., Law, C.K.: Toward accommodating realistic fuel chemistry in large-scale computations. Prog. Energy Combust. Sci. 35(2), 192–215 (2009). https://doi.org/10.1016/j.pecs.2008.10.002

    Article  Google Scholar 

  28. Mehl, M., Pitz, W.J., Sjöberg, M., Dec, J.E.: Detailed kinetic modeling of low-temperature heat release for PRF fuels in an HCCI engine.Technical Paper 2009-01-1806, SAE International, June 2009. https://doi.org/10.4271/2009-01-1806

  29. Mehl, M., Pitz, W.J., Westbrook, C.K., Curran, H.J.: Kinetic modeling of gasoline surrogate components and mixtures under engine conditions. Proc. Combust. Inst. 33(1), 193–200 (2011). https://doi.org/10.1016/j.proci.2010.05.027

    Article  Google Scholar 

  30. Metcalfe, W.K., Dooley, S., Dryer, F.L.: Comprehensive detailed chemical kinetic modeling study of toluene oxidation. Energy Fuels 25(11), 4915–4936 (2011). https://doi.org/10.1021/ef200900q

    Article  Google Scholar 

  31. Olsen, R.J., Vlachos, D.G.: A complete pressure-temperature diagram for air oxidation of hydrogen in a continuous-flow stirred tank reactor. J. Phys. Chem. A 103(40), 7990–7999 (1999). https://doi.org/10.1021/jp991148b

    Article  Google Scholar 

  32. Park, Y.K., Vlachos, D.G.: Isothermal chain-branching, reaction exothermicity, and transport interactions in the stability of methane/air mixtures*. Combust. Flame 114(1–2), 214–230 (1998). https://doi.org/10.1016/S0010-2180(97)00285-X

    Article  Google Scholar 

  33. Park, Y.K., Vlachos, D.G.: Kinetically driven instabilities and selectivities in methane oxidation. AIChE J. 43(8), 2083–2095 (1997). https://doi.org/10.1002/aic.690430816

    Article  Google Scholar 

  34. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Texts in Applied Mathematics. Springer, New York (2017)

    MATH  Google Scholar 

  35. Seydel, R.: Practical Bifurcation and Stability Analysis, Interdisciplinary Applied Mathematics, vol. 5. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1740-9

    Book  MATH  Google Scholar 

  36. Shan, R., Lu, T.: Ignition and extinction in perfectly stirred reactors with detailed chemistry. Combust. Flame 159(6), 2069–2076 (2012). https://doi.org/10.1016/j.combustflame.2012.01.023

    Article  Google Scholar 

  37. Shan, R., Lu, T.: A bifurcation analysis for limit flame phenomena of DME/air in perfectly stirred reactors. Combust. Flame 161(7), 1716–1723 (2014). https://doi.org/10.1016/j.combustflame.2013.12.025

    Article  Google Scholar 

  38. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2019). https://oeis.org/A014132

    Chapter  Google Scholar 

  39. Sloane, N.J.A.: The on-line encyclopedia of integer sequences (2019). http://oeis.org/A010883

  40. Uppal, A., Ray, W.H., Poore, A.B.: On the dynamic behavior of continuous stirred tank reactors. Chem. Eng. Sci. 29(4), 967–985 (1974). https://doi.org/10.1016/0009-2509(74)80089-8

    Article  Google Scholar 

  41. Uppal, A., Ray, W.H., Poore, A.B.: The classification of the dynamic behavior of continuous stirred tank reactors—influence of reactor residence time. Chem. Eng. Sci. 31(3), 205–214 (1976). https://doi.org/10.1016/0009-2509(76)85058-0

    Article  Google Scholar 

  42. Valorani, M., Creta, F., Goussis, D.A., Lee, J.C., Najm, H.N.: An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combust. Flame 146(1–2), 29–51 (2006). https://doi.org/10.1016/j.combustflame.2006.03.011

    Article  Google Scholar 

  43. Westbrook, C.K., Pitz, W.J., Herbinet, O., Curran, H.J., Silke, E.J.: A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combust. Flame 156(1), 181–199 (2009). https://doi.org/10.1016/j.combustflame.2008.07.014

    Article  Google Scholar 

  44. Westbrook, C.K., et al.: Detailed chemical kinetic reaction mechanisms for soy and rapeseed biodiesel fuels. Combust. Flame 158(4), 742–755 (2011). https://doi.org/10.1016/j.combustflame.2010.10.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco S. Marra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Acampora, L., Marra, F.S. (2020). Numerical Algorithms for the Parametric Continuation of Stiff ODEs Deriving from the Modeling of Combustion with Detailed Chemical Mechanisms. In: Sergeyev, Y., Kvasov, D. (eds) Numerical Computations: Theory and Algorithms. NUMTA 2019. Lecture Notes in Computer Science(), vol 11974. Springer, Cham. https://doi.org/10.1007/978-3-030-40616-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40616-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40615-8

  • Online ISBN: 978-3-030-40616-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics