Skip to main content

Multi-Subband Ensemble Monte Carlo Simulator for Nanodevices in the End of the Roadmap

  • Conference paper
  • First Online:
Large-Scale Scientific Computing (LSSC 2019)

Abstract

As the scaling of electronic devices approaches to the end of the roadmap quantum phenomena play an important role not only in the electrostatics but also in the electron transport. This work presents the capabilities of a novel implementation of Multi-Subband Ensemble Monte Carlo simulators (MS-EMC) including transport quantum phenomena. In particular, an effective computational scheme of tunneling mechanisms (including S/D tunneling, GLM and BTBT) is shown taking advantage of the main features of semi-classical transport models which are the reduction of the computational requirements and a higher flexibility in comparison to purely full quantum codes.

This work has been supported in part by the European Community’s Seventh Framework Programme Marie Curie Action (Programme Andalucía Talent Hub) under Grant 291780, in part by the Horizon 2020 projects REMINDER under Grant 687931 and WAYTOGO-FAST under Grant 662175, and in part by the Spanish Ministry of Economy, Industry and Competitivity under Grant TEC2017-89800-R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asenov, A., Brown, A.R., Watling, J.R.: Quantum corrections in the simulation of decanano MOSFETs. Solid State Electron. 47(7), 1141–1145 (2003)

    Article  Google Scholar 

  2. Colinge, J.P.: FinFETs and Other Multi-Gate Transistors. Springer, New York (2007). https://doi.org/10.1007/978-0-387-71752-4

    Book  Google Scholar 

  3. Diaz-Llorente, C., Sampedro, C., Gamiz, F., Godoy, A., Donetti, L.: Impact of S/D doping profile into electrical properties in nanoscaled UTB2SOI devices. In: Proceedings of EUROSOI 2014, O06 (2014)

    Google Scholar 

  4. Fenouillet-Beranger, C., et al.: Impact of a 10 nm ultra-thin BOX (UTBOX) and ground plane on FDSOI devices for 32 nm node and below. Solid-State Electron. 54(9), 849–854 (2010)

    Article  Google Scholar 

  5. Ferry, D., Ramey, S., Shifren, L., Akis, R.: The effective potential in device modeling: the good, the bad and the ugly. J. Comput. Electron. 1, 59–65 (2002)

    Article  Google Scholar 

  6. Fischetti, M.V., Gamiz, F., Hänsch, W.: On the enhanced electron mobility in strained-silicon inversion layers. J. Appl. Phys. 92(7320), 7320–7324 (2002). https://doi.org/10.1063/1.1521796

    Article  Google Scholar 

  7. Fischetti, M.V., Laux, S.: Monte Carlo study of electron transport in silicon inversion layers. Phys. Rev. B 48(4), 2244–2274 (1993)

    Article  Google Scholar 

  8. Jiménez-Molinos, F., Gamiz, F., Donetti, L.: Coulomb scattering in high-\(\kappa \) gate stack silicon-on-insulator metal-oxide-semiconductor field effect transistors. J. Appl. Phys. 104(6), 063704 (2008). https://doi.org/10.1063/1.2975993

    Article  Google Scholar 

  9. Khakifirooz, A., et al.: Fully depleted extremely thin SOI for mainstream 20 nm low-power technology and beyond. In: 2010 IEEE International on Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 152–153, February 2010

    Google Scholar 

  10. Kuhn, K., Liu, M., Kennel, H.: Technology options for 22 nm and beyond. In: 2010 International Workshop on Junction Technology (IWJT), pp. 1–6, May 2010

    Google Scholar 

  11. Mangla, A., Sallese, J.M., Sampedro, C., Gamiz, F., Enz, C.: Modeling the channel charge and potential in quasi-ballistic nanoscale double-gate MOSFETs. IEEE Trans. Electron Devices 61(8), 2640–2646 (2014)

    Article  Google Scholar 

  12. Medina-Bailon, C., Sampedro, C., Gamiz, F., Godoy, A., Donetti, L.: Impact of non uniform strain configuration on transport properties for FD14+ devices. Solid-State Electron. 115, 232–236 (2016)

    Article  Google Scholar 

  13. Medina-Bailon, C., et al.: MS-EMC vs. NEGF: a comparative study accounting for transport quantum corrections. In: 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), pp. 1–4. IEEE, March 2018. https://doi.org/10.1109/ulis.2018.8354758

  14. Medina-Bailon, C., et al.: Multi-subband ensemble Monte Carlo study of tunneling leakage mechanisms. In: 2017 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 281–284. IEEE, September 2017. https://doi.org/10.23919/sispad.2017.8085319

