Skip to main content

Comparison of Four Automatic Classifiers for Cancer Cell Phenotypes Using M-Phase Features Extracted from Brightfield Microscopy Images

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1087))

Included in the following conference series:

  • 601 Accesses

Abstract

In our in vitro study to model and understand the regulation networks that control the live and death of the cells, it is fundamental to quantify the contribution of each of the cancer cell’ phenotypes: apoptosis, cell cycle arrest, DNA damage repair, and DNA damage proliferation. For that, an automatic microscope is used to generate several images of cell populations using brightfield microscopy. In the scientific literature, several methods to extract features from microscopy images are available, but mostly for fluorescence or contrast phase microscopy, which have the disadvantage of being phototoxic to the cells, and therefore unsuitable for our study. In this paper a successful method to automatically extract and classify the phenotypes of cancer cells is presented. The method uses features extracted automatically from the M-phase (mitosis) of cells from images obtained by brightfield microscopy. The classification results are validated by comparing them with the correct manually annotated classes for each instance. Four different classifiers: Support Vector Machine (SVM), Linear Discriminant Analysis (LDA), k-Nearest Neighbours (kNN), and Random Forests (RF) are compared using standard comparison metrics, such as precision, recall and F1-score. It is finally shown that the LDA classifier provided the best results, reaching an overall f1-score of 0.78 and an overall weighted f1-score of 0.88.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbas, S.S., Dijkstra, T., Heskes, T.: A comparative study of cell classifiers for image-based high-throughput screening. BMC Bioinform. 15(1), 342 (2014). https://doi.org/10.1186/1471-2105-15-342

    Article  Google Scholar 

  2. Buggenthin, F., et al.: An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy. BMC Bioinform. 14, 297 (2013). https://doi.org/10.1186/1471-2105-14-297

    Article  Google Scholar 

  3. Calderón, S., Castro, J., Sáenz, A., Siles, F., Mora, R.: Automatic cell segmentation and tracking in the NF-kB pathway using time-lapse fluorescence microscopy videos without nuclear staining. In: VI Latin American Conference on Biomedical Engineering CLAIB 2014, Paraná, Argentina (2014)

    Google Scholar 

  4. Calderón, S., Siles, F.: Deceived bilateral filter for improving the classification of football players from TV broadcast. In: 3rd IEEE International Work-Conference on Bioinspired Intelligence, pp. 98–105 (2014). https://doi.org/10.1109/IWOBI.2014.6913946

  5. Calderón, S., Sáenz, A., Mora, R., Siles, F., Orozco, I., Buemi, M.E.: A novel image abstraction approach to improve the performance of a cell tracking system. In: 2015 4th International Work Conference on Bioinspired Intelligence (IWOBI), pp. 81–88 (2015). https://doi.org/10.1109/IWOBI.2015.7160148

  6. Carpenter, A., et al.: CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7(10), r100 (2006)

    Article  Google Scholar 

  7. Chalfoun, J., Majurski, M., Dima, A., Halter, M., Bhadriraju, K., Brady, M.: Lineage mapper: a versatile cell and particle tracker. Nat. Sci. Rep. 6 (2016). https://doi.org/10.1038/srep36984, Article number: 36984

  8. Chen, G., et al.: Targeting the adaptability of heterogeneous aneuploids. Cell 160(4), 771–784 (2015). https://doi.org/10.1016/j.cell.2015.01.026

    Article  Google Scholar 

  9. Chenouard, N., et al.: Objective comparison of particle tracking methods. Nat. Methods 11, 281 (2014). https://doi.org/10.1038/nmeth.2808

    Article  Google Scholar 

  10. Choi, M., Shi, J., Jung, S.H., Chen, X., Cho, K.H.: Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci. Sig. 5(251), 83 (2012). https://doi.org/10.1126/scisignal.2003363. http://stke.sciencemag.org/content/5/251/ra83.full.pdf

    Article  Google Scholar 

  11. Dürr, O., Sick, B.: Single-cell phenotype classification using deep convolutional neural networks. J. Biomol. Screen. 21(9), 998–1003 (2016). https://doi.org/10.1177/1087057116631284

    Article  Google Scholar 

  12. Giam, M., Rancati, G.: Aneuploidy and chromosomal instability in cancer: a jackpot to chaos. Cell Div. 10(1) (2015). https://doi.org/10.1186/s13008-015-0009-7

  13. Gilad, T., Bray, M.A., Carpenter, A.E., Raviv, T.R.: Symmetry-based mitosis detection in time-lapse microscopy. In: IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 164–167 (2015). https://doi.org/10.1109/ISBI.2015.7163841

  14. Grah, J.S., et al.: Mathematical imaging methods for mitosis analysis in live-cell phase contrast microscopy. Image Process. Biol. 115, 91–99 (2017). https://doi.org/10.1016/j.ymeth.2017.02.001

    Article  Google Scholar 

  15. Harder, N., et al.: Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 19(11), 2113–2124 (2009). https://doi.org/10.1101/gr.092494.109. http://genome.cshlp.org/content/19/11/2113.full.pdf+html

    Article  Google Scholar 

  16. Hayashi, M.T., Karlseder, J.: DNA damage associated with mitosis and cytokinesis failure. Oncogene 32(39), 4593–4601 (2013). https://doi.org/10.1038/onc.2012.615

    Article  Google Scholar 

  17. National Cancer Institute: NCI dictionary of cancer terms: chemotherapy (2017). https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=45214

  18. Liu, A., Li, K., Kanade, T.: Spatiotemporal mitosis event detection in time-lapse phase contrast microscopy image sequences. In: 2010 IEEE International Conference on Multimedia and Expo (2010). https://doi.org/10.1109/icme.2010.5583299

  19. Luxenburg, C., Pasolli, H.A., Williams, S.E., Fuchs, E.: Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nat. Cell Biol. 13(3), 203–214 (2011). https://doi.org/10.1038/Ncb2163

    Article  Google Scholar 

  20. Meyer, E.J., Ikmi, A., Gibson, M.C.: Interkinetic nuclear migration is a broadly conserved feature of cell division in pseudostratified epithelia. Curr. Biol. 21(6), 485–491 (2011). https://doi.org/10.1016/j.cub.2011.02.002

    Article  Google Scholar 

  21. Mora-Zúñiga, A.: Cell phenotype classification using M-phase features in live-cell bright field time-lapse microscopy. Master’s thesis, PRIS-Lab, Programa de Posgrado en Ingeniería Eléctrica, Universidad de Costa Rica, Costa Rica (2019)

    Google Scholar 

  22. Mualla, F., Scholl, S., Sommerfeldt, B., Maier, A., Hornegger, J.: Automatic cell detection in bright-field microscope images using SIFT, random forests, and hierarchical clustering. IEEE Trans. Med. Imaging 32(12), 2274–2286 (2013). https://doi.org/10.1109/tmi.2013.2280380

    Article  Google Scholar 

  23. Nie, W.Z., Li, W.H., Liu, A.A., Hao, T., Su, Y.T.: 3D convolutional networks-based mitotic event detection in time-lapse phase contrast microscopy image sequences of stem cell populations. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1359–1366 (2016). https://doi.org/10.1109/CVPRW.2016.171

  24. O’Connor, C.: Cell division: stages of mitosis. Nat. Educ. 1(1), 188 (2008)

    Google Scholar 

  25. Padfield, D., Rittscher, J., Thomas, N., Roysam, B.: Spatio-temporal cell cycle phase analysis using level sets and fast marching methods. Med. Image Anal. 13(1), 143–155 (2009). https://doi.org/10.1016/j.media.2008.06.018. Includes Special Section on Medical Image Analysis on the 2006 Workshop Microscopic Image Analysis with Applications in Biology

    Article  Google Scholar 

  26. Quiros, S., Roos, W., Kaina, B.: Processing of o\(^6\)-methylguanine into DNA double-strand breaks requires two rounds of replication whereas apoptosis is also induced in subsequent cell cycles. Cell Cycle 9(1), 168–178 (2010)

    Article  Google Scholar 

  27. Santaguida, S., Amon, A.: Short-and long-term effects of chromosome mis-segregation and aneuploidy. Nat. Rev. Mol. Cell Biol. 16(8), 473–485 (2015). https://doi.org/10.1038/nrm4025

    Article  Google Scholar 

  28. Sauer, F.C.: Mitosis in the neural tube. J. Comp. Neurol. 62(2), 377–405 (1935). https://doi.org/10.1002/cne.900620207

    Article  Google Scholar 

  29. Selinummi, J., et al.: Bright field microscopy as an alternative to whole cell fluorescence in automated analysis of macrophage images. PLoS ONE 4(10), e7497 (2009). https://doi.org/10.1371/journal.pone.0007497

    Article  Google Scholar 

  30. Siles, F.: Estimación de la Forma y Textura Celular para Microscopía In-Situ. Master’s thesis, Tesis de Licenciatura, Universidad de Costa Rica (2004)

    Google Scholar 

  31. Siles, F.: Automated semantic annotation of football games from TV broadcast. Ph.D. thesis, Dissertation, Technische Universität München (2014)

    Google Scholar 

  32. von Stechow, L., van de Water, B., Danen, E.H.J.: Unraveling DNA damage response-signaling networks through systems approaches. Arch. Toxicol. 87(9), 1635–1648 (2013). https://doi.org/10.1007/s00204-013-1106-5

    Article  Google Scholar 

  33. Su, Y., Yu, J., Liu, A., Gao, Z., Hao, T., Yang, Z.: Cell type-independent mitosis event detection via hidden-state conditional neural fields. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 222–225 (2014). https://doi.org/10.1109/isbi.2014.6867849

  34. Tkach, J.M., et al.: Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 14(9), 966–976 (2012). https://doi.org/10.1038/ncb2549

    Article  Google Scholar 

  35. Tuana, G., Volpato, V., Ricciardi-Castagnoli, P., Zolezzi, F., Stella, F., Foti, M.: Classification of dendritic cell phenotypes from gene expression data. BMC Immunol. 12(1), 50 (2011). https://doi.org/10.1186/1471-2172-12-50

    Article  Google Scholar 

  36. Versari, C., et al.: Long-term tracking of budding yeast cells in brightfield microscopy: CellStar and the evaluation platform. J. Roy. Soc. Interface 14(127) (2017). https://doi.org/10.1098/rsif.2016.0705, http://rsif.royalsocietypublishing.org/content/14/127/20160705.full.pdf

  37. Villalta, M., Siles, F.: Parallelization of a multipartite graph matching algorithm for tracking multiple football players. In: 5th IEEE International Conference on Parallel, Distributed and Grid Computing, PDGC 2018, Himachal Pradesh, India (2018)

    Google Scholar 

Download references

Acknowledgments

The present paper is a partial result of a research project funded by CONARE with a FEES grant entitled Genomic Functional Analysis of Cancer Cells by Interference RNA for the Identification of Regulation Networks Associated to Proliferation and Death in Response to Genotoxic Chemotherapy with id 803-B8-653, registered at the Research Center for Tropical Diseases (CIET) and the Department of Electrical Engineering (EIE), both from UCR.

And a special thanks to the PRIS-Lab and LQT members for their help and support during the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Siles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Siles, F., Mora-Zúñga, A., Quiros, S. (2020). Comparison of Four Automatic Classifiers for Cancer Cell Phenotypes Using M-Phase Features Extracted from Brightfield Microscopy Images. In: Crespo-Mariño, J., Meneses-Rojas, E. (eds) High Performance Computing. CARLA 2019. Communications in Computer and Information Science, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-030-41005-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41005-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41004-9

  • Online ISBN: 978-3-030-41005-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics