

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 29, 2024

Multicore Models of Communication for Cyber-Physical Systems

Schoeberl, Martin

Published in:
Cyber Physical Systems. Model-Based Design. CyPhy 2019, WESE 2019

Link to article, DOI:
10.1007/978-3-030-41131-2_2

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Schoeberl, M. (2019). Multicore Models of Communication for Cyber-Physical Systems. In R. Chamberlain , M.
Edin Grimheden , & W. Taha (Eds.), Cyber Physical Systems. Model-Based Design. CyPhy 2019, WESE 2019
(pp. 28-43). Springer. https://doi.org/10.1007/978-3-030-41131-2_2

https://doi.org/10.1007/978-3-030-41131-2_2
https://orbit.dtu.dk/en/publications/1a42c748-ddd0-4dd1-898e-1988fefce14c
https://doi.org/10.1007/978-3-030-41131-2_2

Multicore Models of Communication for
Cyber-Physical Systems

Martin Schoeberl1[0000−0003−2366−382X]

Department of Applied Mathematics and Computer Science
Technical University of Denmark, Kgs. Lyngby, Denmark masca@dtu.dk

Abstract. Cyber-physical systems are systems where the environment interacts
with computers (the cyber part) with real-time constraints. Emerging technolo-
gies, such as artificial intelligence and machine learning, call for ever-increasing
processing power. However, for real-time systems, we need to prove statically
that this processing demand can be performed within strict deadlines.
This paper explores a time-predictable multicore architecture for those demand-
ing cyber-physical systems. We explore different models of communication be-
tween those multiple cores. We compare the message passing model on top of a
network-on-chip with message passing on two forms of shared scratchpad mem-
ory.

Keywords: real-time systems ·multicore communication · time-predictable com-
puter architecture.

1 Introduction

Future cyber-physical systems may be in need of higher computing power. One way
to increase computing power is to integrate multiple processing cores in a single chip
to form a multicore processor. Cyber-physical systems often need to react to the en-
vironment within a guaranteed deadline. We call those systems real-time systems. If
such a system is part of a safety-critical system, we need to guarantee that all deadlines
are met. Such proof includes worst-case execution time (WCET) analysis of individual
tasks, analysis of communication time, and schedulability analysis.

Multicore processors used in cyber-physical systems need to support time-predictable
computation and communication. As communication via shared main memory sup-
ported by a cache coherence protocol is hardly time-predictable, we need other forms
of core-to-core communication.

This paper explores different models of communication between processing cores
and the hardware support for it. We present forms of shared on-chip memories, links
between processor cores, and network-on-chip architectures. In this paper, we include
only solutions that are time-predictable, except describing the baseline of a hardly time-
predictable shared main memory with cache coherence.

Shared on-chip memories with a time-predictable arbitration, such as time-division
multiplexing, provide an efficient solution for around a dozen cores. For more cores, a
distributed communication architecture, such as a network-on-chip, is a better scaling
solution.

2 M. Schoeberl

In this paper, we use the term task as a notion of parts of a program that can execute
concurrently. We avoid the term thread, as threads are usually associated with a single
form of concurrency: communication via data in shared memory, protected by locks.
Tasks need to communicate when working together as an application.

The contribution of this paper is a detailed overview of several communication ar-
chitectures for a real-time multicore processor. The overview may also serve as a small
survey of real-time multicore communication architectures. Furthermore, we picked
several architectures and compared them with an evaluation of message passing. Our
overall goal is to build time-predictable computer architecture [32] for future demand-
ing cyber-physical systems. Initial ideas on models of communication for multicore
processors have been presented in [39].

This paper is organized into 5 sections: Section 2 presents the software view of
multicore communication. Section 3 is the main section, describing several hardware
architectures to support time-predictable multicore communication. Section 4 evaluates
several of the presented architectures with a message passing microbenchmark. Sec-
tion 5 concludes.

2 The Software View

When multiple tasks shall work together towards completing work, they need to com-
municate in some form. This combination of tasks and forms of communication is
also called the “model of computation.” The Ptolemy II handbook [30] gives a good
overview of those different forms. In the following sections, we focus on three example
models of computation and communication.

2.1 Communicating Sequential Processes

One of the first approaches to establish message passing between tasks was Hoare’s
communicating sequential processes, CSP for short [15]. The CSP concept became pop-
ular enough that even a programming language, Occam [23], was developed to include
CSP in the language.

Transputers [43,16], a unique form of processors, where developed to execute Oc-
cam programs. Transputers included hardware support for the Occam channels. The
idea was to build massive parallel multiprocessors. However, in the mid of the ’80s
the performance increase of standard processors was still around 50 % per year [13],
and there was no need for multiprocessor systems. A single task program is easier to
develop and test. Dividing an algorithm into multiple tasks that communicate via chan-
nels is hard, and errors can lead to hard-to-debug blocking of tasks. Therefore, CSP and
transputers did not become a success story.

2.2 Multithreading

Early forms of multiprogramming consisted of using individual programs that commu-
nicate. One form of communication was the usage of Unix pipes, where the output of
one program is fed as input to another program. A Unix pipe represents a stream with

Multicore Models of Communication for Cyber-Physical Systems 3

one writer and one reader process. Message passing can easily be built on top of such
a stream. A tighter form of communication between programs was the creation of a
shared memory space by the operating system. However, those multiple programs still
run as individual processes protected from each other by the operating system.

To simplify multiprogramming, the concept of multiple threads of execution in a
single process was developed. Those threads share memory and use data allocated on
the heap for communication. Those data structures are usually protected by locks [14].
This programming paradigm became especially popular when Java supported threads
and locks as part of the core language definition.

A runtime system can map multiple threads to multiple cores in a multicore pro-
cessor. Also, the communication via shared objects is handled by a cache coherence
protocol.

At the time of this writing, multithreading with shared data is the most popular
approach to use with concurrent tasks. However, getting the locking of objects right
for multithreaded programs is far from trivial. Locking also is a bottleneck for scaling
programs for many cores. Therefore, the current trend is to explore message passing
again in the form of actors.

2.3 Actors and Message Passing

The concept of actors is currently becoming popular through the Akka1 toolkit. Akka
is a library and runtime to support concurrent and distributed applications. The primary
programming model for multiple tasks is actor-based. Akka is written in Scala but can
be used from programs written in Java or Scala.

Actors in Akka are the tasks that communicate via message passing. In contrast
to CSP, the message passing is asynchronous. Typical Akka programs avoid shared
mutable data and locks to protect them.

However, non-constrained asynchronous message passing may lead to buffer over-
flow and is hardly time-predictable. Stricter forms of communication are, for example,
synchronous data flow (SDF) [19]. An SDF actor fires (executes) when all input ports
contain their fixed number of tokens. With the fixed number of tokens consumed and
produced, buffers are bounded, and for a single core, a statically schedule for the actor
firing can be computed.

Recent work extends actors for precise timing in cyber-physical systems [22]. The
actors, called reactors in the paper, have strict rules on fire order and mutual exclusion
of different reactions. Reactors include the notion of delays and deadlines. Delays allow
for physical time to pass, and deadlines are a contract with the environment. WCET and
schedulability analysis of reactions can be used to check if all deadlines can be met.

3 Communication Hardware

Message passing can be implemented on top of different communication infrastruc-
tures. In contrast, the concept of shared objects is usually implemented on top of cache-
coherent, shared main memory only. Therefore, message passing is the more hardware

1 Available at https://akka.io/

https://akka.io/

4 M. Schoeberl

Core 1

Memory
controller

External
memory

Communication device

Core 2 Core 3 Core 4

Memory
arbiter

Multicore processor

Fig. 1. A multicore processor with the cores connected to (1) an arbiter to the memory controller
for the shared, external memory and (2) to the communication hardware.

friendly approach for communication. In the following sections, we discuss several dif-
ferent hardware mechanisms for communication between multiple cores on a chip mul-
ticore.

Figure 1 shows a multicore processor where the cores are connected to (1) external
memory via a memory arbiter and (2) to a communication device. That communication
device is the topic of this paper, and we discuss variations of it in the following sections.

3.1 Shared Main Memory

The state-of-the-art communication mechanism for multicore processors is shared main
memory. Objects are allocated in the main memory, and the access to the objects is
protected by locks. As access latency to main memory is in the range of hundreds of
processor clock cycles, several levels of cache are introduced. It is not uncommon to
include 3 levels of cache, where the 2nd and 3rd levels of cache are shared between
the cores. The first level of cache is usually core local. Therefore, when sharing data,
these local caches need to be kept coherent with a cache-coherent protocol. As this
cache coherence protocol is an all-to-all communication, it scales only to a few tens of
processor cores.

Multicore Models of Communication for Cyber-Physical Systems 5

However, the main issue with shared memory backed up by a cache coherence pro-
tocol is that it is barely time-predictable. The WCET analysis of tasks needs to include
an analysis of which memory blocks are in the cache and in which caches. WCET anal-
ysis is further complicated by the fact that on a multicore, we have true concurrency
where individual tasks influence the occupancy of the shared caches. This problem
would need a WCET analysis that includes all tasks in the system. We are not aware
of any WCET analysis tool (except niche research experiments) that supports multiple
tasks and multiple levels of caches, including the cache coherence protocol. The indus-
try standard WCET tool aiT [12] supports single tasks only. We quote from AbsInt’s
website:2

aiT computes an upper bound of the WCET of a task. A task must be a
sequentially executed piece of code, i.e. there must not be any threads, paral-
lelism, or external events. aiT assumes no interference from the outside. Effects
of exceptions, interrupts, DRAM refreshes, input/output, timers and other pro-
cessors or co-processors are not reflected in the predicted runtime and have to
be considered separately, e.g. via quantitative analysis.

However, we are aware that realistic applications and their data are too large to
fit in on-chip memory. Therefore, some code and data need to be loaded into external
memory. To provide time-predictable access to external memory, we propose to use a
time-division-multiplexing (TDM) arbiter for the memory accesses [35].

3.2 Network-on-Chip

Network-on-chip (NoC) technology [6] is an alternative to cache coherence based inter-
core communication. A NoC is a distributed architecture, and therefore the provided
bandwidth scales well with the number of cores. A NoC connects cores (also called
processing elements in NoC literature) to a network of routers. In most cases, one router
serves one core. The routers are connected in a network, where mesh and torus are the
most common organizations.

A NoC itself does not yet provide a communication mechanism. Between the core
and a router, the network interface (NI) provides an interface to the network. NoCs are
used for a wide variety of traffics: serving cache coherence traffic, access to a memory
controller and external memory, streaming between cores, message-passing between
cores, and access to remote on-chip memories. The NI determines what kind of traffic
is supported.

Many routers (and NIs) are optimized for the average case performance with buffers
and dynamic arbitration at each router. Those NoCs are hardly time-predictable. For
real-time systems, two mechanisms are popular: rate control at the injection site or
TDM arbitration at the routers.

Rate control, also called traffic shaping, limits the number of packets injected into
the NoC. Network calculus [4,5,18] is used to compute bounds on buffer sizes and

2 https://www.absint.com/ait/features.htm

https://www.absint.com/ait/features.htm

6 M. Schoeberl

bounds on latencies. The Kalray multicore processor [7] is especially designed to sup-
port time-predictable message passing with rate control in the sender and no further
flow control within the NoC [8].

With a static schedule performing TDM arbitration in the NoC routers, there is no
traffic conflict, and the worst-case message latency can be statically computed. Æthe-
real [9] is such a NoC that uses TDM where slots are reserved to allow a block of data to
pass through the NoC router without waiting or blocking traffic. Slot tables with routing
information are contained in the routers, and no arbitration or link-to-link flow control
is required. Instead, credit-based flow control is applied for end-to-end control, saving
buffer space between links. aelite, a light version of Æthereal, only offers guaranteed
services resulting in a simpler router design [11].

The Argo NoC [17] is another NoC that uses TDM based arbitration of resources.
Compared to Æthereal, Argo also uses the same TDM schedule in the NI [42] to time-
multiplex the NI resources. The Argo NI offers TDM-based DMA transfer of data from
the local memory across the NoC and into the local memory of another core. Argo
supports a global asynchronous, local synchronous system with an asynchronous router
design and mesochronous (same clock source, but variable upwards bounded skew al-
lowed) NIs.

While Æthereal uses TDM at the routers, it uses buffers with flow-control in the
NIs. In contrast, the Argo NoC [17] uses TDM for the arbitration in the routers and at
the NI [42], resulting in an end-to-end TDM schedule. S4NOC [37,36] is a TDM based
NoC, simpler than Argo, with FIFO buffers as NI. We use S4NOC in the evaluation
section.

The Real-Time Capable Many-Core Model proposes many cores with a static switched
NoC with TDM-based arbitration [24]. The project also proposes avoiding shared mem-
ory altogether and supporting timing analysis by using a fine-grained message passing
NoC [25].

Paukovits and Kopetz use a time-triggered NoC for the time-triggered system-on-
chip (TTSoC) architecture [28]. The main difference to other NoC designs is the abso-
lute time format, which is not directly related to the clock frequency. The macro tick is
a power of two fraction of a second and the basis for the TDM slotting. The idea behind
this time format is a good integration with off-chip versions of time-triggered networks.

When comparing TDM arbitration with rate control and network calculus [31],
TDM arbitration results in shorter worst-case latencies while network calculus leads
to higher bandwidth. However, using TDM for arbitration leads to simpler routers and
network interfaces than supporting dynamic arbitration and buffering NoC.

3.3 Shared Scratchpad Memory

While NoCs can provide a high bandwidth communication path, their usage is more
elaborated. I.e., messages need to be setup and explicitly sent to other cores. An alter-
native is to use on-chip memory, also called scratchpad memory (SPM), that is shared
between several cores. For a small number of cores that memory can be shared by all
the cores. However, with an increase in the number of cores, this solution does not
scale. Therefore, several shared on-chip memories can be shared only by a subset of the
cores. These subsets can be disjoint, as in the Kalray processor, to form clusters, which

Multicore Models of Communication for Cyber-Physical Systems 7

are connected by a NoC. Alternative, these sets can overlap to provide a communica-
tions path between neighboring cores.

The Kalray manycore processor [7] is specially designed for time-critical computa-
tion. The processor is organized in 16 clusters of 16 cores. Each core within a cluster
is connected to a shared SPM, consisting of 16 independent memory banks. By care-
fully selecting the allocation of data and access to the memory banks, access can be
time-predictable [2].

We have implemented a shared SPM in the T-CREST processor [40]. We use TDM
based arbitration, which results with a single cycle SPM in a maximum access time of
n clock cycles for n cores. We found that a shared SPM scales up to nine cores when
implemented in an FPGA. We use our shared SPM in the evaluation.

3.4 Scratchpad Memory with Ownership

Access latency to a shared SPM is a few clock cycles, way less than access to main
memory. However, often, the SPM is not used by all cores, and the TDM arbitration
wastes memory bandwidth. For example, in a producer/consumer setting, only a single
core writes into the SPM and when finished a different core reads from the SPM. For
this setup we introduce the notion of ownership [40]. A core owns an SPM for some
time, uses it to compute write data into it, and then transfers the ownership to a core that
consumes the data. When tasks agree on the ownership of the SPM, there is no need for
arbitration. The core has exclusive access to the owned SPM with short (single cycle)
access time. This mechanism allows fast transfer of bulk data.

For double-buffered communication and several communication channels, we in-
troduce a pool of SPMs with ownership. Different cores can acquire SPMs out of this
pool and after usage, either transfer the ownership to another core or put it back into the
pool of free SPMs. This pool of SPMs scales up, similar to a shared SPM, to about nine
cores in an FPGA. Beyond that number of cores, the SPM pools need to be clustered.

3.5 Distributed Shared On-Chip Memory

Combining core-local SPMs with a NoC leads to a distributed shared on-chip memory.
Each core is attached to local memory and to a NoC that supports access to a local
memory of a remote core. A standard solution for remote read and writes is to use two
NoCs: one to support writes and read requests and a second to deliver the response for
the reads.

Epiphany is a high-performance energy-efficient manycore processor [27] that uses
distributed on-chip memory. Epiphany is intended as an accelerator processor for real-
time embedded systems. Two versions, a 16-core chip, and a 64-core chip have been
taped out. The multicore processor Epiphany uses a distributed memory architecture.
Each core contains 32 KB of local memory that is mapped into a global address space.
The processors contain no caches. Access to the memory of a remote core is performed
over a NoC. The NoC is organized as a mesh and favors writes over reads, as writes are
posted writes where the processor does not need to wait for the write to finish. Packets
are single word long, and routing is performed in a single cycle per hop. A second
NoC is dedicated for read responses and a third NoC supports off-chip traffic, e.g., with

8 M. Schoeberl

a master processor and external shared memory. There is no documentation available
on how the arbitration in the NoC routers is performed on a conflict. We explored the
processor and measured considerable latency variations depending on the NoC load.
Therefore, we cannot (yet) recommend it for applications with tight timing constraints.

We have implemented a distributed shared memory in the T-CREST multicore [29].
We use two instances of the S4NOC [36]: one is used to write to a remote SPM or
transmit a read request, and the second is used to return the read result. The SPMs are
mapped into different address ranges in the global address range, and the read or write
address determines which SPM to access. As several remote read requests may arrive
at one core in successive clock cycles, the read results (one per clock cycle) may queue
up waiting for their slot to be sent on the read response NoC. In the worst case, this
could be n− 1 words for an n core system. To minimize the length of this queue, the
TDM schedule for the return NoC is optimized and aligned to the read request schedule.
As S4NOC uses TDM arbitration and a static schedule, we can provide guarantees on
latency bounds for reads and writes. As reads need to travel a NoC twice, their latency
is double the latency of writes.

Operating system support to virtualize SPMs on a distributed shared on-chip mem-
ory is presented in the ShaVe-ICE project [41]. Similar to Epiphany and our solution,
each core contains a local SPM and is connected via a NoC. The operating system sup-
port is to manage the changing demand of threads for local memory by allocating and
deallocating memory on the local or a remote SPM. When allocating on a remote core,
the hop distance is taken into account for the allocation policy.

3.6 Direct Links and Memory Between Cores

Another way to structure communication between cores is to have direct links between
neighboring cores, organized in a mesh or folded torus. The main benefit of such an
organization is that it is a local link and fully supports two types of parallel applications:
(1) applications organized in a computing pipeline or (2) physical simulations, such as
finite element simulation where access to the neighbor elements is needed.

The link can be as simple as a FIFO queue or more sophisticated, like a dual-port
memory between cores. Isaac Liu uses dual-port memories for a multicore organiza-
tion of a precision timed machine in the evaluation of his Ph.D. thesis [20]. He imple-
mented a real-time computational fluid dynamics simulator on a multicore PRET [21].
The cores use so-called privately shared SPMs between cores to provide point-to-point
communication channels.

Although less flexible than a fully blown NoC, direct links may be implemented
very efficiently and being, therefore, a practical solution. This form of communication
has not yet received much attention when discussing multicore communication.

3.7 One-Way Shared Memory

A quite exotic form of on-chip communication is the so-called one-way shared mem-
ory [33]. The one-way memory uses the TDM scheduled S4NOC for communication
but uses a very simple NI. Each core contains a core local memory connected to the NI.
The main idea is that the NoC continuously copies data blocks between the core-local

Multicore Models of Communication for Cyber-Physical Systems 9

memories. There is one communication channel between each pair of cores. The NoC
reads from the senders’ core-local memory and writes into the receiver’s core-local
memory. As this update is performed in one direction only, we call this architecture a
one-way memory.

The routers have a fixed, pre-programmed schedule. For symmetric structures, such
as the torus, all routers execute the same schedule [3]. One such schedule is one TDM
round in which one word is transferred between each core. To transfer a memory block
of n words, we need n TDM rounds.

The simplicity of the one-way memory paradigm results in very low resource us-
age. The resource consumption of the NoC and the NI, which implements the one-way
memory, is lower than other NoC solutions. This simplicity, i.e., low logical element us-
age, can be translated either into lower power consumption or higher NoC bandwidth.
Higher NoC bandwidth is achieved simply by duplicating the local core memory or
using wider NoC router links.

3.8 Additional Hardware Support for Message Passing

The previous sections presented on-chip communication architectures that can be used
for message passing. However, we can provide additional hardware to optimize the
performance of message passing further.

To reduce the overhead of message passing, a tight integration of message passing
instructions into the processor pipeline has been proposed [26]. A RISC-V processor
has been extended with a send, receive, and source instructions to allow fast message
passing of short messages over a NoC. Additionally, to optimize the checking for ready
to send and receive messages available, four branch instructions have been added.

The NI of the Argo NoC [42] includes a local memory and a DMA machinery to
transfer data from the local memory to the TDM based NoC. The DMA contains a
table with entries of memory regions that shall be sent to different cores. Each virtual
channel may have its entry in the table. A message is created in the local memory by
the processor, an entry into the DMA table is programmed, and the DAM started. The
message transfer happens in parallel to program execution on the processor core.

CSP uses messages not only for data transfer but also as synchronization points
between tasks (called processes in CSP). The CSP rendezvous can be implemented by
exchanging two messages. We extended a ring-based NoC on a multicore Java proces-
sor with explicit support for this synchronization [10]. As an optimization, the NoC
supports a dedicated Ack command for the rendezvous.

4 Evaluation

We have built several of the proposed hardware solutions in the context of the T-
CREST [34] multicore processor Patmos [38]. The hardware is described in Chisel [1]
and available in open source at https://github.com/t-crest/patmos. As Patmos
uses the open-core protocol to interface to IO devices and memory, all those multicore
devices are implemented with this interface.

https://github.com/t-crest/patmos

10 M. Schoeberl

To enable wider adaption of our multicore hardware, we are currently in the process
of extracting those devices into its own GitHub repository https://github.com/
schoeberl/soc-comm. There we will use a simple interface definition and will provide
bridges for the open-core protocol, Wishbone, and AXI.

4.1 Experimental Setup

We compare different solutions by evaluating them in an FPGA. The default configura-
tion for T-CREST supports the Altera DE2-115 development board. The FPGA on this
board, the Intel/Altera Cyclone IV EP4CE115 FPGA, is big enough to build a system
with up to 9 cores. All experiments use the 9-core version of T-CREST. We have chosen
the 9-core setup as this is a regular setup for a NoC (3×3 cores), and is the largest setup
that fits in the FPGA used.

The Patmos cores are configured with a single-issue pipeline, an 8 KB method cache
with 16 methods, a 4 KB write-through data cache, a 2 KB stack cache, a 1 KB instruc-
tion SPM and a 2 KB local SPM. External memory is 2 MB with an access time of 21
clock cycles for a burst of 4 32-bit words for a single core. For multicores, the main
memory is TDM arbitrated, resulting in access time between 21 and n×21 clock cycles
for n cores.

We use a shared SPM of 16 KB that is TDM arbitrated. The SPM with ownership
is configured as a pool of 16 SPMs, each of 1 KB. We measured read access times to
the SPM and the ownership SPM. For access to the TDM arbitrated SPM, we observe
all possible access times, i.e., for the 9 core version between 3 and 10 clock cycles. We
perform the same measurement with the SPM with ownership. As expected, we observe
a constant access time of 1 clock cycle.

4.2 Benchmark

For the evaluation, we implement a producer and a consumer who exchange messages.
As all presented solutions have no time interference from communication on other chan-
nels, it is enough to measure a single virtual channel. We measure throughput in clock
cycles, to provide a measurement that is only dependent on the architecture and not on
the achievable clock frequency in concrete technology. With a know maximum clock
frequency, the maximum bandwidth in bytes per second can be easily computed.

For comparison with a NoC we use the S4NOC [36], configured for 9 cores. The
resulting schedule length for the TDM scheduling of the NoC packets is 10 clock cycles
for an all-to-all schedule. Therefore, the maximum bandwidth per virtual channel is
10 clock cycles per word. Note that this all-to-all configuration provides 8× 9 = 72
channels, resulting in an overall bandwidth of 7.2 words per clock cycle.

The NIs for the S4NOC consist of FIFO buffers for the sender and receiver. The
sender FIFO contains entries for 32-bit data and the send slot number as a representation
of the destination address. The receive FIFO includes the read data and the receive
slot number as a representation of the sending core. We use small FIFOs built out of
registers.

https://github.com/schoeberl/soc-comm
https://github.com/schoeberl/soc-comm

Multicore Models of Communication for Cyber-Physical Systems 11

Table 1. Measured throughput, in clock cycles per word for one channel.

Configuration
Message size Throughput

(32-bit words) (clock cycles per word)

Main memory 8 236.4
Main memory 16 212.9
Main memory 32 201.3
Main memory 64 195.7

Shared SPM 8 12.4
Shared SPM 16 11.1
Shared SPM 32 18.9
Shared SPM 64 18.6

SPM with ownership 8 5.7
SPM with ownership 16 4.9
SPM with ownership 32 9.9
SPM with ownership 64 9.5

S4NOC, unconstraint sender - 10.1
S4NOC, with handshaking - 12.0

4.3 Measured Throughput

Table 1 shows throughput in clock cycles per word of messages of different sizes on dif-
ferent communication devices. The long access time to shared main memory dominates
the low throughput, showing the need for on-chip communication. For all memory-
based devices the throughput increases with the message length, as the overhead of
sending a message is less dominating. However, we observe an increase in the number
of clock cycles between 16-word messages and 32-word messages. We explored the
generated code and find that the compiler unrolls loops up to 16 iterations, explaining
this anomaly. At 32 or more iterations, the compiler generates code for a standard loop.
The throughput of the shared SPM is close to the limit of the access time of one word
per 9 clock cycles. For the SPM with ownership, which has a guaranteed access latency
of 1 clock cycle, the loop overhead of sending the data dominates.

For the NoC device, we performed two experiments. In the first experiment, we let
the producer send as fast as possible without handshaking, assuming that the consumer
is fast enough to cover the maximum throughput. As the TDM schedule of the 9 core
NoC is 10 clock cycles per TDM round, the 10.1 clock cycles per word are close to the
NoC limit. In the second experiment, we used a double buffer of 2 times 4 words (in
the NI FIFO) and handshaking so that every 4 words are acknowledged by the receiver.
This small buffer and the handshaking ensures that the sender will never overrun the
receiver, but introduces an overhead of just 20 % compared to the theoretical maximum
throughput.

12 M. Schoeberl

Table 2. Resource requirement of different communication devices.

Device LCs registers Memory

Shared SPM 654 490 16 KB
SPM with ownership 8694 77 16 KB
S4NOC 5517 4454 0 KB

4.4 Resource Consumption

Table 2 shows the resource requirements of the three different multicore communication
devices for 9 cores. The resources are given in logic cells (LC) that contain a 4-bit
lookup table, registers (D flip-flops), and on-chip memory. The shared SPM is relatively
cheap, as it needs logic only for a simple TDM arbiter for 9 cores. The SPM with
ownership contains a pool of 16 SPMs that are multiplexed for 9 cores and therefore
need a considerable amount of combinational logic (high LC count). The S4NOC is in
the resource requirements between the single SPM and the SPM with ownership but
needs no on-chip memory. The relative high register count comes from the small FIFOs
built out of registers. We can change the FIFO to use on-chip memories; two per node,
one for send and one for receive.

The three solutions scale differently with respect to the maximum clocking fre-
quency. As a baseline, the Patmos processor can be clocked at 80 MHz within this
FPGA. The NoC is a distributed design and therefore scales best. The 3× 3 S4NOC
can be clocked faster than 200 MHz, clearly not being the bottleneck in the system.
The single shared SPM has a single merge point and limits the system frequency to
about 70 MHz. We assume one pipeline stage, which increases read access latency by
one clock cycle, should be enough to increase the maximum clocking frequency to be
higher than the 80 MHz of the processor cores. However, moving to a 4×4 organization
of the single SPM may reduce the clocking frequency further. The SPM with ownership
has the worst clock frequency of just 50 MHz. Adding one pipeline stage should help,
but this would double the access latency from 1 to 2 clock cycles.

4.5 Discussion

When we look at the performance, the resource requirement, and the clock frequency,
there is no clear winner between the three solutions. The cheapest solution is the shared
SPM, but the access time in clock cycles for a producer-consumer workload is higher
than at the other two solutions. The SPM with ownership has the highest throughput
in clock cycles, but also the highest hardware demand and the lowest clock frequency.
This solution should probably be clustered with fewer cores or fewer SPMs in the pool.
The NoC solution is probably the sweet spot having medium resource requirement,
throughput between the single SPM and the SPM with ownership, and, perhaps most
important, scales well with a higher core count.

In summary, a combination of a NoC for the global traffic combined with locally
clustered shared SPMs may be the right solution. This combination of a NoC and shared

Multicore Models of Communication for Cyber-Physical Systems 13

SPMs is similar to the Kalray architecture, but we propose to have clusters that use a
shared SPM overlap for a more flexible continuum for communication.

5 Conclusion

Multicore processors used in cyber-physical systems need to support time-predictable
computation and communication. As communication via shared main memory sup-
ported by a cache coherence protocol is hardly time-predictable, we need other forms
of core-to-core communication. In this paper, we explored different forms of hardware
support for on-chip message passing between cores. Shared on-chip memories with
a time-predictable arbitration, such as time-division multiplexing, provide an efficient
solution for around a dozen cores. For more cores, a distributed communication archi-
tecture, such as a network-on-chip. is a better scaling solution. Also, hybrid solutions
using shared memories in clusters, which are connected by a network-on-chip, are an
option. The usage of multicore processors in safety-critical cyber-physical systems is
not yet common. Future applications and experiments will tell which on-chip commu-
nication solution will be the most preferred one.

Acknowledgment

The work presented in this paper was partially funded by the Danish Council for Inde-
pendent Research | Technology and Production Sciences under the project PREDICT3

(no. 4184-00127A).

References

1. Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avizienis, R., Wawrzynek, J.,
Asanovic, K.: Chisel: constructing hardware in a scala embedded language. In: The 49th
Annual Design Automation Conference (DAC 2012). pp. 1216–1225. ACM, San Francisco,
CA, USA (June 2012)

2. Becker, M., Dasari, D., Nicolic, B., Akesson, B., Nelis, V., Nolte, T.: Contention-
free execution of automotive applications on a clustered many-core platform. In:
28th Euromicro Conference on Real-Time Systems (ECRTS). pp. 14–24 (July 2016).
https://doi.org/10.1109/ECRTS.2016.14

3. Brandner, F., Schoeberl, M.: Static routing in symmetric real-time network-on-chips.
In: Proceedings of the 20th International Conference on Real-Time and Network
Systems (RTNS 2012). pp. 61–70. Pont a Mousson, France (November 2012).
https://doi.org/10.1145/2392987.2392995

4. Cruz, R.L.: A calculus for network delay. I. Network elements in isolation. IEEE Transac-
tions on Information Theory 37(1), 114–131 (Jan 1991). https://doi.org/10.1109/18.61110

5. Cruz, R.L.: A calculus for network delay. II. Network analysis. IEEE Transactions on Infor-
mation Theory 37(1), 132–141 (Jan 1991). https://doi.org/10.1109/18.61110

6. Dally, W.J., Towles, B.: Route packets, not wires: On-chip interconnection networks. In:
DAC. pp. 684–689. ACM (2001)

3 http://predict.compute.dtu.dk/

https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1145/2392987.2392995
https://doi.org/10.1109/18.61110
https://doi.org/10.1109/18.61110
http://predict.compute.dtu.dk/

14 M. Schoeberl

7. Dupont de Dinechin, B., van Amstel, D., Poulhiès, M., Lager, G.: Time-critical computing
on a single-chip massively parallel processor. In: Conference on Design, Automation and
Test in Europe. pp. 97:1–97:6. DATE ’14, European Design and Automation Association,
3001 Leuven, Belgium, Belgium (2014)

8. Dupont de Dinechin, B., Durand, Y., van Amstel, D., Ghiti, A.: Guaranteed services
of the NoC of a manycore processor. In: International Workshop on Network on
Chip Architectures (NoCArc). pp. 11–16. ACM, New York, NY, USA (Dec 2014).
https://doi.org/10.1145/2685342.2685344

9. Goossens, K., Hansson, A.: The AEthereal network on chip after ten years: Goals, evolution,
lessons, and future. In: Proceedings of the 47th ACM/IEEE Design Automation Conference
(DAC 2010). pp. 306 –311 (2010)

10. Gruian, F., Schoeberl, M.: Hardware support for CSP on a Java chip-
multiprocessor. Microprocessors and Microsystems 37(4–5), 472–481 (2013).
https://doi.org/10.1016/j.micpro.2012.08.004

11. Hansson, A., Subburaman, M., Goossens, K.: aelite: a flit-synchronous network on chip with
composable and predictable services. In: Proceedings of the Conference on Design, Automa-
tion and Test in Europe (DATE 2009). pp. 250–255. Leuven, Belgium (2009)

12. Heckmann, R., Ferdinand, C.: Worst-case execution time prediction by static program anal-
ysis. Tech. rep., AbsInt Angewandte Informatik GmbH, [Online, last accessed November
2013]

13. Hennessy, J., Patterson, D.: Computer Architecture: A Quantitative Approach, 4th ed. Mor-
gan Kaufmann Publishers (2006)

14. Hoare, C.A.R.: Monitors: An operating system structuring concept. Commun. ACM 17(10),
549–557 (Oct 1974). https://doi.org/10.1145/355620.361161

15. Hoare, C.A.R.: Communicating sequential processes. Commun. ACM 21(8), 666–677
(1978). https://doi.org/10.1145/359576.359585

16. Homewood, M., May, D., Shepherd, D., Shepherd, R.: The ims t800 transputer. IEEE Micro
7(5), 10–26 (1987). https://doi.org/10.1109/MM.1987.305012

17. Kasapaki, E., Schoeberl, M., Sørensen, R.B., Müller, C.T., Goossens, K., Sparsø, J.:
Argo: A real-time network-on-chip architecture with an efficient GALS implementation.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 479–492 (2016).
https://doi.org/10.1109/TVLSI.2015.2405614

18. Le Boudec, J.Y.: Application of network calculus to guaranteed service net-
works. IEEE Transactions on Information Theory 44(3), 1087–1096 (May 1998).
https://doi.org/10.1109/18.669170

19. Lee, E.A., Messerschmitt, D.G.: Synchronous data flow. Proceedings of the IEEE 75(9),
1235–1245 (Sept 1987). https://doi.org/10.1109/PROC.1987.13876

20. Liu, I.: Precision Timed Machines. Ph.D. thesis, EECS Department, University of California,
Berkeley (May 2012)

21. Liu, I., Reineke, J., Broman, D., Zimmer, M., Lee, E.A.: A PRET microarchitecture im-
plementation with repeatable timing and competitive performance. In: Proceedings of IEEE
International Conference on Computer Design (ICCD 2012) (October 2012)

22. Lohstroh, M., Schoeberl, M., Goens, A., Wasicek, A., Gill, C., Sirjani, M., Lee, E.A.: Ac-
tors revisited for time-critical systems. In: Proceedings of the 56th Annual Design Automa-
tion Conference 2019. pp. 152:1–152:4. DAC ’19, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3316781.3323469

23. May, D., Shepherd, R.: Occam and the transputer. In: Proc. of the IFIP WG 10.3 workshop
on Concurrent languages in distributed systems: hardware supported implementation. pp.
19–33. Elsevier North-Holland, Inc., New York, NY, USA (1985)

24. Metzlaff, S., Mische, J., Ungerer, T.: A real-time capable many-core model. In: Proceedings
of 32nd IEEE Real-Time Systems Symposium: Work-in-Progress Session (2011)

https://doi.org/10.1145/2685342.2685344
https://doi.org/10.1016/j.micpro.2012.08.004
https://doi.org/10.1145/355620.361161
https://doi.org/10.1145/359576.359585
https://doi.org/10.1109/MM.1987.305012
https://doi.org/10.1109/TVLSI.2015.2405614
https://doi.org/10.1109/18.669170
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1145/3316781.3323469

Multicore Models of Communication for Cyber-Physical Systems 15

25. Mische, J., Frieb, M., Stegmeier, A., Ungerer, T.: Reduced complexity many-core: Timing
predictability due to message-passing. In: Architecture of Computing Systems - ARCS 2017:
30th International Conference, Vienna, Austria, April 3–6, 2017, Proceedings. pp. 139–151.
Springer International Publishing, Cham (2017)

26. Mische, J., Frieb, M., Stegmeier, A., Ungerer, T.: Pimp my many-core: Pipeline-integrated
message passing. In: Embedded Computer Systems: Architectures, Modeling, and Simula-
tion (SAMOS 2019) (2019)

27. Olofsson, A., Nordström, T., ul Abdin, Z.: Kickstarting high-performance energy-efficient
manycore architectures with Epiphany. In: Matthews, M.B. (ed.) in Proc. Asilomar Confer-
ence on Signals, Systems and Computers. pp. 1719–1726. IEEE (2014)

28. Paukovits, C., Kopetz, H.: Concepts of switching in the time-triggered network-on-chip.
In: Proceedings of the 14th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications (RTCSA 2008). pp. 120 –129 (August 2008).
https://doi.org/10.1109/RTCSA.2008.18

29. Petersen, M.B., Riber, A.V., Andersen, S.T., Schoeberl, M.: Time-predictable
distributed shared on-chip memory. Microprocessors and Microsystems (2019).
https://doi.org/10.1016/j.micpro.2019.102896

30. Ptolemaeus, C. (ed.): System Design, Modeling, and Simulation using Ptolemy II.
Ptolemy.org (2014)

31. Puffitsch, W., Sørensen, R.B., Schoeberl, M.: Time-division multiplexing vs net-
work calculus: A comparison. In: Proceedings of the 23th International Conference
on Real-Time and Network Systems (RTNS 2015). Lille, France (November 2015).
https://doi.org/10.1145/2834848.2834868

32. Schoeberl, M.: Time-predictable computer architecture. EURASIP Journal
on Embedded Systems vol. 2009, Article ID 758480, 17 pages (2009).
https://doi.org/10.1155/2009/758480

33. Schoeberl, M.: One-way shared memory. In: 2018 Design, Automation and
Test in Europe Conference Exhibition (DATE). pp. 269–272 (March 2018).
https://doi.org/10.23919/DATE.2018.8342017

34. Schoeberl, M., Abbaspour, S., Akesson, B., Audsley, N., Capasso, R., Garside, J.,
Goossens, K., Goossens, S., Hansen, S., Heckmann, R., Hepp, S., Huber, B., Jordan,
A., Kasapaki, E., Knoop, J., Li, Y., Prokesch, D., Puffitsch, W., Puschner, P., Rocha,
A., Silva, C., Sparsø, J., Tocchi, A.: T-CREST: Time-predictable multi-core architec-
ture for embedded systems. Journal of Systems Architecture 61(9), 449–471 (2015).
https://doi.org/10.1016/j.sysarc.2015.04.002

35. Schoeberl, M., Chong, D.V., Puffitsch, W., Sparsø, J.: A time-predictable mem-
ory network-on-chip. In: Proceedings of the 14th International Workshop on Worst-
Case Execution Time Analysis (WCET 2014). pp. 53–62. Madrid, Spain (July 2014).
https://doi.org/10.4230/OASIcs.WCET.2014.53

36. Schoeberl, M., Pezzarossa, L., Sparsø, J.: A minimal network interface for a simple network-
on-chip. In: Architecture of Computing Systems - ARCS 2019. pp. 295–307. Springer (1
2019). https://doi.org/10.1007/978-3-030-18656-2 22

37. Schoeberl, M., Pezzarossa, L., Sparsø, J.: S4noc: a minimalistic network-on-chip for real-
time multicores. In: 12th International Workshop on Network on Chip Architectures (No-
CArc ’19). ACM (October 2019). https://doi.org/10.1145/3356045.3360714

38. Schoeberl, M., Puffitsch, W., Hepp, S., Huber, B., Prokesch, D.: Patmos: A
time-predictable microprocessor. Real-Time Systems 54(2), 389–423 (Apr 2018).
https://doi.org/10.1007/s11241-018-9300-4

39. Schoeberl, M., Sørensen, R.B., Sparsø, J.: Models of communication for multicore proces-
sors. In: Proceedings of the 11th Workshop on Software Technologies for Embedded and

https://doi.org/10.1109/RTCSA.2008.18
https://doi.org/10.1016/j.micpro.2019.102896
https://doi.org/10.1145/2834848.2834868
https://doi.org/10.1155/2009/758480
https://doi.org/10.23919/DATE.2018.8342017
https://doi.org/10.1016/j.sysarc.2015.04.002
https://doi.org/10.4230/OASIcs.WCET.2014.53
https://doi.org/10.1007/978-3-030-18656-2_22
https://doi.org/10.1145/3356045.3360714
https://doi.org/10.1007/s11241-018-9300-4

16 M. Schoeberl

Ubiquitous Systems (SEUS 2015). pp. 44–51. IEEE, Auckland, New Zealand (April 2015).
https://doi.org/10.1109/ISORCW.2015.57

40. Schoeberl, M., Strøm, T.B., Baris, O., Sparsø, J.: Scratchpad memories with ownership. In:
2019 Design, Automation and Test in Europe Conference Exhibition (DATE) (2019)

41. Shoushtari, M., Donyanavard, B., Bathen, L.A.D., Dutt, N.: Shave-ice: Sharing distributed
virtualized spms in many-core embedded systems. ACM Trans. Embed. Comput. Syst. 17(2),
47:1–47:25 (Feb 2018). https://doi.org/10.1145/3157667

42. Sparsø, J., Kasapaki, E., Schoeberl, M.: An area-efficient network interface for a TDM-
based network-on-chip. In: Proceedings of the Conference on Design, Automation and Test
in Europe. pp. 1044–1047. DATE ’13, EDA Consortium, San Jose, CA, USA (2013)

43. Whitby-Strevens, C.: The transputer. SIGARCH Comput. Archit. News 13(3), 292–300
(1985). https://doi.org/10.1145/327070.327269

https://doi.org/10.1109/ISORCW.2015.57
https://doi.org/10.1145/3157667
https://doi.org/10.1145/327070.327269

