
F. Arbab and S-S. Jongmans (Eds.): FACS 2019, LNCS 12018, pp. 1–21, 2020.
© 2020 Springer-Verlag. This is the author’s version of the work. It is posted at
https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019 by
permission of Springer-Verlag for your personal use. The final publication is available at
Springer via 10.1007/978-3-030-40914-3_3. BibTEX, Word, EndNote, RIS

A Formally Verified Model of Web Components

Achim D. Brucker1 and Michael Herzberg2

1 Department of Computer Science, University of Exeter, Exeter, UK
a.brucker@exeter.ac.uk

2 Department of Computer Science, The University of Sheffield, Sheffield, UK
msherzberg1@sheffield.ac.uk

Abstract. The trend towards ever more complex client-side web appli-
cations is unstoppable. Compared to traditional software development,
client-side web development lacks a well-established component model,
i. e., a method for easily and safely reusing already developed function-
ality. To address this issue, the web community started to adopt shadow
trees as part of the Document Object Model (DOM). Shadow trees allow
developers to “partition” a DOM instance into parts that should be safely
separated, e. g., code modifying one part should not unintentionally affect
other parts of the DOM.
While shadow trees provide the technical basis for defining web compo-
nents, the DOM standard neither defines the concept of web components
nor specifies the safety properties that web components should guaran-
tee. Consequently, the standard also does not discuss how or even if the
methods for modifying the DOM respect component boundaries.
In this paper, we present a formally verified model of web components
and define safety properties which ensure that different web components
can only interact with each other using well-defined interfaces. Moreover,
our verification of the application programming interface (API) of the
DOM revealed numerous invariants that implementations of the DOM
API need to preserve to ensure the integrity of components.

Keywords: Web component · Shadow tree · DOM · Isabelle/HOL

1 Introduction

The trend towards ever more complex client-side web applications is unstop-
pable. Compared to traditional software development, client-side web develop-
ment lacks a well-established component model which allows easily and safely
reusing implementations. The Document Object Model (DOM) essentially de-
fines a tree-like data structure (the node tree) for representing documents in
general and HTML documents in particular.

Shadow trees are a recent addition to the DOM standard [24] to enable web
developers to partition the node tree into “sub-trees.” The vision of shadow trees
is to enable web developers to provide a library of re-usable and customizable
widgets. For example, let us consider a multi-tab view called Fancy Tab, which
is a simplified version of [3].

https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019
https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019
https://doi.org/10.1007/978-3-030-40914-2_3

@InCollection{	 brucker.ea:web-components:2019,
 abstract	= {The trend towards ever more complex client-side web applications is unstoppable. Compared to
		 traditional software development, client-side web development lacks a well-established component
		 model, i.e., a method for easily and safely reusing already developed functionality. To address this
		 issue, the web community started to adopt shadow trees as part of the Document Object Model (DOM):
		 shadow trees allow developers to "partition" a DOM instance into parts that should be safely
		 separated, e.g., code modifying one part should not, unintentionally, affect other parts of the DOM.
		
		 While shadow trees provide the technical basis for defining web components, the DOM standard neither
		 defines the concept of web components nor specifies the safety properties that web components should
		 guarantee. Consequently, the standard also does not discuss how or even if the methods for modifying
		 the DOM respect component boundaries. In this paper, we present a formally verified model of web
		 components and define safety properties which ensure that different web components can only interact
		 with each other using well-defined interfaces. Moreover, our verification of the application
		 programming interface (API) of the DOM revealed numerous invariants that implementations of the DOM
		 API need to preserve to ensure the integrity of components.},
 keywords	= {Web Component, Shadow Tree, DOM, Isabelle/HOL},
 location	= {Amsterdam, The Netherlands},
 author	= {Achim D. Brucker and Michael Herzberg},
 booktitle	= {Formal Aspects of Component Software (FACS)},
 language	= {USenglish},
 url		= {https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019},
 publisher	= {Springer-Verlag},
 address	= {Heidelberg},
 series	= {Lecture Notes in Computer Science},
 number	= {12018},
 isbn		= {3-540-25109-X},
 doi		= {10.1007/978-3-030-40914-2_3},
 editor	= {Sung-Shik Jongmans and Farhad Arbab},
 pdf		= {https://www.brucker.ch/bibliography/download/2019/brucker.ea-web-components-2019.pdf},
 title		= {A Formally Verified Model of Web Components},
 classification= {conference},
 areas		= {formal methods, software},
 year		= {2020},
 public	= {yes}
}

BibTeX entry of this paper

 brucker.ea:web-components:2019
 BookSection
 Heidelberg
 Springer-Verlag
 2020
 Formal Aspects of Component Software (FACS)
 12018
 https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019
 https://doi.org/10.1007/978-3-030-40914-2_3

 Brucker Achim D
 Herzberg Michael

 Jongmans Sung-Shik
 Arbab Farhad

 A Formally Verified Model of Web Components
 The trend towards ever more complex client-side web applications is unstoppable. Compared to traditional software development, client-side web development lacks a well-established component model, i.e., a method for easily and safely reusing already developed functionality. To address this issue, the web community started to adopt shadow trees as part of the Document Object Model (DOM): shadow trees allow developers to "partition" a DOM instance into parts that should be safely separated, e.g., code modifying one part should not, unintentionally, affect other parts of the DOM. While shadow trees provide the technical basis for defining web components, the DOM standard neither defines the concept of web components nor specifies the safety properties that web components should guarantee. Consequently, the standard also does not discuss how or even if the methods for modifying the DOM respect component boundaries. In this paper, we present a formally verified model of web components and define safety properties which ensure that different web components can only interact with each other using well-defined interfaces. Moreover, our verification of the application programming interface (API) of the DOM revealed numerous invariants that implementations of the DOM API need to preserve to ensure the integrity of components.

XML entry of this paper (e.g., for Word 2007 and later)

%0 Book Section
%T A Formally Verified Model of Web Components
%A Brucker, Achim D.
%A Herzberg, Michael
%E Jongmans, Sung-Shik
%E Arbab, Farhad
%B Formal Aspects of Component Software (FACS)
%S Lecture Notes in Computer Science
%D 2020
%N 12018
%I Springer-Verlag
%C Heidelberg
%@ 3-540-25109-X
%G USenglish
%F brucker.ea:web-components:2019
%X The trend towards ever more complex client-side web applications is unstoppable. Compared to traditional software development, client-side web development lacks a well-established component model, i.e., a method for easily and safely reusing already developed functionality. To address this issue, the web community started to adopt shadow trees as part of the Document Object Model (DOM): shadow trees allow developers to "partition" a DOM instance into parts that should be safely separated, e.g., code modifying one part should not, unintentionally, affect other parts of the DOM. While shadow trees provide the technical basis for defining web components, the DOM standard neither defines the concept of web components nor specifies the safety properties that web components should guarantee. Consequently, the standard also does not discuss how or even if the methods for modifying the DOM respect component boundaries. In this paper, we present a formally verified model of web components and define safety properties which ensure that different web components can only interact with each other using well-defined interfaces. Moreover, our verification of the application programming interface (API) of the DOM revealed numerous invariants that implementations of the DOM API need to preserve to ensure the integrity of components.
%K Web Component, Shadow Tree, DOM, Isabelle/HOL
%R 10.1007/978-3-030-40914-2_3
%U https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019
%U https://www.brucker.ch/bibliography/download/2019/brucker.ea-web-components-2019.pdf
%U https://doi.org/10.1007/978-3-030-40914-2_3

Endnote entry of this paper

TY - CHAP
AU - Brucker, Achim D.
AU - Herzberg, Michael
ED - Jongmans, Sung-Shik
ED - Arbab, Farhad
PY - 2020
DA - 2020//
TI - A Formally Verified Model of Web Components
BT - Formal Aspects of Component Software (FACS)
T3 - Lecture Notes in Computer Science
IS - 12018
PB - Springer-Verlag
CY - Heidelberg
KW - Web Component, Shadow Tree, DOM, Isabelle/HOL
AB - The trend towards ever more complex client-side web applications is unstoppable. Compared to traditional software development, client-side web development lacks a well-established component model, i.e., a method for easily and safely reusing already developed functionality. To address this issue, the web community started to adopt shadow trees as part of the Document Object Model (DOM): shadow trees allow developers to "partition" a DOM instance into parts that should be safely separated, e.g., code modifying one part should not, unintentionally, affect other parts of the DOM. While shadow trees provide the technical basis for defining web components, the DOM standard neither defines the concept of web components nor specifies the safety properties that web components should guarantee. Consequently, the standard also does not discuss how or even if the methods for modifying the DOM respect component boundaries. In this paper, we present a formally verified model of web components and define safety properties which ensure that different web components can only interact with each other using well-defined interfaces. Moreover, our verification of the application programming interface (API) of the DOM revealed numerous invariants that implementations of the DOM API need to preserve to ensure the integrity of components.
SN - 3-540-25109-X
L1 - https://www.brucker.ch/bibliography/download/2019/brucker.ea-web-components-2019.pdf
UR - https://www.brucker.ch/bibliography/abstract/brucker.ea-web-components-2019
UR - https://doi.org/10.1007/978-3-030-40914-2_3
DO - 10.1007/978-3-030-40914-2_3
LA - USenglish
ID - brucker.ea:web-components:2019
ER -

RIS entry of this paper

http://www.brucker.ch/
https://orcid.org/0000-0002-6355-1200
https://www.mherzberg.de/
https://orcid.org/0000-0003-2781-2837

2 Achim D. Brucker and Michael Herzberg

(a) User view

<fancy-tabs>
<button slot="title">Politics</button>
<button slot="title" selected>Sports</button>
<button slot="title">Culture</button>
<section>content panel 1</section>

News Item 1 <button>Share</button>
News Item 2 <button>Share</button>
News Item 3 <button>Share</button>

<section>content panel 3</section>

</fancy-tabs>

(b) Consumer view

Fig. 1. Our running example: a fancy tab component.

The left-hand side of Fig. 1 shows the rendered output of the widget in use
while the right-hand side shows the HTML source code snippet (we will discuss
the implementation of Fancy Tab in Sect. 3). It provides a custom HTML tag
<fancy-tabs> using an HTML template that developers can use to include the
widget. Its children will be rendered inside the widget, more precisely, inside its
slots (elements of type slot). It has a slot called “title” and a default slot, which
receives all children that do not specify a “slot” attribute.

It is important to understand that slotting does not change the structure of
the DOM (i. e., the underlying pointer graph): instead, slotting is implemented
using special element attributes such as “slot,” which control the final rendering.
The DOM standard specifies methods that inspect the effect of these attributes
such as assigned_slot, but the majority of DOM methods do not consider the
semantics of these attributes and therefore do not traverse into shadow trees.

This provides an important boundary for client-side code. For example, a
JavaScript program coming from the widget developer that changes the style
attributes of the “Previous Tab” and “Next Tab” buttons in the lower corners of
the widget will not affect buttons belonging to other parts coming from outside,
i. e., the application of the widget consumer. Similarly, a JavaScript program
that changes the styles of buttons outside of Fancy Tab, such as the navigation
buttons, will not have any effect on them, even in the case of duplicate identifiers.

Sadly, the DOM standard neither defines the concept of web components nor
specifies the safety properties that they should guarantee, not even informally.
Consequently, the standard also does not discuss how or even if the methods for
modifying the node tree respect component boundaries. Thus, shadow roots are
only the very first step in defining a safe web component model.

Earlier [7], we presented a formalization of the “flat” DOM (called Core DOM)
without any support for shadow trees or components. In this paper, we extend
the Core DOM with a formal model of shadow trees and slots which we use for
defining a formally verified model of web components in general and, in particu-
lar, the notion of weak and strong component safety. For all methods that query,

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 3

modify, or transform the DOM, we formally analyze their level of component
safety. In more detail, the contribution of this paper is four-fold:
1. We provide a formal model of web components and their safety guarantees to

web developers, enabling a compositional development of web applications,
2. for each method, we formally verify that it is either weakly or strongly com-

ponent safe, or we provide a proof showing that it is not component safe,
3. we fill the gaps in the standard by explicitly formalizing invariants that are

left out in the standard. These invariants are required to ensure that methods
in the standard preserve a valid node tree. Finally,

4. we present a formal model of the DOM with shadow roots including the
methods for querying, modifying, and transforming DOM instances with
shadow roots.

Overall, our work gives web developers the guarantee that their code will respect
the component boundaries as long as they abstain from or are careful when using
certain DOM methods such as appendChild or ownerDocument.

On the Relationship Between the “DOM Standard” and the “Shadow DOM Stan-
dard.” The development of shadow trees started in the context of the dedicated
“Shadow DOM” standard [23]. This standard has been considered obsolete since
at least March 2018, as shadow trees have been integrated into the DOM stan-
dard [24] itself. Hence, we will in the following only refer to the “DOM standard.”
Our formalization is faithful with respect to the standard in the sense that our
formalization passes all relevant compliance test cases provided by the standard
authors (the detailed discussion of this matter is out of scope of this paper).

2 Background

In this section, we will introduce the formal background of our work and the
formalization of the Core DOM [6, 7], without support for shadow roots.

2.1 Isabelle and Higher-Order Logic

Isabelle/HOL [17] is a generic theorem prover supporting Higher-order Logic
(HOL). It supports conservativity checks of definitions, datatypes, primitive and
well-founded recursion, and powerful generic proof engines.

HOL [2, 9] is a classical logic with equality enriched with total polymorphic
higher-order functions. HOL is strongly typed, i. e., each expression e has a type
'a, written e::'a. In Isabelle, we denote type variables with a prime (e. g., 'a)
instead of Greek letters (e. g., α) that are usually used in textbooks. The type
constructor for the function space is written infix: 'a ⇒ 'b. HOL is centered
around the extensional logical equality _ = _ with type 'a ⇒ 'a ⇒ bool,
where bool is the fundamental logical type. The type discipline rules out para-
doxes such as Russel’s paradox in untyped set theory. Sets of type 'a set can
be defined isomorphic to functions of type 'a ⇒ bool; the element-of-relation
_ ∈ _ has the type 'a ⇒ 'a set ⇒ bool and corresponds basically to the

4 Achim D. Brucker and Michael Herzberg

function application; in contrast, the set comprehension {_ . _} (usually writ-
ten {_ | _} in textbooks) has type 'a set ⇒ ('a ⇒ bool) ⇒ 'a set and
corresponds to the λ-abstraction.

Isabelle/HOL allows defining abstract datatypes. For example, the following
statement introduces the option type:

datatype 'a option = None | Some 'a

Besides the constructors None and Some, there is the match-operation case x
of None ⇒ F | Some a ⇒ G a, which acts as a case distinction on x::'a
option. The option type allows us to represent partial functions (often called
maps) as total functions of type 'a ⇒ 'b option. For this type, we introduce
the short-hand 'a ⇀ 'b. We define dom f, called the domain of a partial func-
tion f by the set of all arguments of f that do not yield None. By restricting the
domain of a map to be finite, we can define a type that represents finite maps:

typedef ('a, 'b) fmap = {m. finite (dom m)}::('a ⇀ 'b) set

In this paper, we will use a short-hand that hides type variables when they
are identical to the declaration of a datatype or a type definition. For example,
we will write (_) fmap instead of ('a, 'b) fmap. This short-hand notation is
provided by [6] as an Isabelle theory, i. e., it is fully supported by Isabelle.

We represent DOM methods directly as HOL functions (shallow embedding)
using a monad-like syntax that looks similar to Haskell programs. Additionally,
we introduce the syntax h ` f x →r y, which is a predicate that evaluates to
true if and only if the method f invoked on heap h and with argument x returns
the value y. Similarly, h ` f x →h h', refers to the (potentially modified) new
heap h'. In addition, we introduce syntax for binding the result directly to a
variable y: y = |h ` f x|r.

2.2 The Core DOM

Our work is based on the formalization of the Core DOM presented in [6, 7].
The Core DOM describes a tree-like data structure without shadow roots. Fig. 2
shows the most important interfaces of the Core DOM using Web IDL [22],
a formal notation used in the standard [24]. For each class (expressed as an
interface in Web IDL), the Core DOM formalization introduces a HOL datatype
representing a typed pointer. For example, the pointer for Node is modeled as:

datatype 'node_ptr node_ptr = Ext 'node_ptr

Here, object-oriented sub-typing (inheritance) is modeled using the type variable
'node_ptr. Classes are HOL records, e. g.,

record Node = Object + nothing :: unit

where we see that Node inherits from Object.
The Core DOM formalization provides an object-oriented data model of

a tree-like data structure, which is called node tree in the DOM standard,
where 1. the root of the tree is an instance of Document, 2. instances of the

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 5

interface Document {
readonly attribute

DocumentType? doctype;
readonly attribute

Element? documentElement;
};

interface Node {
readonly attribute

Document? ownerDocument;
readonly attribute

Node? parentNode;
};

interface CharacterData : Node {
attribute DOMString data;

};
interface Element : Node {
readonly attribute

DOMString tagName;
readonly attribute

NodeList childNodes;
readonly attribute

NamedNodeMap attributes;
readonly attribute

ShadowRoot? shadowRoot;
};

Fig. 2. The interface specification of the Core DOM.

class Element can be internal nodes or leaves, and 3. instances of the class
CharacterData can only appear as leaves. Moreover, the Core DOM formal-
ization defines a heap for “storing documents,” i. e., instances of the DOM data
model. A DOM heap is a finite map from object pointers to objects:

datatype ('object_ptr, 'Object) heap
= Heap (the_heap: ('object_ptr object_ptr, 'Object Object) fmap)

On top of this data model, the Core DOM formalization also defines methods
for creating, querying, and modifying DOM heaps:
– get_attribute returns the attribute (e. g., id or class) of an element,
– set_attribute sets the attribute of an element,
– get_tag_name returns the tag type (e. g., div) of an element,
– set_tag_name sets the tag type of an element,
– get_child_nodes returns the children of an element or the document ele-

ment of a document,
– get_ancestors returns a list of ancestor nodes, with the first node being

the argument itself, the second one being the parent, and so on,
– get_parent returns the parent.
– get_root_node returns the root node, the node that is obtained after re-

peatedly calling get_parent,
– insert_before inserts the given node into the children of the argument,

possibly removing it first from its former parent,
– get_element_by_id traverses the tree in depth-first pre-order (called tree-

order in the standard) and returns the first element matching the given id,
– get_owner_document returns the owner document.

The formal signatures of these methods in Isabelle/HOL are: Fig. 3 provides
an overview of the formal signatures in Isabelle/HOL: All methods return a
program of type (_, 'result) dom_prog, where 'result can be interpreted
as the “real” return type of the methods. A dom_prog takes a heap and returns
either an error or a result along with a new heap.

6 Achim D. Brucker and Michael Herzberg

get_attribute :: (_) element_ptr ⇒ attr_key
⇒ (_, attr_value option) dom_prog

set_attribute :: (_) element_ptr ⇒ attr_key ⇒ attr_value option
⇒ (_, unit) dom_prog

get_tag_name :: (_) element_ptr ⇒ (_, tag_type) dom_prog
set_tag_name :: (_) element_ptr ⇒ tag_type ⇒ (_, unit) dom_prog
get_child_nodes :: (_) object_ptr ⇒ (_, (_) node_ptr list) dom_prog
get_ancestors :: (_::linorder) object_ptr

⇒ (_, (_) object_ptr list) dom_prog
get_parent :: (_) node_ptr ⇒ (_, (_) object_ptr option) dom_prog
get_root_node :: (_) object_ptr ⇒ (_, (_) object_ptr) dom_prog
insert_before :: (_) object_ptr ⇒ (_) node_ptr ⇒ (_, unit) dom_prog
get_element_by_id :: (_) object_ptr ⇒ attr_value

⇒ (_, (_) element_ptr option) dom_prog
get_owner_document :: (_) object_ptr ⇒ (_, (_) document_ptr) dom_prog

Fig. 3. The methods for creating, querying, and modifying the DOM. All functions
return a program of type (_, 'result) dom_prog, where 'result can be interpreted
as the “real” return type of the function. A dom_prog takes a heap and returns either
an error or a result and a new heap.

Not all objects in a heap are necessarily a regular node of a DOM instance.
The DOM also introduces the concept of disconnected nodes (e. g., for freshly
created objects or local variables), which are unreachable from the main docu-
ment until they are inserted into the node tree by, e. g., using insert_before.

3 Motivating Example: Fancy Tab

In this section, we discuss our running example Fancy Tab from Fig. 1. Fig. 4a
focuses on the HTML part of defining Fancy Tab. As the DOM standard does not
allow for creating shadow roots statically (i. e., using pure HTML), the definition
of shadow roots requires JavaScript to create them at run-time. In our example,
we assign the actual definition to innerHTML of an already created shadow root.

Fig. 4b shows an attempt to provide the functionality of Fancy Tab without
using shadow roots. While this alternative definition provides—at first glance—a
similar “look and feel,” it does not provide any form of run-time separation.

For both variants, we assume that a web developer consumes Fancy Tab
without being familiar with its implementation and would like to style their
navigation buttons by changing the label text to upper case. Let us assume that
the web developer uses the JavaScript snippet from Fig. 5c to change the button
texts, which traverses the document’s node tree starting from its root node,
looking for buttons, and changing their innerText attribute.

Now, let us observe the results: Fig. 5b shows the version without shadow
roots; here, all buttons, including the navigation buttons on the bottom (which
belong to the widget and should be abstracted away), turned upper case, as

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 7

shadowRoot.innerHTML = '
<style>...</style>
<div id="tabs">
<slot id="tabsSlot" name="title"></slot>

</div>
<div id="panels">
<slot id="panelsSlot"></slot>

</div>
<button id="left">
Previous Tab</button>

<button id="right">
Next Tab</button>

';

(a) Excerpt of the source of the Fancy Tab
widget. We assign the HTML definition
to the innerHTML of an already created
shadow root.

<div>
<style>...</style>
<div id="tabs">
<button slot="title">
Politics</button>

<button slot="title" selected>
Sports</button>

<button slot="title">
Culture</button>

</div>
<div id="panels">
<section>content panel 1</section>
News Item 1

<button>Share</button>
News Item 2
<button>Share</button>

News Item 3
<button>Share</button>

<section>
content panel 3</section>

</div>
<button id="left">
Previous Tab</button>

<button id="right">
Next Tab</button>

</div>

(b) Defining Fancy Tab without shadow
roots would require mixing the code of
Fancy Tab and the consuming app, los-
ing any kind of separation properties.

Fig. 4. The source code of Fancy Tab with shadow roots (left) and without (right).

they are part of the same scope. We consider this undesired behavior, because
the developer inadvertently modified the internal representation of Fancy Tab:
we would like the Fancy Tab developer to be protected from these kinds of effects.

Fig. 5a shows the version with shadow roots, where we can see that only the
buttons in the top navigation bar turned upper case—the navigation buttons
on the bottom remain unaffected, because they are not part of the same scope
(i. e., they are not part of the document). To understand the difference, we need
to look at the DOM representation with shadow roots as shown in Fig. 6; by
calling document.getElementsByTagName("button"), we enumerate all but-
tons, starting from the root document, and thus traverse the tree along the
solid arrows. The method getElementsByTagName traverses the tree in depth-
first pre-order (called tree order in the DOM standard), which does not descend
along the dotted line.

4 Formalizing Shadow Trees

In this section, we describe how we formalize the addition of shadow trees, i. e.,
sub-trees of a DOM whose root node is a shadow root, to the DOM. In particular,

8 Achim D. Brucker and Michael Herzberg

(a) Styling Fancy Tab with shadow root
only affects buttons outside of Fancy Tab,
but not inside.

(b) Styling fancy tabs without shadow
root affects additionally buttons inside of
Fancy Tab.

for (let btn of document.getElementsByTagName("button")) {
btn.innerText = btn.innerText.toUpperCase();

}

(c) A simple JavaScript snippet that converts all button labels to upper case.

Fig. 5. Difference of modifying a website with shadow roots and one without.

Document

Element
tag: "fancy-tabs"

. . . Element
tag: "section"

CharacterData
Content Panel 1

Element
tag: "button"
slot: "title"

CharacterData
Tab 1

ShadowRoot
mode: open

Element
tag: "style"

Element
tag: "div"
id: "tabs"

Element
tag: "slot"
id: "tabsSlot"
name: "title"

Element
tag: "div"
id: "panels"

. . .

Element
tag: "slot"
id: "panelsSlot"

Main Document Tree (T1)

Shadow Tree (T2)

shadowRoot

host
ownerDocument

Fig. 6. Representation of the internal DOM structure of our running example Fig. 1.

we 1. extend the data model of the Core DOM to support shadow roots, 2. elicit
and formalize invariants that are not made explicit in the DOM standard, and
3. formalize methods for querying and modifying shadow roots.

4.1 Data Model and Basic Accessors

To represent shadow trees, we introduce a new type: ShadowRoot. Using Web
IDL, the interface of a shadow root is given as:

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 9

interface ShadowRoot {
readonly attribute ShadowRootMode mode;
readonly attribute Element host;
readonly attribute NodeList childNodes;

}

Shadow roots can only be contained in an Element, where they behave as a
special kind of child (successor) node. Instead of using get_child_nodes or
get_parent, we will introduce the methods get_shadow_root and get_host,
respectively, that act similarly. We formalize these signatures as follows:

get_shadow_root ::
(_) element_ptr ⇒ (_, (_) shadow_root_ptr option) dom_prog

get_mode :: (_) shadow_root_ptr ⇒ (_, shadow_root_mode) dom_prog
get_host :: (_) shadow_root_ptr ⇒ (_, (_) element_ptr) dom_prog

Shadow roots manage a list of children, like an Element does, but also a flag
mode that indicates whether the sub-tree shall be accessible from the outside.
For this purpose, this flag affects methods such as get_shadow_root, i. e., they
will not return any nodes if the shadow tree is closed. Fig. 6 illustrates how the
new node fits into the concept of a tree structure as defined by the Core DOM.

4.2 Tree Order and DOM Invariants

The data model given in the DOM standard describes a directed object graph,
but not necessarily a tree-like data structure. The fact that a valid DOM needs
to be a tree-like data structure is only given implicitly: The standard infor-
mally defines the concept of a tree order as “pre-order depth-first search.” The
tree order is defined in two variants: (shadow-excluding) tree order and shadow-
including tree order. The former ignores shadow roots while the latter traverses
(open) shadow roots prior to traversing the “regular” child nodes. We formalize
the shadow-including tree order as follows:

partial_function (dom_prog) to_tree_order_si
:: (_) object_ptr ⇒ (_, (_) object_ptr list) dom_prog where
to_tree_order_si ptr = do {
children ← get_child_nodes ptr;
shadow_root_part ← (case cast ptr of
Some element_ptr ⇒ do {

shadow_root_opt ← get_shadow_root element_ptr;
(case shadow_root_opt of

Some shadow_root_ptr ⇒ return [cast shadow_root_ptr] |
None ⇒ return [])

} |
None ⇒ return []);

treeorders ← map_M to_tree_order_si
((map cast children) @ shadow_root_part);

return (ptr # concat treeorders)
}

10 Achim D. Brucker and Michael Herzberg

While not explicitly stated by the standard, it implicitly assumes that the al-
gorithm computing a shadow-including tree order terminates for all “valid” in-
stances of the DOM. In our formalization, this is expressed as the property that
“for all well-formed heaps, the (partial) function to_tree_order_si does not
produce an error.” In the following, we will discuss the requirements that are
necessary to formally prove this property.

A well-formed heap needs to fulfill several properties that can either be mod-
eled as typing constraints or predicates. An example for the former is the prop-
erty “an element has at most one attached shadow root,” which is, both in the
DOM standard and our formalization, enforced by the type system. As an ex-
ample for the latter, we model the requirement that “shadow roots in a node
tree are always attached to a valid host” by using a predicate:

definition shadow_root_valid :: (_) heap ⇒ bool where
shadow_root_valid h = (∀shadow_ptr |∈| fset (shadow_root_ptr_kinds h).

(∃ host. host |∈| element_ptr_kinds h ∧
|h ` get_tag_name host|r ∈ safe_shadow_root_element_types ∧
|h ` get_shadow_root host|r = Some shadow_ptr))

The constraint shadow_root_is_valid is described in the standard informally
as requirement that a DOM does not contain “disconnected” shadow roots.

Moreover, the standard required that shadow roots cannot belong to more
than one host:

definition distinct_lists :: (_) heap ⇒ bool where
distinct_lists h = distinct (concat (

map (λelement_ptr. (case
|h ` get_shadow_root element_ptr|r of
Some shadow_root_ptr ⇒ [shadow_root_ptr] |
None ⇒ []))

|h ` element_ptr_kinds_M|r
))

To ensure that the DOM with shadow roots is a tree-like data structure, we
need to ensure that the underlying object-graph is acyclic. In HOL, we model
this in two steps. First, we define a relation between hosts and shadow roots:

definition host_shadow_root_rel :: (_) heap ⇒
((_) object_ptr × (_) object_ptr) set where

host_shadow_root_rel h = (λ(x, y).
(cast x, cast y)) ‘ {(host, shadow_root).

host |∈| element_ptr_kinds h
∧ |h ` get_shadow_root host|r = Some shadow_root}

This relation captures the requirement that the “link” between shadow roots
and hosts is a reversible relation. Second, we make use of the pre-defined acyclic
predicate of HOL for arbitrary relations to postulate that this relation is acyclic.

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 11

Now, we can formally capture the concept of a well-defined heap:

definition heap_wf :: (_) heap ⇒ bool where
heap_wf h ←→
Core_DOM.heap_wf h ∧

acyclic (Core_DOM.parent_child_rel h ∪ host_shadow_root_rel h)
∧ all_ptrs_in_heap h ∧ distinct_lists h ∧ shadow_root_valid h

More precisely, a well-defined heap requires that the regular parent-child
relation (defined in the Core DOM [6]) together with the shadow root-host
relation is acyclic, so we combine them and need parent_child_rel h ∪
host_shadow_root_rel h to be acyclic. Also, we require that all pointers in
a DOM instance are pointing to instances that are members of the well-defined
heap (this is captured by all_ptrs_in_heap h).

Additionally, we introduce a short-hand predicate valid_heap (which we
will use in lemmas throughout this paper) that captures heap_wf, but also en-
sures that the heap only contains pointers and objects whose types correspond
(type_wf) and pointers that are “known” (known_ptrs), which is a property
related to the extensibility (see [5, 8] for details on how to encode extensible
object-oriented data models in HOL) of the formal model:

definition valid_heap :: (_) heap ⇒ bool where
valid_heap h = heap_wf h ∧ type_wf h ∧ known_ptrs h

We can now formally prove, in Isabelle/HOL, that to_tree_order_si will
always terminate for well-defined heaps, meaning its execution is error-free (cap-
tured by the predicate ok):

lemma to_tree_order_si_ok:
assumes valid_heap h
assumes ptr |∈| object_ptr_kinds h
shows h ` ok (to_tree_order_si ptr)

This ensures termination, since to_tree_order_si is a partial functions in Is-
abelle/HOL that maps the case of non-termination to a value of our error type.

5 Web Components

We will now focus on the semantics of web components. While the DOM standard
introduces the API for working with shadow trees, it neither defines the concept
of a component nor specifies the safety guarantees that should be provided to
authors or consumers of components.

5.1 A Formal Definition of Web Components

Many DOM methods, e. g., get_element_by_id, traverse the node tree top-
down exclusively along the childNodes relation (i. e., in shadow-excluding tree
order). These methods will not traverse the DOM along the shadowRoot relation.

12 Achim D. Brucker and Michael Herzberg

Similarly, methods, such as get_root_node only traverse the tree bottom-up
using the parent relation; they will not continue along the host relation.

Intuitively, the shadowRoot relation acts as a “component boundary” that
can only be crossed by explicitly calling a method that is defined to traverse the
shadowRoot-host relation.

The standard informally introduces a (shadow-excluding) tree order compu-
tation (in the standard this is an abstract concept, i. e., not a method avail-
able directly to web developers) that returns, in depth-first pre-order, all nodes
reachable from a given node by traversing the childNodes relation. We use its
formalization to_tree_order to provide a formal definition of web components:

Definition 1 (Web Component). A (Web) Component of an object o is de-
fined as the list of all objects in tree order that are reachable from the root node
of o. Formally, we define:

definition
get_component :: (_) object_ptr ⇒ (_, (_) object_ptr list) dom_prog

where
get_component ptr = get_root_node ptr >>= to_tree_order

Informally, an object o belongs to a component c if and only if o is in the
list of nodes that are reachable from the root of c via the childNodes relation.
In our running example (see Fig. 6) the set of all objects is divided into two
components: T1 and T2.

Our component definition naturally allows distinguishing three different types
of components, based on the type of their root node.

Definition 2 (Document Component). A Document Component is a web
component where the root node is of type Document. Formally, we define:

definition is_document_component :: (_) object_ptr list ⇒ bool
where is_document_component c = is_document_ptr_kind (hd c)

Since an object of type Document can only occur as the root node of a node
tree, a document component can be considered the main part of a node tree.

Definition 3 (Shadow Root Component). A Shadow Root Component is a
web component where the root node is of type ShadowRoot. Formally, we define:

definition is_shadow_root_component :: (_) object_ptr list ⇒ bool
where is_shadow_root_component c = is_shadow_root_ptr_kind (hd c)

A shadow root component might be considered the “canonical component.”
It encapsulates its contained nodes from outside components and uses slots to
interact with the outer component.

Finally, we define a disconnected component as a component only containing
disconnected nodes (recall Sect. 2), i. e., nodes that are not reachable by travers-
ing the DOM (not even in shadow-including tree order) from its ownerDocument.

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 13

Definition 4 (Disconnected Component). A Disconnected Component is
a web component where the root node is of type Node. Formally, we define:

definition is_disconnected_component :: (_) object_ptr list ⇒ bool
where is_disconnected_component c = is_node_ptr_kind (hd c)

Disconnected components will not take part in the rendering of the final node
tree. Usually, disconnected components will contain freshly crated object graphs
that will become a part of a “regular” DOM instance by passing them as argument
to methods such as append_child.

5.2 Component Safety

Web components should provide a certain form of safety guarantee to both com-
ponent developers and consumers of components. Informally speaking, neither
should a DOM method unintentionally modify the consuming web application
when called in the context of the component, nor the other way round. This is
particularly important for web components that are developed in JavaScript, a
language without (static) typing and with concepts that support the run-time
extension of classes using prototype inheritance.

To address this issue, we introduce the notion of component safety for DOM
methods that captures which part of a DOM can be modified by a method. We
distinguish three types of methods; ones that

1. only operate within the components of their arguments, as one could argue
that it is expected that most methods only operate within their proximity.
We will call these methods strongly component-safe.

2. only operate within the components of their arguments and any newly cre-
ated components. While these methods operate outside their perceived bound-
aries, they at least leave other, existing components untouched. We will call
these methods weakly component-safe.

3. operate on arbitrary parts of a DOM instance. We will call these methods
unsafe.

In the following, we will introduce our different levels of component safety.
In our formalization, we analyze the level of component safety for all methods
of the DOM standard. Due to the limitations of using a shallow embedding
in HOL, we cannot provide a single HOL predicate that captures the level of
component safety. Instead, we will provide two predicates (one for strong safety,
one for weak safety) that capture the essence of the safety definitions, along with
a proof pattern that we apply to each DOM method.

We start by defining strong component safety, followed by discussing the
formal proofs for showing strong component safety.

Definition 5 (Strong Component Safety). A DOM method is strongly com-
ponent safe if and only if it does not create, delete, return, or modify any objects
outside of the components given by its arguments.

14 Achim D. Brucker and Michael Herzberg

In HOL, we define this property as follows:

definition is_strongly_component_safe :: (_) object_ptr set ⇒
(_) object_ptr set ⇒ (_) heap ⇒ (_) heap ⇒ bool where

is_strongly_component_safe Sarg Sresult h h' =
let outside_ptrs = fset (oeject_ptr_kinds h) -

(
⋃
ptr ∈ Sarg. set |h ` get_component ptr|r) in

let outside_ptrs' = fset (object_ptr_kinds h') -
(
⋃
ptr ∈ Sarg. set |h' ` get_component ptr|r) in

outside_ptrs = outside_ptrs' ∧
Sresult ∩ outside_ptrs = {} ∧
(∀outside_ptr ∈ outside_ptrs. preserved (get_M outside_ptr id) h h')

The predicate takes the set of pointers that are arguments of the method
invocation, the set of pointers that is returned by the method invocation, and
the state of the heap before and after the method invocation. It then builds the
set of pointers that lie outside of the arguments’ components before and after
the method invocation, and then makes three assertions: both sets of pointers
must be equal, i. e., no pointers have been created or deleted; the intersection of
the result pointer set and the set of pointers of the arguments’ components must
be empty; and all pointers outside of these components must remain unmodified
(get_M outside_ptr id returns the whole object, which is compared to other
objects by comparing all their fields).

We will show how this predicate is used to show the strong component safety
of a DOM method. For this purpose, we will look at the proofs of component
safety for get_child_nodes and get_element_by_id, which are both strongly
component safe. The complete formal proofs for these and all other supported
DOM methods are included in our Isabelle formalization. In order to show that
get_child_nodes is strongly component safe, we prove the following lemma:

lemma get_child_nodes_strongly_component_safe:
assumes valid_heap h
assumes h ` get_child_nodes ptr →r children
assumes h ` get_child_nodes ptr →h h'
shows is_strongly_component_safe {ptr} (cast ‘ set children) h h'

The first argument of is_strongly_dom_component_safe is Sarg, which is
the set of all pointers that are arguments to the DOM method call in question—
in the case of get_child_nodes, that is only ptr. The second argument is
Sresult, the set of all pointers that are returned by the method, in this case the
returned children after they have been appropriately cast to object pointers.
The last two arguments, h and h' refer to the heap states before and after the
method call. For get_child_nodes they will both be the same, so all that is
to show is that none of the children are outside of the component of ptr.
Since the component is constructed by iteratively invoking get_child_nodes
(to_tree_order in Def. 1), it follows that the children are indeed inside that
component and therefore not outside of it.

Methods that iterate in shadow-excluding tree order are also strongly com-
ponent safe, as in the case of get_element_by_id:

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 15

lemma get_element_by_id_is_strongly_component_safe:
assumes valid_heap h
assumes h ` get_element_by_id ptr id →r Some result
assumes h ` get_element_by_id ptr id →h h'
shows is_strongly_component_safe {ptr} {cast result} h h'

This is the variant for the case that such an element pointer, result, is indeed
found. The case that no such element is found is a separate lemma and trivial
to prove. The proof idea for this kind of lemma is similar to proof idea for
get_child_nodes; any object has the same root as its parent, and any node
found by get_element_by_id has the same root as the anchored object—from
the definition of get_component it then follows that they also have the same
component. As these methods do not modify the heap, this is all we need to
show for strong component safety.

We continue by defining weak component safety:

Definition 6 (Weak Component Safety). A DOM method is weakly com-
ponent safe if and only if it does not delete, return, or modify any objects outside
of the components given by its arguments.

The only difference between weak component safety and strong component
safety (Def. 5) is that weak safety allows for the creation of new objects outside of
the given components. Clearly, strong component safety implies weak component
safety, i. e., any strongly component safe method is also weakly component safe.

In general, methods that create new objects are weakly component safe,
because most of them return a new object which is not part of any component
yet, thus effectively creating a new one.

Examples of weakly component safe methods are create_element (creat-
ing a new disconnected component), create_character_data (creating a new
disconnected component), create_document (creating a new document compo-
nent), and attach_shadow_root (creating a new shadow root component). For
example, for create_element we prove the following lemma:

lemma create_element_is_weakly_component_safe:
assumes valid_heap
assumes h ` create_element document_ptr tag →r result →h h'
shows is_weakly_component_safe {cast document_ptr} {cast result} h h'

The proof idea is that the only object (that existed in h) that is modified is
referenced by document_ptr, which has the newly created element added to its
list of disconnected nodes. The new element pointer forms its own, new compo-
nent, as it does not belong to the one of document_ptr or any other one. This
is allowed by the definition of weak component safety.

Now we know that create_element is weakly component safe, but we would
also like to show that it is indeed not strongly component safe. In order to do so,
we will again leverage our is_strongly_component_safe predicate, but invert
our proof pattern:

16 Achim D. Brucker and Michael Herzberg

lemma create_element_not_strongly_component_safe:
obtains h and h' and document_ptr and new_element_ptr and tag

where
valid_heap h and
h ` create_element document_ptr tag →r new_element_ptr →h h' and

¬ is_strongly_component_safe

{cast document_ptr} {cast new_element_ptr} h h'

The structure of this kind of lemma is different from the lemmas showing
safety; we use the Isar obtains concept to show that there exists at least one
heap for which the method is not strongly component safe. It therefore suffices
to construct a counter-example, which in the case of create_element can be as
small as a heap containing nothing but a single document_ptr. Since our model
is completely executable, we can use the symbolic execution engine of Isabelle
to show that this heap indeed fulfills the lemma.

The next class of methods includes ones that concern shadow roots, which
are expectedly generally unsafe. In case of a closed shadow tree (mode is set
to Closed), methods trying to look inside Shadow Root Components (e. g.,
get_shadow_root and assigned_slot) will return an error, making these meth-
ods strongly component-safe in this case—methods trying to break out (e. g.,
get_host, get_composed_root_node, and get_assigned_nodes) are not af-
fected by the mode and thus remain unsafe. In the case of assigned_slot, this
looks as follows:

lemma assigned_slot_not_weakly_dom_component_safe:
obtains h and node_ptr and slot_opt and h'

where
valid_heap h and
h ` assigned_slot node_ptr →r slot_opt →h h' and
¬ is_weakly_component_safe

{cast node_ptr} (cast ‘ set_option slot_opt) h h'

We use the same construction as we did for showing that create_element
was not strongly safe, but now use is_weakly_component_safe. We use the
function set_option to convert the return value of assigned_slot into a
pointer set, so we can allow both possible outcomes of the method call, regard-
less of whether a slot has been found. Recall that we are constructing a counter
example here, so we only need to find one valid instantiation of variables. The
proof follows the usual schema, though the counter-example is more complex
than before. We need to create a heap that contains an element, a shadow root,
slots and slotables, but otherwise does not require any special configuration.

5.3 Component Safety of the DOM Methods

In the following, we will discuss to what extent the methods defined in the DOM
standard are component safe. By doing this we effectively evaluate how suitable
shadow roots are for providing separation. We will see that some methods, in
particular append_child, break our separation in unexpected ways.

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 17

Table 1 summarizes our classification. All shown lemmas with their proofs
can be found in our formalization (in the formalization, the lemma names start
with the method name, followed by _is or _not, followed either by the suffix
_strongly_component_safe, _weakly_component_safe, or, if the method is
not safe at all, _component_unsafe). The two methods get_shadow_root and
assigned_slot are only safe if the DOM only contains closed shadow roots.

Table 1. Classification of the DOM methods into whether they are strongly or weakly
component safe, or not at all. The last column (closed) classifies the methods for the
special case that the DOM instance only contains closed shadow roots.

