Skip to main content

A Service-Oriented Approach for Decomposing and Verifying Hybrid System Models

  • Conference paper
  • First Online:
Book cover Formal Aspects of Component Software (FACS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12018))

Included in the following conference series:

Abstract

The design of fault free hybrid control systems, which combine discrete and continuous behavior, is a challenging task. Their hybrid behavior and further factors make their design and verification challenging: These systems can consist of multiple interacting components, and commonly used design languages, like MATLAB Simulink do not directly allow for the verification of hybrid behavior. By providing hybrid contracts, which formally define the interface behavior of hybrid system components in differential dynamic logic ( ), and providing a decomposition technique, we enable compositional verification of Simulink models with interacting components. This enables us to use the interactive theorem prover KeYmaera X to prove the correctness of hybrid control systems modeled in Simulink, which we demonstrate with an automotive industrial case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The models and proofs of the temperature control system are available online: https://www.sese.tu-berlin.de/ServiceVerification/parameter/en/.

References

  1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57318-6_30

    Chapter  Google Scholar 

  2. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems’ properties with theorem proving. In: 2014 UKACC International Conference on Control (CONTROL), pp. 244–249. IEEE (2014)

    Google Scholar 

  3. Aştefănoaei, L., Bensalem, S., Bozga, M.: A compositional approach to the verification of hybrid systems. In: Ábrahám, E., Bonsangue, M., Johnsen, E.B. (eds.) Theory and Practice of Formal Methods. LNCS, vol. 9660, pp. 88–103. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30734-3_8

    Chapter  Google Scholar 

  4. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

    Chapter  Google Scholar 

  5. Benvenuti, L., Bresolin, D., Collins, P., Ferrari, A., Geretti, L., Villa, T.: Assume-guarantee verification of nonlinear hybrid systems with ariadne. Int. J. Robust Nonlinear Control 24(4), 699–724 (2014)

    Article  MathSciNet  Google Scholar 

  6. Boström, P.: Contract-based verification of Simulink models. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 291–306. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_21

    Chapter  Google Scholar 

  7. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verification. In: IEEE Transactions on Automatic Control, vol. 48, pp. 64–75. IEEE (2003)

    Google Scholar 

  8. Cubuktepe, M., Ahmadi, M., Topcu, U., Hencey, B.: Compositional analysis of hybrid systems defined over finite alphabets. IFAC-PapersOnLine 51(16), 115–120 (2018)

    Article  Google Scholar 

  9. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  10. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

    Chapter  Google Scholar 

  11. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past hytech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2_17

    Chapter  MATH  Google Scholar 

  12. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21401-6_36

    Chapter  Google Scholar 

  13. Henzinger, T.A., Ho, P.H., Wong-Toi, H.: HyTech: a model checker for hybrid systems. Int. J. Softw. Tools Technol. Transf. 1, 110–122 (1997)

    Article  Google Scholar 

  14. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-time MATLAB/Simulink models using SMT solving. In: 2013 Proceedings of the International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE (2013)

    Google Scholar 

  15. Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27813-9_40

    Chapter  Google Scholar 

  16. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control systems modeled in Simulink with KeYmaera X. In: Sun, J., Sun, M. (eds.) ICFEM 2018. LNCS, vol. 11232, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02450-5_6

    Chapter  Google Scholar 

  17. Liebrenz, T., Herber, P., Göthel, T., Glesner, S.: Towards service-oriented design of hybrid systems modeled in Simulink. In: 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp. 469–474. IEEE (2017)

    Google Scholar 

  18. MathWorks: MATLAB Simulink. www.mathworks.com/products/simulink.html

  19. MathWorks: White Paper: Code Verification and Run-Time Error Detection Through Abstract Interpretation. Technical report (2008)

    Google Scholar 

  20. Minopoli, S., Frehse, G.: SL2SX translator: from Simulink to SpaceEx models. In: 19th International Conference on Hybrid Systems: Computation and Control, pp. 93–98. ACM (2016)

    Google Scholar 

  21. Mitsch, S., Platzer, A.: The KeYmaera X proof IDE: concepts on usability in hybrid systems theorem proving. In: 3rd Workshop on Formal Integrated Development Environment. Electronic Proceedings in Theoretical Computer Science, vol. 240, pp. 67–81. Open Publishing Association (2017)

    Google Scholar 

  22. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Change and delay contracts for hybrid system component verification. In: Huisman, M., Rubin, J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 134–151. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54494-5_8

    Chapter  Google Scholar 

  23. O’Halloran, C.: Automated verification of code automatically generated from Simulink®. Autom. Softw. Eng. 20(2), 237–264 (2013)

    Article  Google Scholar 

  24. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2), 143–189 (2008)

    Article  MathSciNet  Google Scholar 

  25. Platzer, A.: A complete uniform substitution calculus for differential dynamic logic. J. Autom. Reason. 59(2), 219–265 (2017)

    Article  MathSciNet  Google Scholar 

  26. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS, vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10431-7_14

    Chapter  Google Scholar 

  27. Sanfelice, R., Copp, D., Nanez, P.: A toolbox for simulation of hybrid systems in Matlab/Simulink: Hybrid Equations (HyEQ) toolbox. In: 16th International Conference on Hybrid Systems: Computation and Control, pp. 101–106. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timm Liebrenz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liebrenz, T., Herber, P., Glesner, S. (2020). A Service-Oriented Approach for Decomposing and Verifying Hybrid System Models. In: Arbab, F., Jongmans, SS. (eds) Formal Aspects of Component Software. FACS 2019. Lecture Notes in Computer Science(), vol 12018. Springer, Cham. https://doi.org/10.1007/978-3-030-40914-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40914-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40913-5

  • Online ISBN: 978-3-030-40914-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics