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Abstract. We propose a new first-order-system least squares (FOSLS)
finite-element discretization for singularly perturbed reaction-diffusion
equations. Solutions to such problems feature layer phenomena, and are
ubiquitous in many areas of applied mathematics and modelling. There
is a long history of the development of specialized numerical schemes
for their accurate numerical approximation. We follow a well-established
practice of employing a priori layer-adapted meshes, but with a novel
finite-element method that yields a symmetric formulation while also
inducing a so-called “balanced” norm. We prove continuity and coercivity
of the FOSLS weak form, present a suitable piecewise uniform mesh,
and report on the results of numerical experiments that demonstrate the
accuracy and robustness of the method.

Keywords: first-order system least squares (FOSLS) finite elements · singularly
perturbed differential equations · parameter-robust discretizations

1 Introduction

The numerical solution of singularly perturbed differential equations (SPDEs) is
of great interest to numerical analysts, given the importance of these equations in
computational modelling, and the challenges they present for classical numerical
schemes and the mathematical methods used to analyse them; see [15] for a
survey. In this work, we focus on linear second-order reaction-diffusion problems

of the form
− ε∆u+ bu = f on Ω := (0, 1)d u|∂Ω = 0, (1)

for d = 1, 2, 3, where we assume there exist constants 0 < b0 < b(x) < b1 for
every x ∈ Ω. Like all SPDEs, (1) is characterised by a small positive parameter
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that multiplies the highest derivative. It is “singular” in the sense that the prob-
lem is ill-posed if one formally sets ε = 0. As ε approaches this limit, the solution
typically exhibits layers: regions of rapid change, whose length is determined by
ε. The over-arching goal is to devise methods that resolve these layers, and for
which the error (measured in a suitable norm) is independent of ε. Many clas-
sical techniques make the tacit assumption that derivatives of u are bounded,
which does not hold, uniformly in ε, for solutions to (1). Numerous specialised
methods, usually based around layer-adapted meshes, have been developed with
the goal of resolving these layers and the attendant mathematical conundrums.
The celebrated piecewise uniform meshes of Shishkin have been particularly suc-
cessful in this regard; and analyses of finite-difference methods for (1) and its
many variants is largely complete [13].

Finite-element methods (FEMs) applied on layer-adapted meshes have also
been successfully applied to (1), but their analysis is more problematic. This is
highlighted to great effect by Lin and Stynes who demonstrated that the usual
energy norm associated with (1) is too weak to adequately express the layers
present in the solution [10]. They proposed a first-order FEM (see §2) for which
the associated norm is sufficiently strong to capture layers; they coined the term
“balanced norm” to describe this.

A flurry of activity on balanced norms was prompted by [10], including the
first-order system Petrov-Galerkin (FOSPeG) approach proposed by the au-
thors [1], and we refer it its introduction for a survey of the progress up to
2015. Since then, developments have continued apace. Broadly speaking, studies
can be classified as one of two types.

1. Those that give analyses of standard FEMs, but in norms that are not in-
duced by the associated bilinear forms; see, e.g., [16] on sparse grid FEMs,
and [12] on hp-FEMs.

2. Those that propose new formulations for which the associated norm is nat-
urally “balanced”; see, e.g., the discontinuous Petrov-Galerkin method of
Heuer and Karulik [7].

The present study belongs to the second of these classes: we propose a new
FEM for which the induced norm is balanced. This method is related to our
earlier work [1], but instead uses a weighted least-squares FEM to obtain a
symmetric discrete system. In this first-order system least-squares (FOSLS) ap-
proach [4,5], care is taken in choosing the weight, so that the resulting norms
are indeed balanced.

The remainder of the paper is outlined as follows. Section 2 gives a brief
discussion on balanced norms, where the Lin and Stynes and FOSPeG methods
are summarized. In Section 3, we discuss the weighted least-squares approach and
provide the necessary analysis, which applies in one, two and three dimensions.
In Section 4, we focus on the particular case of d = 2; we present a suitable
Shishkin mesh of the problem, and present numerical results that support our
findings. Some concluding remarks are given in Section 5.



2 Balanced norms

In [10], Lin and Stynes propose a first-order system reformulation of (1), writing
the equivalent system as

Ldiv U :=

(

ε1/4
(

w −∇u
)

−ε∇ ·w + bu

)

=

(

0
f

)

=: Fdiv, (2)

for U = (u,w)T . Rather than forming a least-squares finite-element discretiza-
tion as in [4,5], they choose to close the system in a nonsymmetric manner,
defining V = (v, z)T and

MdivV :=

(

ε1/4
(

z −∇v
)

−ε1/2b−1∇ · z + v

)

,

then writing the solution of (1) as that of the weak form

adiv(U ,V) := 〈Ldiv U ,MdivV〉 = 〈Fdiv,MdivV〉 ∀V ∈ H1(Ω)×H(div). (3)

In [10], it is shown that adiv is coercive and continuous with respect to the norm,

|||U|||2div := b0‖u‖20 +
ε1/2

2
‖∇u‖20 +

ε1/2

2
‖w‖20 + ε3/2‖∇ ·w‖20, (4)

which is shown to be a balanced norm for the problem, in the sense that all the
components in (4) have the same order of magnitude.

In [1], the authors augmented the first-order system approach proposed by
Lin and Stynes to include a curl constraint, in the same style as [5], leading to
the first-order system reformulation of (1) as

LU :=





ε1/4
(

w −∇u
)

−ε∇ ·w + bu
ε∇×w



 =





0
f
0



 =: F̂ . (5)

Then, writing

MkV :=





ε1/4
(

z −∇v
)

−ε1/2b−1∇ · z + v

εk/2∇× z



 , (6)

leads to the weak form

ak(U ,V) := 〈LU ,MkV〉 = 〈F̂ ,MkV〉 ∀V ∈
(

H1(Ω)
)1+d

. (7)

Building on the theory of [10], this form is shown to be coercive and continuous
with respect to the balanced norm

|||U|||2k = b0‖u‖20+
ε1/2

2
‖∇u‖20+

ε1/2

2
‖w‖20+ε3/2‖∇·w‖20+ε1+k/2‖∇×w‖20. (8)

Furthermore, in [1], the authors show that, when discretized using piecewise
bilinear finite elements on a tensor-product Shishkin mesh, this weak form leads
to a parameter-robust discretization, with an error estimate independent of the
perturbation parameter ε.



3 First-order system least squares finite-element methods

While theoretical and numerical results in [1] show the effectiveness of the first-
order system Petrov-Galerkin approach proposed therein, the non-symmetric
nature of the weak form also has disadvantages. Primary among these is that
the weak form no longer can be used as an accurate and reliable error indicator,
contrary to the common practice for FOSLS finite-element approaches [2,3,4,5,6].
Standard techniques to symmetrize the weak form in (7) fail, however, either sac-
rificing the balanced nature of the norm (and, thus, any guarantee of parameter
robustness of the resulting discretization) or coercivity or continuity of the weak
form (destroying standard error estimates). Here, we propose a FOSLS approach
for the problem in (1), made possible by considering a weighted norm with spa-
tially varying weight function. Weighted least-squares formulations have been
used for a wide variety of problems including those with singularities due to the
domain [8,9].

To this end, we define the weighted inner product on both scalar and vector
H1(Ω) spaces, writing

〈u, v〉β =

∫

Ω

β(x)u(x)v(x) dx,

with the associated norm written as ‖u‖β. Slightly reweighting the first-order
system from (5), we have

LU :=





ε1/2
(

w −∇u
)

−εb−1/2∇ ·w + b1/2u

εk/2∇×w



 =





0
b−1/2f

0



 =: F . (9)

and pose the weighted FOSLS weak form as

a(U ,V) = 〈LU ,LV〉β = 〈F ,LV〉β ∀V ∈
(

H1(Ω)
)1+d

.

This form leads to a natural weighted product norm given by

|||U|||2β,k = ‖u‖2β + ε‖∇u‖2β + ε‖w‖2β + ε2‖∇ ·w‖2β + εk‖∇×w‖2β .

As shown below, under a reasonable assumption on the weight function, β, the
FOSLS weak form is coercive and continuous with respect to this norm.

Theorem 1. Let β(x) be given such that there exists C > 0 for which

∇β · ∇β <
b0β

2(x)

ε(1 + C)2
,

for every x ∈ Ω, and let k ∈ R be given. Then,

|a(U ,V)| ≤
(

3 + 2max(b−1
0 , b1)

)

|||U|||β,k|||V|||β,k

min

(

Cmin(1, b0)

1 + C
, b−1

1 , 1

)

|||U|||2β,k ≤a(U ,U)

for all U ,V ∈
(

H1(Ω)
)1+d

.



Proof. For the continuity bound, we note that

a(U ,V) = ε〈w −∇u, z −∇v〉β
+ 〈−εb−1/2∇ ·w + b1/2u,−εb−1/2∇ · z + b1/2v〉β
+ εk〈∇ ×w,∇× z〉β .

Thus, by the Cauchy-Schwarz and triangle inequalities, we have

|a(U ,V)| ≤ε (‖w‖β + ‖∇u‖β) (‖z‖β + ‖∇v‖β)

+
(

εb
−1/2
0 ‖∇ ·w‖β + b

1/2
1 ‖u‖β

)(

εb
−1/2
0 ‖∇ · z‖β + b

1/2
1 ‖v‖β

)

+ εk‖∇×w‖β‖∇× z‖β
≤
(

3 + 2max(b−1
0 , b1)

)

|||U|||β,k|||V|||β,k.

For the coercivity bound, we note

a(U ,U) = ε‖w −∇u‖2β + ε2‖b−1/2∇ ·w‖2β + ‖b1/2u‖2β + εk‖∇×w‖2β
− 2ε〈∇ ·w, u〉β

≥ ε‖w −∇u‖2β + ε2b−1
1 ‖∇ ·w‖2β + b0‖u‖2β + εk‖∇×w‖2β

− 2ε〈∇ ·w, u〉β .

Now consider

−2ε〈∇ ·w, u〉β = −2ε

∫

Ω

(∇ ·w)uβdx

= 2ε

∫

Ω

w · ∇(uβ)dx

= 2ε

∫

Ω

(w · ∇u)βdx+ 2ε

∫

Ω

(∇β ·w)udx

= 2ε〈w,∇u〉β + 2ε

∫

Ω

(∇β ·w)udx,

where we use the fact that u = 0 on the boundary in the integration by parts
step. Note that

〈w,∇u〉β =
1

4
‖w +∇u‖2β − 1

4
‖w −∇u‖2β,

and, consequently, that

ε‖w−∇u‖2β + 2ε〈w,∇u〉β =
ε

2
‖w+∇u‖2β +

ε

2
‖w−∇u‖2β = ε‖w‖2β + ε‖∇u‖2β.

Thus,

a(U ,U) ≥ b0‖u‖2β + ε‖w‖2β + ε‖∇u‖2β + ε2b−1
1 ‖∇ ·w‖2β + εk‖∇×w‖2β

+ 2ε

∫

Ω

(∇β ·w)udx.



Finally, consider

2ε

∣

∣

∣

∣

∫

Ω

(∇β ·w)udx

∣

∣

∣

∣

= 2ε

∣

∣

∣

∣

∣

〈

w,
u

β
∇β

〉

β

∣

∣

∣

∣

∣

≤ 2ε‖w‖β
∥

∥

∥

∥

u

β
∇β

∥

∥

∥

∥

β

.

By our assumption on β,

∥

∥

∥

∥

u

β
∇β

∥

∥

∥

∥

2

β

≤ b0
ε(1 + C)2

‖u‖2β,

and, so,

2ε

∣

∣

∣

∣

∫

Ω

(∇β ·w)udx

∣

∣

∣

∣

≤ 2
ε1/2b

1/2
0

1 + C
‖w‖β‖u‖β.

This gives

a(U ,U) ≥b0‖u‖2β + ε‖w‖2β + ε‖∇u‖2β + ε2b−1
1 ‖∇ ·w‖2β + εk‖∇×w‖2β

− 2
ε1/2b

1/2
0

1 + C
‖w‖β‖u‖β

≥b0

(

1− 1

(1 + C)

)

‖u‖2β + ε

(

1− 1

(1 + C)

)

‖w‖2β

+ ε‖∇u‖2β + ε2b−1
1 ‖∇ ·w‖2β + εk‖∇×w‖2β

≥min

(

Cmin(1, b0)

1 + C
, b−1

1 , 1

)

|||U|||2β,k.

A natural question, in light of this result, is whether a suitable choice of β(x)
exists. We now give a concrete construction of one such family of functions, β(x),
for which the assumption above is satisfied. This family is constructed for the
case of Ω = [0, 1]d with boundary layers along each boundary adjacent to the
origin (i.e., where xi = 0 for some i). The extension to boundary layers along all
2d boundary faces is straightforward from the construction.

Theorem 2. Let C > 0 be given, and define γ =
b
1/2
0

(1+C)
√
d
. Take

β(x) =

(

1 +
1√
ε
e−γx1/

√
ε

)

· · ·
(

1 +
1√
ε
e−γxd/

√
ε

)

(10)

Then,

∇β · ∇β <
b0β

2(x)

ε(1 + C)2
,

for every x ∈ Ω.

Proof. A direct calculation shows that

∂β

∂xi
=

−γ
ε e−γxi/

√
ε

(

1 + 1√
ε
e−γxi/

√
ε
)β(x).



Consequently,

∇β · ∇β =

d
∑

i=1





−γ
ε e−γxi/

√
ε

(

1 + 1√
ε
e−γxi/

√
ε
)





2

β2(x).

Note, however, that





−γ
ε e−γxi/

√
ε

(

1 + 1√
ε
e−γxi/

√
ε
)





2

=
γ2

ε





1√
ε
e−γxi/

√
ε

(

1 + 1√
ε
e−γxi/

√
ε
)





2

≤ γ2

ε
.

This gives

∇β · ∇β ≤ dγ2

ε
β2(x).

Substituting in the chosen value for γ gives the stated result.

The final question to be resolved is whether β(x) as given in (10) is a “good”
choice, in the sense of whether quasi-optimal approximation in the resulting
norm is expected to give a good approximation to the layer structure in a typical
solution. We consider the case of d = 2, the unit square. Following Lemmas 1.1
and 1.2 of [11], we require that the problem data satisfy the assumptions of [11,
§2.1], specifically that f, b ∈ C4,α(Ω̄) and that f vanishes at the corners of the
domain. Denoting the four edges of the domain by Γi, 1 ≤ i ≤ 4, numbered
clockwise with the edge y = 0 as Γ1, and the four corners of the domain by
ci, 1 ≤ i ≤ 4, numbered clockwise with the origin as c1, we have the following
result.

Lemma 1 ([11, Lemmas 1.1 and 1.2]). The solution u of (1) can be decom-

posed as

u = V +W + Z = V +

4
∑

i=1

Wi +

4
∑

i=1

Zi, (11a)

where each Wi is a layer associated with the edge Γi and each Zi is a layer

associated with the corner ci. There exists a constant C such that

∣

∣

∣

∣

∂m+nV

∂xm∂yn
(x, y)

∣

∣

∣

∣

≤ C(1 + ε1−m/2−n/2), 0 ≤ m+ n ≤ 4, (11b)

∣

∣

∣

∣

∂m+nW1

∂xm∂yn
(x, y)

∣

∣

∣

∣

≤ C(1 + ε1−m/2)ε−n/2e−y
√

b0/(2ε), 0 ≤ m+ n ≤ 3, (11c)

∣

∣

∣

∣

∂m+nW2

∂xm∂yn
(x, y)

∣

∣

∣

∣

≤ Cε−m/2(1 + ε1−n/2)e−x
√

b0/(2ε), 0 ≤ m+ n ≤ 3, (11d)

∣

∣

∣

∣

∂m+nZ1

∂xm∂yn
(x, y)

∣

∣

∣

∣

≤ Cε−m/2−n/2e−(x+y)
√

b0/(2ε), 0 ≤ m+ n ≤ 3, (11e)

with analogous bounds for W3, W4, Z2, Z3 and Z4.



Thus, as a “stereotypical” solution of (1) in the case where boundary layers
only form along the edges x = 0 and y = 0 of [0, 1]2, we can consider

u(x) = u0(x) + c1e
−x

√
b0/(2ε) + c2e

−y
√

b0/(2ε) + c3e
−(x+y)

√
b0/(2ε).

Next, we check if |||U|||β,k is “balanced”, not only in the sense of all terms
having the same order, but in addition that each component in the stereotypical
solution above is well-represented in the norm. This means the norm can be
bounded from above and below by ε-independent values, so that it is not seen
as being well-approximated by zero in the norm (unless truly vanishingly small),
nor that the norm blows up as ε → 0. For this case, (10) simplifies as

β(x, y) = β1(x)β1(y) where β1(x) = 1 +
1√
ε
e−γx1/

√
ε,

and the checks rely on two direct calculations:

∫ 1

0

β1(x)dx = 1 +
1

γ

(

1− e−γ/
√
ε
)

≈ 1 +
1

γ
,

∫ 1

0

β1(x)
(

e−x
√

b0/(2ε)
)2

dx =
1

γ +
√
2b0

(

1− e−γ/
√
ε−
√

2b0/ε
)

+

√

ε

2b0

(

1− e−2
√

b0/(2ε)
)

≈ 1

γ +
√
2b0

,

With this, assuming that u0(x) is O(1) over a nontrivial fraction of the domain,
we conclude that

|||(u0,∇u0)
T |||β,k ≈ 1 +

1

γ
,

because of the separable nature of the calculation. Thus, the regular part of the
solution is well-represented in the norm.

For the W2 layer term, we write w2(x, y) = e−x
√
b0/2ε and calculate from the

above that

‖w2‖2β ≈
(

1 +
1

γ

)

1

γ +
√
2b0

.