Method Component Safety

open closed

get_child_nodes strong strong
get_parent strong strong
get_root_node strong strong
get_element_by_id strong strong
get_elements_by_class_name strong strong
get_elements_by_tag_name strong strong
create_element weak weak
create_character_data weak weak
create_document weak weak
attach_shadow_root weak weak
get_shadow_root unsafe safe
get_host unsafe unsafe
get_composed_root_node unsafe unsafe
get_assigned_nodes unsafe unsafe
assigned_slot unsafe safe
adopt_node unsafe unsafe
remove_child unsafe unsafe
insert_before unsafe unsafe
append_child unsafe unsafe
get_owner_document unsafe unsafe

From the view of a web developer, the fact that get_owner_document is
unsafe is particularly worrisome: if the root node of a given pointer is not a
document, then this method will return a document that is outside of the current
component. Thus, if a library developer uses this method for setting up their
component, they might inadvertently break out and change arbitrary objects
outside of their component.

Surprisingly and unfortunately, many of the heap-modifying methods such as
adopt_node, remove_child, insert_before, and append_child are unsafe,
too, because they all access and modify the list of disconnected nodes of owner
documents. For example, if an element is removed by using remove_child, it

18 Achim D. Brucker and Michael Herzberg

gets added to the list of disconnected nodes of the argument’s owner document,
which is outside of the component of the removed child.

We have seen that there are a number of DOM methods which we could prove
to be unsafe with regard to components. This is undesirable, as this means that
these methods break the expectations that a developer might have when working
with shadow root components.

5.4 Recommendations

Web components based on shadow trees are an important step forward for a
component-based web development approach. They allow web developers to de-
fine components with well-defined interfaces (called slots) for interacting with
the embedding application or other components (components can be nested ar-
bitrarily). However, our formal analysis shows that there are subtle ways to
accidentally break the component boundaries: most prominently, the enclosing
owner document is easily accessible from inside a shadow root component by
using the ownerDocument() method on any node of that component, which
corresponds to the ubiquitous document reference in any (Web) JavaScript con-
text. We suggest changing this behavior and instead providing a reference to the
root of the current component, thus strengthening the component separation
against accidental interference with other components. This would, on the one
hand, remove the most unexpected way of breaking up the component bound-
aries and, on the other hand, simplify the overall definition of web components.
This change would also simplify the notion of component safety by removing
boundary cases for disconnected nodes.

A second point of concern is that methods such as remove_child can have
unexpected effects outside of shadow trees, even if all arguments lie within that
shadow tree. Such removed nodes get added to the context of the surrounding
document, from which they might added again onto other, unrelated components
of the same document (DOM instance).

6 Related Work

To the best of our knowledge, we are the first to formalize the concept of shadow
roots. The most closely related works are our own formalization of the DOM [7]
without shadow roots that we use as basis of our component model, and the
works of Gardner et al. [12], Raad et al. [19], Smith [20]. In the latter ones, the
authors present a non-executable, non-extensible, and non-mechanized opera-
tional semantics of a minimal DOM and show how this semantics can be used
for Hoare-style reasoning for analysis heaps of DOMs. The authors focus on pro-
viding a formal foundation for reasoning over client-side JavaScript programs
that modify the DOM. Neither of these works defines formally the concept of
web components nor do they define component safety or formally analyze the
behavior of DOM methods in the context of shadow trees.

http://www.brucker.ch/
https://www.mherzberg.de/

A Formally Verified Model of Web Components 19

Our work shares a common goal with ownership type systems [10]. For exam-
ple, Poetzsch-Heffter et al. [18] use type annotations to give objects in object-
oriented programs a notion of ownership. This enables them to allow certain
components only read-access to an object, while the owner might have full read
and write-access. This line of work is orthogonal to ours; it is certainly possible
to create an access-control layer on top of our web components, but we are more
concerned with components inside a tree-like structure and how a given set of
methods behave regarding the boundary induced by shadow roots.

A more informal model of the DOM that focuses on the needs of building
a static analysis tool for client-side JavaScript programs is presented by Jensen
et al. [15]. This model does not focus on the DOM as such, instead the authors
focus on the representation of HTML documents on top of the DOM.

There are also very few formalizations of data structures for manipulating
XML-like document structures available. The most closely related one is pre-
sented by Sternagel and Thiemann [21]. The authors present an “XML library”
for Isabelle/HOL. The purpose of this library is to provide XML parsing and
pretty printing facilities for Isabelle. As such, it is not a formalization of XML
or XML-like data structures in Isabelle/HOL.

Shadow roots seem to achieve a very similar goal as the <iframe>-tag of the
HTML standard. Still, the motivation for both differ significantly: while iframes
were introduced to allow the secure integration of content from different web-
sites, shadow roots were introduced to allow component-based web development
similar to, for example, using components in the .net framework. The limitations
of shadow roots to ensure the privacy of data processed by web applications have
already been discussed by Légaré et al. [16] and Freyberger et al. [11].

Finally, there are several works, e. g., [1, 4, 13, 14] on formalizing parts of web
browsers for analyzing their security. These works use high-level specifications
of web browsers and do not contain a formalization of the DOM itself.

7 Conclusion

We present a formal model of web components and component safety, and we
formally verify the level of component safety for the DOM API as defined in the
DOM standard [24].

Our formalization of the DOM with shadow roots and its API is an important
step towards providing formal guarantees for a modular development approach
to web applications as well as increasing the security and safety of large web
applications. While the current proposal clearly has weaknesses, our analysis
also shows that moderate changes to the concept of shadow roots can make the
web components a much more powerful and stronger concept that, hopefully,
also can make developing secure applications easier.

On a technical level, our formalization is based on a shallow embedding of the
DOM with shadow roots into Isabelle/HOL. We use only conservative extensions
of HOL (i. e., we do not introduce any axioms). Hence, our formalization is con-
sistent by construction. Overall, it consists of more than 10 000 lines of Isabelle

20 Achim D. Brucker and Michael Herzberg

code, including conservative definitions and proofs. To ensure the compliance
of our formalization to the official DOM standard, we aimed for an executable
formalization: an executable specification allows for symbolically evaluating the
official compliance test suite in Isabelle/HOL. Thus, as our formalization passes
the test suite, our formalization adheres to the same compliance standards as
the widely used web browser engines.

Future Work. While web components based on shadow roots provide some form
of isolation for JavaScript developers, they have weaknesses and, clearly, can-
not provide the isolation necessary for enforcing security guarantees similar to
iframes. While iframes are a rather old concept that is defined on top of the
DOM in the HTML standard [25], shadow roots are a very recent concept that
is integrated into the DOM [24]. On the first glance, the two concepts do not
have much in common. Having a closer look reveals that the concepts are closely
related: on the one hand, it seems desirable to introduce security concepts to
shadow roots and, on the other hand, iframes would clearly benefit from inter-
faces allowing web developers to adapt certain aspects of an included iframe.
Thus, the question emerges whether shadow roots can, in the long term, replace
iframes. To answer this question, we plan to formalize the core of the HTML
standard on top of our DOM formalization. This allows us to compare both
concepts formally and also formally investigate the impact of adding security
features to shadow roots.

References

[1] Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-
dation of web security. In: IEEE Computer Security Foundations Symposium
(CSF), pp. 290–304. IEEE Computer Society (2010). doi: 10.1109/CSF.2010.27.

[2] Andrews, P.B.: Introduction to Mathematical Logic and Type Theory: To Truth
through Proof. 2nd edn. Kluwer Academic Publishers, Dordrecht (2002)

[3] Bidelman, E.: Shadow dom v1: Self-contained web components (2017).
https://developers.google.com/web/fundamentals/getting-started/
primers/shadowdom

[4] Bohannon, A., Pierce, B.C.: Featherweight Firefox: Formalizing the core of a web
browser. In: Usenix Web Application Development (WebApps) (2010).

[5] Brucker, A.D.: An interactive proof environment for object-oriented specifications.
Ph.D. thesis, ETH Zurich (2007). ETH Dissertation No. 17097.

[6] Brucker, A.D., Herzberg, M.: The Core DOM. Archive of Formal Proofs (2018).
http://www.isa-afp.org/entries/Core_DOM.html, Formal proof development

[7] Brucker, A.D., Herzberg, M.: A formal semantics of the Core DOM in Is-
abelle/HOL. In: Champin, P., Gandon, F.L., Lalmas, M., Ipeirotis, P.G. (eds.)
The 2018 Web Conference Companion (WWW), pp. 741–749. acm Press (2018).
doi: 10.1145/3184558.3185980.

[8] Brucker, A.D., Wolff, B.: An extensible encoding of object-oriented data models in
HOL. Journal of Automated Reasoning 41, 219–249 (2008). doi: 10.1007/s10817-
008-9108-3.

[9] Church, A.: A formulation of the simple theory of types. Journal of Symbolic
Logic 5(2), 56–68 (1940)

http://www.brucker.ch/
https://www.mherzberg.de/
http://dx.doi.org/10.1109/CSF.2010.27
https://developers.google.com/web/fundamentals/getting-started/primers/shadowdom
https://developers.google.com/web/fundamentals/getting-started/primers/shadowdom
http://www.isa-afp.org/entries/Core_DOM.html
http://dx.doi.org/10.1145/3184558.3185980
http://dx.doi.org/10.1007/s10817-008-9108-3
http://dx.doi.org/10.1007/s10817-008-9108-3

A Formally Verified Model of Web Components 21

[10] Clarke, D., Östlund, J., Sergey, I., Wrigstad, T.: Ownership types: A survey. In:
Clarke, D., Noble, J., Wrigstad, T. (eds.) Aliasing in Object-Oriented Program-
ming. Types, Analysis and Verification, LNCS 7850, pp. 15–58. Springer-Verlag
(2013). doi: 10.1007/978-3-642-36946-9_3

[11] Freyberger, M., He, W., Akhawe, D., Mazurek, M.L., Mittal, P.: Cracking shad-
owcrypt: Exploring the limitations of secure I/O systems in internet browsers.
PoPETs 2018(2), 47–63 (2018). doi: 10.1515/popets-2018-0012

[12] Gardner, P., Smith, G., Wheelhouse, M.J., Zarfaty, U.: DOM: towards a formal
specification. In: Programming Language Technologies for XML (PLAN-X), ACM
(2008).

[13] Guha, A., Fredrikson, M., Livshits, B., Swam, N.: Verified security for browser
extensions. In: IEEE Symposium on Security and Privacy, pp. 115–130 (2011).
doi: 10.1109/SP.2011.36

[14] Jang, D., Tatlock, Z., Lerner, S.: Establishing browser security guarantees through
formal shim verification. In: Kohno, T. (ed.) USENIX, pp. 113–128. USENIX
(2012).

[15] Jensen, S.H., Madsen, M., Møller, A.: Modeling the HTML DOM and browser
API in static analysis of JavaScript web applications. In: ESEC/FSE, pp. 59–69.
ACM (2011). doi: 10.1145/2025113.2025125.

[16] Légaré, J., Sumi, R., Aiello, W.: Beeswax: a platform for private web apps. PoPETs
2016(3), 24–40 (2016)

[17] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—A Proof Assistant for
Higher-Order Logic, LNCS 2283. Springer-Verlag (2002). doi: 10.1007/3-540-
45949-9

[18] Poetzsch-Heffter, A., Geilmann, K., Schäfer, J.: Infering ownership types for en-
capsulated object-oriented program components. In: Reps, T., Sagiv, M., Bauer,
J. (eds.) Program Analysis and Compilation, Theory and Practice, pp. 120–144.
Springer (2007). doi: 10.1007/978-3-540-71322-7_6

[19] Raad, A., Santos, J.F., Gardner, P.: DOM: specification and client reasoning. In:
Igarashi, A. (ed.) Programming Languages and Systems (APLAS), LNCS 10017,
pp. 401–422. Springer (2016). doi: 10.1007/978-3-319-47958-3_21

[20] Smith, G.D.: Local reasoning about web programs. Ph.D. thesis, Imperial College
London, London, UK (2011)

[21] Sternagel, C., Thiemann, R.: XML. Archive of Formal Proofs (2014). http:
//isa-afp.org/entries/XML.shtml, Formal proof development

[22] W3C: Web IDL (2017). https://heycam.github.io/webidl/
[23] W3C: Shadow DOM (2018). https://www.w3.org/TR/2018/NOTE-shadow-dom-

20180301/. Last Updated 1 March 2018
[24] WHATWG: DOM – living standard (2019). https://dom.spec.whatwg.org/

commit-snapshots/7fa83673430f767d329406d0aed901f296332216/. Last Up-
dated 11 February 2019

[25] WHATWG: HTML – living standard (2019). https://html.spec.whatwg.org/
commit-snapshots/b8c084e9d5461b858180e7f80ad6ca19c7963723/. Last Up-
dated 19 February 2019

http://dx.doi.org/10.1007/978-3-642-36946-9_3
http://dx.doi.org/10.1515/popets-2018-0012
http://dx.doi.org/10.1109/SP.2011.36
http://dx.doi.org/10.1145/2025113.2025125
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-540-71322-7_6
http://dx.doi.org/10.1007/978-3-319-47958-3_21
http://isa-afp.org/entries/XML.shtml
http://isa-afp.org/entries/XML.shtml
https://heycam.github.io/webidl/
https://www.w3.org/TR/2018/NOTE-shadow-dom-20180301/
https://www.w3.org/TR/2018/NOTE-shadow-dom-20180301/
https://dom.spec.whatwg.org/commit-snapshots/7fa83673430f767d329406d0aed901f296332216/
https://dom.spec.whatwg.org/commit-snapshots/7fa83673430f767d329406d0aed901f296332216/
https://html.spec.whatwg.org/commit-snapshots/b8c084e9d5461b858180e7f80ad6ca19c7963723/
https://html.spec.whatwg.org/commit-snapshots/b8c084e9d5461b858180e7f80ad6ca19c7963723/

	A Formally Verified Model of Web Components
	1 Introduction
	2 Background
	2.1 Isabelle and Higher-Order Logic
	2.2 The Core DOM

	3 Motivating Example: Fancy Tab
	4 Formalizing Shadow Trees
	4.1 Data Model and Basic Accessors
	4.2 Tree Order and DOM Invariants

	5 Web Components
	5.1 A Formal Definition of Web Components
	5.2 Component Safety
	5.3 Component Safety of the DOM Methods
	5.4 Recommendations

	6 Related Work
	7 Conclusion