  15. Medina-Bailon, C., Padilla, J.L., Sampedro, C., Alper, C., Gamiz, F., Ionescu, A.M.: Implementation of band-to-band tunneling phenomena in a multisubband ensemble Monte Carlo simulator: application to silicon TFETs. IEEE Trans. Electron Devices 64(8), 3084–3091 (2017). https://doi.org/10.1109/ted.2017.2715403

    Article  Google Scholar 

  16. Medina-Bailon, C., Padilla, J.L., Sampedro, C., Godoy, A., Donetti, L., Gamiz, F.: Source-to-drain tunneling analysis in FDSOI, DGSOI, and FinFET devices by means of multisubband ensemble Monte Carlo. IEEE Trans. Electron Devices 65(11), 4740–4746 (2018). https://doi.org/10.1109/ted.2018.2867721

    Article  Google Scholar 

  17. Medina-Bailon, C., et al.: Impact of the trap attributes on the gate leakage mechanisms in a 2D MS-EMC nanodevice simulator. In: Nikolov, G., Kolkovska, N., Georgiev, K. (eds.) NMA 2018. LNCS, vol. 11189, pp. 273–280. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10692-8_30

    Chapter  Google Scholar 

  18. Millar, C., Reid, D., Roy, G., Roy, S., Asenov, A.: Accurate statistical description of random dopant-induced threshold voltage variability. IEEE Electron Device Lett. 29(8), 946–948 (2008)

    Article  Google Scholar 

  19. Riolino, I., et al.: Monte-Carlo simulation of decananometric double-gate SOI devices: multi-subband vs. 3D-electron gas with quantum corrections. In: Proceedings of the 36th European Solid-State Device Research Conference, ESSDERC 2006, Montreux (2006)

    Google Scholar 

  20. Saint-Martin, J., Bournel, A., Monsef, F., Chassat, C., Dollfus, P.: Multi sub-band Monte Carlo simulation of an ultra-thin double gate MOSFET with 2D electron gas. Semicond. Sci. Tech. 21(4), 29–31 (2006)

    Article  Google Scholar 

  21. Sampedro, C., Gámiz, F., Godoy, A., Valín, R., García-Loureiro, A., Ruiz, F.: Multi-subband Monte Carlo study of device orientation effects in ultra-short channel DGSOI. Solid-State Electron. 54(2), 131–136 (2010)

    Article  Google Scholar 

  22. Sampedro, C., Gamiz, F., Godoy, A., Valin, R., Garcia-Loureiro, A.: Improving subthreshold MSB-EMC simulations by dynamic particle weighting. In: 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 276–279. IEEE, September 2013. https://doi.org/10.1109/sispad.2013.6650628

  23. Sampedro-Matarin, C., Gamiz, F.J., Godoy, A., Garcia-Ruiz, F.: The multivalley effective conduction band-edge method for Monte Carlo simulation of nanoscale structures. IEEE Trans. Electron Devices 53(11), 2703–2710 (2006)

    Article  Google Scholar 

  24. Tsuchiya, H., Svizhenko, A., Anatram, M.P., Ogawa, M., Miyoshi, T.: Comparison of non-equilibrium Green’s function and quantum-corrected Monte Carlo approaches in nano-MOS simulation. J. Comput. Electron. 4, 35–38 (2005)

    Article  Google Scholar 

  25. Vecil, F., Mantas, J.M., Caceres, M.J., Sampedro, C., Godoy, A., Gamiz, F.: A parallel deterministic solver for the Schrödinger-Poisson-Boltzmann system in ultra-short DG-MOSFETs: comparison with Monte-Carlo. Comput. Math. Appl. 67(9), 1703–1721 (2014). https://doi.org/10.1016/j.camwa.2014.02.021

    Article  MathSciNet  MATH  Google Scholar 

  26. Venugopal, R., Ren, Z., Datta, S., Lundstrom, M.S., Jovanovic, D.: Simulating quantum transport in nanoscale transistors: real versus mode-space approaches. J. Appl. Phys. 92(7), 3730–3739 (2002). https://doi.org/10.1063/1.1503165

    Article  Google Scholar 

  27. Wong, H.S.P.: Beyond the conventional transistor. IBM J. Res. Dev. 46(2.3), 133–168 (2002). https://doi.org/10.1147/rd.462.0133

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Sampedro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sampedro, C. et al. (2020). Multi-Subband Ensemble Monte Carlo Simulator for Nanodevices in the End of the Roadmap. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2019. Lecture Notes in Computer Science(), vol 11958. Springer, Cham. https://doi.org/10.1007/978-3-030-41032-2_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41032-2_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41031-5

  • Online ISBN: 978-3-030-41032-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics