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Abstract We compare exponential-type integrators for the numerical time-propagation
of the equations of motion arising in the multi-configuration time-dependent Hartree-
Fock method for the approximation of the high-dimensional multi-particle Schrödinger
equation. We find that among the most widely used integrators like Runge-Kutta,
exponential splitting, exponential Runge-Kutta, exponential multistep and Law-
son methods, exponential Lawson multistep methods with one predictor/corrector
step provide optimal stability and accuracy at the least computational cost, taking
into account that the evaluation of the nonlocal potential terms is by far the com-
putationally most expensive part of such a calculation. Moreover, the predictor
step provides an estimator for the time-stepping error at no additional cost, which
enables adaptive time-stepping to reliably control the accuracy of a computation.

Keywords Multi-configuration time-dependent Hartree-Fock method · time
integration · splitting methods · exponential integrators · Lawson methods · local
error estimators · adaptive stepsize selection.

1 Introduction

We compare time integration methods for nonlinear Schrödinger-type equations

i ∂tu(t) = Au(t) +B(u(t)) = H(u(t)), t > t0, u(t0) = u0, (1)

on the Hilbert space B= L2. Here, A:D ⊆ B → B is a self-adjoint differential opera-
tor and B a generally unbounded nonlinear operator. Our focus is on the equations
of motion associated with the multi-configuration time-dependent Hartree-Fock
(MCTDHF) approximation to the multi-particle electronic Schrödinger equation,
where the key issue is the high computational effort for the evaluation of the non-
local (integral) operator B. Thus, in the choice of the most appropriate integrator,
we emphasize a minimal number of evaluations of B for a given order and disregard
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the effort for the propagation of A, which can commonly be realized at essentially
the cost of two (cheap) transforms between real and frequency space via fast trans-
forms like [I]FFT. The approaches that we pursue and advocate in this paper are
thus based on splitting of the vector fields in (1). It turns out that exponential
integrators [6] based on the variation of constants serve our purpose best, as they
provide a desirable balance between computational effort and stability.

2 The MCTDHF method

We focus on the comparison of numerical methods for the equations of motion
associated with MCTDHF for the approximate solution of the time-dependent
multi-particle Schrödinger equation

i
∂ψ

∂t
= Hψ,

where the complex-valued wave function ψ = ψ(x1, . . . , xf , t) depends on time t

and, in the case considered here, the positions x1, . . . , xf ∈ R3 of electrons in an
atom or molecule. The time-dependent Hamiltonian reads

H = H(t) :=

f∑
k=1

(
1

2
∆(k) + U(xk) +

∑
`<k

V (xk − x`)
)

+ Vext(x1, . . . , xf , t)

=: T +W (t, x1, . . . , xf ),

T =

f∑
k=1

1

2
∆(k), U(x) = − Z

|x| , Z ∈ N, V (x− y) =
1

|x− y| .

Here Vext(x1, . . . , xf , t) is a smooth time-dependent function, and ∆(k) is the
Laplace operator with respect to xk only.

In MCTDHF as put forward in [12], the multi-electron wave function ψ is
approximated by a function u living in a manifold M characterized by the ansatz

u =
∑

(j1,...,jf )

aj1,...,jf (t)φj1(x1, t) · · ·φjf (xf , t) =:
∑
J

aJ (t)ΦJ (x, t). (2)

For the electronic Schrödinger equation, the Pauli principle implies that only so-
lutions u are considered which are antisymmetric under exchange of any pair of
arguments xj , xk,

Now, the Dirac-Frenkel variational principle [3] in conjunction with orthogo-
nality conditions is used to derive differential equations for the coefficients aJ and
the so-called single-particle functions φj in (2), where we will henceforth tacitly
identify u with the vector (a, φ) of coefficients and orbitals,

i
daJ
dt

=
∑
K

〈
ΦJ |W |ΦK

〉
aK ∀J, (3)

i
∂φj
∂t

= T φj + (I − P )

N∑
k=1

N∑
`=1

ρ−1
j,` W `,k φk, j = 1, . . . , N, (4)
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where
W j,` =

〈
ψj |W |ψ`

〉
, with ψj =

〈
φj |u

〉
, ρj,` =

〈
ψj |ψ`

〉
,

and where P is the orthogonal projector onto the space spanned by the func-
tions φj . We will henceforth denote

A =
i

2

(
0,∆(1), . . . , 0,∆(f)

)T
, B = B(a, φ), (5)

where B is the vector of the components associated with the potential which
constitute the computationally most expensive part.

2.1 Splitting methods

Popular integrators for quantum dynamics are exponential time-splitting methods
which are based on multiplicative combinations of the partial flows EA(t, u): u 7→
u(t) = etA u and EB(t, u):u 7→ u(t) with u′(t) = B(u(t)), u(0) = u. For a single
step (tn, un) 7→ (tn+1, un+1) with time-step h, this reads

un+1 := S(h, un) = EB(bsh, ·) ◦ EA(ash, ·) ◦ . . . ◦ EB(b1h, ·) ◦ EA(a1h, un),

where the coefficients aj , bj , j = 1 . . . s are determined according to the requirement
that a prescribed order of consistency is obtained [5]. For a convergence analysis
of splitting methods in the context of MCTDHF, see for instance [9].

2.2 Exponential integrators

An approach which also exploits the separated vector fields is given by the class
of exponential integrators, which are comprehensively discussed in [6]. Here the
variation of constant formula is used to express the solution of (1) for a time-step
tn → tn+1 = tn + h via the integral equation

u(tn + h) = ehA un +

∫ h

0

e(h−τ)AB(u(tn + τ)) dτ. (6)

Different numerical integrators are distinguished depending on how the integral
in (6) is approximated.

Exponential Runge-Kutta methods When the integral in (6) is approximated by a
quadrature formula of Runge-Kutta type, relying on evaluations of the nonlinear
operator B at interior points tn+hτj , τj ∈ [0, 1], j = 1, . . . , k, an exponential Runge-

Kutta method is obtained. This corresponds to replacing B(·) in the integrand by
a polynomial interpolant at the points(

tn + hτ1, B(u(tn + hτ1)
)
, . . . ,

(
(tn + hτk, B(u(tn + hτk)

)
.

The method is realized by stepping from tn + hτj → tn + hτj+1 in the same way
as for a Runge-Kutta method, with appropriate weights of the stages. For implicit
methods, nonlinear systems of equations have to be solved, which is generally
considered as prohibitive. Note that after interpolation, the resulting integral can
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be evaluated analytically by using the ϕ-functions or alternatively, by numerical
quadrature [6]. Such a procedure has first been proposed in [4], for a stiff error
analysis, see [6] and references therein. For our comparisons, we use the fourth
order Krogstad method mentioned there.

Exponential multistep methods The integral in (6) can be approximated in terms of
an interpolation polynomial at previous approximations(

− (k − 1)h,B(un−k+1)
)
, . . . ,

(
(−h,B(un−1)), (0, B(un)

)
. (7)

This yields an (explicit) exponential Adams-Bashforth multistep method first men-
tioned in [2], and introduced more systematically in [11], see also for instance [1,6].
If the interpolation also comprises the forward point (h,B(un+1)), an (implicit)
exponential Adams-Moulton method is obtained. These two approaches can be
combined in a predictor/corrector method in the same way as for linear multistep
methods. Exponential multistep methods have first been considered and analyzed
in [1] under the assumption of smooth B, and a starting strategy is also given
there.

Lawson methods In Lawson methods, equation (1) is transformed prior to the nu-
merical integration by the substitution u(t)→ e−tA u(t). To the resulting equation

u′(t) = e−tAB (etA u(t)) =: F (u(t)), (8)

any appropriate time-stepping scheme can be applied. The main advantage lies in
the fact that the dynamics associated with the non-smooth operator A is separated
by the transformation which can be realized cheaply in frequency space, while the
problem subjected to the time-stepping scheme is smoother, thus allowing for
larger time-steps. This transformation was first introduced in [10] for ordinary
differential equations.

In a one-step version, an explicit Runge–Kutta method is employed to solve
(8), which is equivalent to interpolation at interior nodes of the whole integrand
in (6) by a polynomial in the same fashion as in (7). Reference [7] gives a conver-
gence proof of Lawson Runge-Kutta methods in the stiff case, however under the
assumption that the operator B is smooth, which is not the case in the MCTDHF
equations we are considering. A convergence proof for Adams-Lawson multistep
methods for the MCTDHF equations under minimal regularity requirements is
given in the forthcoming work [8]. The proof addresses the transformed equation
(8) and combines stability and consistency to conclude convergence. To this end,
a boot-strapping argument is employed, first showing convergence in the Sobolev
space H1. Stability in L2 only holds if the numerical solution is in H1, which
follows from the first argument, whence convergence in L2 is inferred. Lipschitz
conditions for the right-hand side entering the stability arguments can be shown
by appropriate Sobolev-type inequalities in both H1 and L2. To prove consistency,
the norms of derivatives of F in (8) are estimated, which amounts to bounds on
commutators of the operators A and B. This implies assumptions on the regularity
of the exact solution u.

We will demonstrate that the best approach for our goal is to use exponen-
tial Lawson multistep methods in a predictor/corrector implementation, which is
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shown to increase the accuracy and also provides a local error estimator for adap-
tive time-stepping at no additional cost. The efficiency of the time discretization
can be improved if high-order time propagators are employed. In the multistep ap-
proach, this does not imply additional computational cost if no memory limitations
have to be taken into account.

Comparisons To assess the performance of the exponential integration methods
described above, we will also show results for the classical explicit Runge-Kutta
method of fourth order (RK4) and the second-order Strang splitting.

3 Numerical results

To illustrate the performance of our numerical methods, we consider MCTDHF
with the choice N = 4 for a one-dimensional model of a helium atom investigated
in [12], where1

H(t) = H0 + (x1 + x2) E(t),

H0 = −1

2
(∂2x1

+ ∂2x2
)− 2√

x21 + b2
− 2√

x22 + b2
+

1√
(x1 − x2)2 + b2

,

with a smoothed Coulomb potential with shielding parameter b = 0.7408, which
is irradiated by a short, intense, linearly polarized laser pulse

E(t) = E0 g(t) sin(ωt).

The peak amplitude is set to E0 = 0.1894, the frequency is ω = 0.1837, and we de-
fine the envelope g(t) = 1.2 exp

(
−5 ·10−4 (t− 6π/ω)2

)
. The parameters are taken

from [12], and the envelope is a smooth approximation of the trapezoidal envelope
chosen there. In [12], this model serves to illustrate the effect of correlation on
the probability density along the diagonal x = y, which implies that the single-
configuration Hartree–Fock approximation is insufficient. We first investigate sta-
ble long-time propagation in Fig. 1. We monitor norm conservation of the wave
function in the propagation of the ground state for the Hamiltonian H0 = H(0)
for different equidistant stepsizes to resolve precisely the onset of instability. For
RK4, the number of steps is specified in the plot; for all other methods, the num-
ber of steps is in {1000, 2000, . . . , 12000}. If norm conservation is violated beyond
the effect of numerical accuracy, the method cannot be recommended for physi-
cal applications. Indeed, we observe the following: Explicit Runge-Kutta methods
only behave in a stable way when the numerical accuracy is already very high,
close to round-off error. Exponential multistep methods2 behave stably only for
short times, even when a corrector step is performed. Exponential Runge-Kutta
and Runge-Kutta-Lawson methods behave stably, likewise as splitting methods.
Adams-Lawson multistep methods behave very stably, a corrector step adds to

1 Note that in exponential integrators, the explicit time-dependence in the potential does
not call for a special treatment in the numerical quadrature, in the splitting methods, the
potential is propagated by an explicit Runge-Kutta method of appropriate order.

2 In this experiment, all multistep methods are started by the Krogstad exponential Runge-
Kutta method with stepsize h/50.
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the accuracy, as well as providing an error estimate as the basis for adaptive time-
stepping. The unstable exponential multistep methods are no longer considered.
While showing the same stability behavior, the Yoshida splitting is demonstrated
to be less efficient than the Suzuki splitting, and the low order (but popular) Strang
splitting is not competitive. Higher-order multistep methods provide higher accu-
racy at the same computational effort irrespective of the order, and are thus also
considered for this comparison.

Next, we compare the efficiency of the different integrators. The unstable ex-
ponential multistep methods are no longer considered. While showing the same
stability behavior, the Yoshida splitting is demonstrated to be less efficient than
the Suzuki splitting, and the low order (but popular) Strang splitting is not com-
petitive. High-order multistep methods provide higher accuracy at the same com-
putational effort and are thus also considered for this comparison. To this end,
we plot in Fig. 2 the accuracy as compared to a very precise reference solution at
t = 80 as a function of the number of evaluations of the computationally expen-
sive potential part B (dots on solid lines). Furthermore, we give the CPU time
required in a sequential implementation on one thread of the Vienna Scientific
Cluster (VSC) 3 comprising one Intel Xeon E5-2650v2 processor with 8 kernels of
2.6 gHz (crosses ‘×’). We note that, as expected, the runtime is proportional to
the number of potential evaluations. We observe that high-order Lawson multistep
methods perform best, where particularly the high order which can be achieved
in the multistep versions without additional evaluations is advantageous. Splitting
methods, particularly the low order Strang splitting, are not very efficient due to
the high effort for the propagation of the potential.

We stress that this shows only the picture on uniform grids. The multistep
versions show their biggest advantage in adaptive time-stepping due to the cheap
means of error estimation in the predictor/corrector implementation. To demon-
strate that this works reliably for Adams-Lawson methods, we show in Fig. 3
the laser field E(t) and total energy functional (top) illustrating the local solution
smoothness, and the stepsizes (bottom) automatically generated for the Adams-
Lawson method of order 6. We see that the adaptively chosen stepsizes reflect the
smoothness of the time evolution and the Lawson method enables larger stepsizes.
The Adams-Lawson solution has been confirmed to be converged to within the
prescribed tolerance 10−5. On the other hand, the corresponding exponential mul-
tistep method (without the Lawson transformation) shows a noticeable deviation
in the solution.
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