Noting that all derivatives of this term with respect to y are zero and that
∂ℓ
xw2 = (−

√

b0/(2ε))
ℓw2, we compute

|||(w2,∇w2)
T |||2β,k = ‖w2‖2β + ε‖∇w2‖2β + ε‖∇w2‖2β + ε2‖∇ · ∇w2‖2β

+ εk‖∇×∇w2‖2β

= ‖w2‖2β +
b0
2
‖w2‖2β +

b0
2
‖w2‖2β +

(

b0
2

)2

‖w2‖2β + 0

≈
(

1 + b0 +

(

b0
2

)2
)

(

1 +
1

γ

)

1

γ +
√
2b0

.



Again, this shows that the W2 layer term is well-represented in the norm. Similar
calculations show the same to be true for the W1 layer and Z1 corner terms in
the stereotypical solution.

4 Numerical Results

To test the above approach, we consider a two-dimensional problem with con-
stant b = 1 posed on the unit square. We construct a problem whose solution
mimics the stereotypical solution discussed above, with two edge layers and one
corner layer. Specifically, we choose f so that the solution is

u(x, y) =

(

cos
(πx

2

)

− e−x/
√
ε − e−1/

√
ε

1− e−1/
√
ε

)(

1− y − e−y/
√
ε − e−1/

√
ε

1− e−1/
√
ε

)

.

We note that this has somewhat more complex layer behaviour than the stereo-
typical solution, but still obeys the bounds of Lemma 1. Also, the solution is
constructed so as to obey the homogeneous Dirichlet boundary conditions. For
numerical stability, we rescale the equations by defining w =

√
ε∇u and making

corresponding changes in weights to preserve the balanced nature of the norm.
With this, we pick k to match the powers of ε in the weighting terms of both
‖∇ ·w‖2β and ‖∇ ×w‖2β in |||U|||β,k, equivalent to taking k = 2 above.

We discretize the test problem on a tensor-product Shishkin mesh (see,
e.g., [1, §3] for more details). To do this, we select a transition point, τ > 0,
and construct a one-dimensional mesh with N/2 equal-sized elements on each of
the intervals [0, τ ] and [τ, 1]. The two-dimensional mesh is created as a tensor-
product of this mesh with itself, with rectangular (quadrilateral) elements. For
the choice of τ , we slightly modify the standard choice from the literature (see,
for example, [1,10,11]) to account for both the layer functions present in the
solution decomposition and in the definition of β(x) in (10). As such, we take

τ = min

{

1

2
, (p+ 1)

√

2ε

b0
γ−1 lnN

}

where p is the degree of the polynomial space (p = 1 for bilinear elements, p = 2
for biquadratic, and p = 3 for bicubic), so that this factor matches the expected
L2 rate of convergence of the approximation, while the terms

√

2ε/b0γ
−1 de-

crease appropriately as ε does, but increase (corresponding to increasing layer
width) with decreases in b0 or γ. In the results that follow, we take γ = 0.5,
implying C =

√
2− 1. All numerical results were computed using Firedrake [14]

for the discretization and a direct solver for the resulting linear systems.
Table 1 shows the expected reduction rates in errors with respect to the mesh

parameter, N , if we were to have standard estimates of approximation error in
the β-norm on the Shishkin meshes considered here. Tables 2, 3 and 4 show
the measured errors (relative to the manufactured solution) for the bilinear,
biquadratic, and bicubic discretizations, respectively. Expected behaviour for
the bilinear case is a reduction like N−1 lnN for |||U∗ − UN |||β,2 (where U∗



represents the manufactured solution, u∗ and its gradient) and like (N−1 lnN)2

for the discrete maximum norm of the error, ‖u∗ − uN‖ℓ∞ , which is measured
at the nodes of the mesh corresponding to the finite-element degrees of freedom.
These are both expected to be raised by one power in the biquadratic case,
and a further one power for bicubics. In Tables 2, 3, and 4, we see convergence
behaviour comparable to these rates, with the exception of the results for the
discrete maximum norm in Table 3. These seem to show a superconvergence-type
phenomenon, although we have no explanation for this observation at present.

5 Conclusions

In the paper, we propose and analyse a new weighted-norm first-order sys-
tem least squares methodology tuned for singularly perturbed reaction-diffusion
equations that lead to boundary layers. The analysis includes a standard ellip-
ticity result for the FOSLS formulation in a weighted norm, and shows that this
norm is suitably weighted to be considered a “balanced norm” for the problem.
Numerical results confirm the effectiveness of the method. Future work includes
completing the error analysis by proving the necessary interpolation error es-
timates, with respect to ||| · |||β,2, investigating the observed superconvergence
properties, generalizing the theory to convection-diffusion equations, and inves-
tigating efficient linear solvers for the resulting discretizations.
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