Skip to main content

Usage of Smart Contracts with FCG for Dynamic Robot Coalition Formation in Precision Farming

  • Conference paper
  • First Online:
Book cover Enterprise Information Systems (ICEIS 2019)

Abstract

In solving the problems of precision farming, an important place has the organization of joint work of robots for processing the field. The paper presents an approach to the dynamic formation of a coalition for solving the problem of precision farming, based on the use of fuzzy cooperative games in determining the structure of the coalition. To collect the initial data and save the result of the calculation of the game, a cyberphysical space is used, built based on the “blackboard” and blockchain technologies. Their use allows to combine the advantages of the concept of the Internet of Things for collecting information from sensors of agricultural robots and the immutability of data blocks to save the results of the calculation of the game in a competitive environment. To ensure the dynamic change of the coalition, smart contracts are used over the blockchain technology. Contracts contain the rules for calculating a fuzzy cooperative game and the rules for changing the composition of the coalition. As a result, the proposed approach provides the dynamic formation of a coalition with the trust of all participants and the ability to collect and disseminate information from robot sensors in a common trusted information space. To implement the blockchain and smart contract, the approach proposes to use the Hyperledger Fabric platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mouradian, C., Sahoo, J., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A coalition formation algorithm for Multi-Robot Task Allocation in large-scale natural disasters. In: 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). IEEE, pp. 1909–1914 (2017)

    Google Scholar 

  2. Smirnov, A., Sheremetov, L., Teslya, N.: Fuzzy cooperative games usage in smart contracts for dynamic robot coalition formation: approach and use case description. In: ICEIS 2019 - Proceedings of the 21st International Conference on Enterprise Information Systems, pp. 349–358 (2019)

    Google Scholar 

  3. Cong, L.W., He, Z., Zheng, J.: Blockchain disruption and smart contracts. SSRN Electron. J. 48 (2017). https://doi.org/10.2139/ssrn.2985764

  4. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by step towards creating a safe smart contract: lessons and insights from a cryptocurrency lab. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 79–94. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_6

    Chapter  Google Scholar 

  5. Ordaz-Rivas, E., Rodríguez-Liñán, A., Torres-Treviño, L.: Collaboration of robot swarms with a relation of individuals with prey-predator type. Smart Technology, pp. 121–132. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (2018)

    Chapter  Google Scholar 

  6. Klusch, M., Gerber, A.: Dynamic coalition formation among rational agents. IEEE Intell. Syst. 17, 42–47 (2002). https://doi.org/10.1109/MIS.2002.1005630

    Article  Google Scholar 

  7. Kardos, C., Kovács, A., Váncza, J.: Decomposition approach to optimal feature-based assembly planning. CIRP Ann. 66, 417–420 (2017). https://doi.org/10.1016/j.cirp.2017.04.002

    Article  Google Scholar 

  8. Jennings, N.R., Faratin, P., Lomuscio, A.R., Parsons, S., Wooldridge, M., Sierra, C.: Automated negotiation: prospects, methods and challenges. Group Decis. Negot. 10, 199–215 (2001). https://doi.org/10.1023/A:1008746126376

    Article  Google Scholar 

  9. Hosam, H., Khaldoun, Z.: Planning coalition formation under uncertainty: auction approach. In: Proceedings - 2006 International Conference on Information and Communication Technologies: From Theory to Applications, ICTTA 2006, pp. 3013–3017. IEEE (2006)

    Google Scholar 

  10. Aubin, J.-P.: Cooperative Fuzzy Games. Math. Oper. Res. 6, 1–13 (1981). https://doi.org/10.1287/moor.6.1.1

    Article  MathSciNet  MATH  Google Scholar 

  11. Kahan, J.P., Rapoport, A.: Theories of Coalition Formation. Lawrence Erlbaum Associates, Inc., Hillsdale (1984)

    MATH  Google Scholar 

  12. Gillies, D.B.: Some theorems on n-person games. Princeton University (1953)

    Google Scholar 

  13. Mareš, M.: Fuzzy Cooperative Games. Physica-Verlag HD, Heidelberg (2001). https://doi.org/10.1007/978-3-7908-1820-8

    Book  MATH  Google Scholar 

  14. Shen, P., Gao, J.: Coalitional game with fuzzy payoffs and credibilistic core. Soft. Comput. 15, 781–786 (2010). https://doi.org/10.1007/s00500-010-0632-9

    Article  MATH  Google Scholar 

  15. Smirnov, A.V., Sheremetov, L.B.: Models of coalition formation among cooperative agents: the current state and prospects of research. Sci. Tech. Inf. Process. 39, 283–292 (2012). https://doi.org/10.3103/S014768821205005X

    Article  Google Scholar 

  16. Bayram, H., Bozma, H.I.: Coalition formation games for dynamic multirobot tasks. Int. J. Rob. Res. 35, 514–527 (2015). https://doi.org/10.1177/0278364915595707

    Article  Google Scholar 

  17. Verma, D., Desai, N., Preece, A., Taylor, I.: A block chain based architecture for asset management in coalition operations. In: Pham, T., Kolodny, M.A. (eds.) Proceedings of the SPIE 10190, Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent ISR VIII, p. 101900Y (2017)

    Google Scholar 

  18. Dorri, A., Kanhere, S.S., Jurdak, R.: Towards an optimized BlockChain for IoT. In: Proceedings of the Second International Conference on Internet-of-Things Des Implement - IoTDI 2017, pp. 173–178 (2017). https://doi.org/10.1145/3054977.3055003

  19. Zhang, Y., Wen, J.: The IoT electric business model: using blockchain technology for the internet of things. Peer-to-Peer Netw. Appl. 10, 983–994 (2017). https://doi.org/10.1007/s12083-016-0456-1

    Article  Google Scholar 

  20. Ferrer, E.C.: The blockchain: a new framework for robotic swarm systems. Adv. Intell. Syst. Comput. 881, 1037–1058 (2019). https://doi.org/10.1007/978-3-030-02683-7_77

    Article  Google Scholar 

  21. Cachin, C., Vukolić, M.: Blockchain Consensus Protocols in the Wild, 24 (2017). https://doi.org/10.4230/LIPIcs.DISC.2017.1

  22. Teslya, N., Ryabchikov, I.: Blockchain-based platform architecture for industrial IoT. In: Conference of Open Innovation Association, FRUCT (2018)

    Google Scholar 

  23. Smirnov, A., Kashevnik, A., Ponomarev, A., Shilov, N.: Context-aware decision support in socio-cyberphysical systems: from smart space-based applications to human-computer cloud services. In: Demazeau, Y., Davidsson, P., Bajo, J., Vale, Z. (eds.) PAAMS 2017. LNCS (LNAI), vol. 10349, pp. 3–15. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59930-4_1

    Chapter  Google Scholar 

  24. Sheremetov, L.B., Smirnov, A.V.: A fuzzy cooperative game model for configuration management for open supply networks. Contrib. Game Theory Manag. 4, 433–446 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Sheremetov, L.B.: A model of fuzzy coalition games in problems of configuring open supply networks. J. Comput. Syst. Sci. Int. 48, 765–778 (2009). https://doi.org/10.1134/S1064230709050116

    Article  MATH  Google Scholar 

  26. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. (Ny) 3, 177–200 (1971). https://doi.org/10.1016/S0020-0255(71)80005-1

    Article  MathSciNet  MATH  Google Scholar 

  27. Haekwan, L., Tanaka, H.: Fuzzy approximations with non-symmetric fuzzy parameters in fuzzy regression analysis. J. Oper. Res. Soc. Jpn. 42, 98–112 (1999)

    MathSciNet  MATH  Google Scholar 

  28. Buterin, V.: A next-generation smart contract and decentralized application platform. Etherum 1–36 (2014). https://doi.org/10.5663/aps.v1i1.10138

  29. Androulaki, E., et al.: Hyperledger fabric. In: Proceedings of the Thirteenth EuroSys Conference on - EuroSys 2018, pp 1–15. ACM Press, New York (2018)

    Google Scholar 

  30. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. WwwBitcoinOrg 9 (2008). https://doi.org/10.1007/s10838-008-9062-0

    Article  MathSciNet  Google Scholar 

  31. Brown, R.G., Carlyle, J., Grigg, I., Hearn, M.: Corda : an introduction 1–15 (2016). https://doi.org/10.13140/RG.2.2.30487.37284

  32. What is Exonum - Exonum Documentation (2018). https://exonum.com/doc/get-started/what-is-exonum/. Accessed 1 Mar 2018

  33. Szabo, N.: Smart contracts: building blocks for digital markets copyright. In: alamut.com (1996). http://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart_contracts_2.html. Accessed 16 Sep 2017

  34. Goldreich, O.: Foundations of cryptography, 1st edn. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  35. Bessani, A., Sousa, J., Vukolić, M.: A byzantine fault-tolerant ordering service for the hyperledger fabric blockchain platform. In: Proceedings of the 1st Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers - SERIAL 2017, pp. 1–10. ACM Press, New York (2017)

    Google Scholar 

Download references

Acknowledgements

The present research was supported by the projects funded through grants # 17-29-07073, of the Russian Foundation for Basic Research. The part of research is supported by the program №7 “New developments in the areas of energy, mechanics and robotics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Teslya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smirnov, A., Sheremetov, L., Teslya, N. (2020). Usage of Smart Contracts with FCG for Dynamic Robot Coalition Formation in Precision Farming. In: Filipe, J., Śmiałek, M., Brodsky, A., Hammoudi, S. (eds) Enterprise Information Systems. ICEIS 2019. Lecture Notes in Business Information Processing, vol 378. Springer, Cham. https://doi.org/10.1007/978-3-030-40783-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40783-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40782-7

  • Online ISBN: 978-3-030-40783-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics