Skip to main content

Automated 2D Fetal Brain Segmentation of MR Images Using a Deep U-Net

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12047))

Included in the following conference series:

Abstract

Fetal brain segmentation is a difficult task yet an important step to study brain development in utero. In contrast to adult studies automatic fetal brain extraction remains challenging and has limited research mainly due to arbitrary orientation of the fetus, possible movement and lack of annotated data. This paper presents a deep learning method for 2D fetal brain extraction from Magnetic Resonance Imaging (MRI) data using a convolution neural network inspired from the U-Net architecture [1]. We modified the network to suit our segmentation problem by adding deeper convolutional layers allowing the network to capture finer textural information and using more robust functions to avoid overfitting and to deal with imbalanced foreground (brain) and background (non-brain) samples. Experimental results using 200 normal fetal brains consisting of over 11,000 2D images showed that the proposed method produces Dice and Jaccard coefficients of \(92.8 \pm 6.3\%\) and \(86.7 \pm 7.8\%\), respectively providing a significant improvement over the original U-Net and its variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  2. Makropoulos, A., Counsell, S.J., Rueckert, D.: A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage 170, 231–248 (2018)

    Article  Google Scholar 

  3. Anquez, J., Angelini, E.D., Bloch, I.: Automatic segmentation of head structures on fetal MRI. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, pp. 109–112 (2009). https://doi.org/10.1109/ISBI.2009.5192995

  4. Taleb, Y., Schweitzer, M., Studholme, C., Koob, M., Dietemann, J.L., Rousseau, F.: Automatic template-based brain extraction in fetal MR images (2013)

    Google Scholar 

  5. Link, D., et al.: Automatic measurement of fetal brain development from magnetic resonance imaging: new reference data. Fetal Diagn. Ther. 43(2), 113–122 (2018)

    Article  Google Scholar 

  6. Ison, M., Dittrich, E., Donner, R., Kasprian, G., Prayer, D., Langs, G.: Fully automated brain extraction and orientation in raw fetal MRI. In: MICCAI Workshop on Paediatric and Perinatal Imaging 2012 (PaPI 2012) (2012)

    Google Scholar 

  7. Alansary, A., et al.: Automatic brain localization in fetal MRI using superpixel graphs. In: Proceedings Machine Learning Meets Medical Imaging, pp. 13–22 (2015)

    Google Scholar 

  8. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Susstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2281 (2012)

    Article  Google Scholar 

  9. Keraudren, K., et al.: Automated fetal brain segmentation from 2D MRI slices for motion correction. NeuroImage 101, 633–643 (2014)

    Article  Google Scholar 

  10. Kainz, B., Keraudren, K., Kyriakopoulou, V., Rutherford, M., Hajnal, J.V., Rueckert, D.: Fast fully automatic brain detection in fetal MRI using dense rotation invariant image descriptors. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, pp. 1230–1233 (2014). https://doi.org/10.1109/ISBI.2014.6868098

  11. Rampun, A., et al.: Breast pectoral muscle segmentation in mammograms using a modified holistically-nested edge detection network. Med. Image Anal. 57, 1–17 (2019)

    Article  Google Scholar 

  12. Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learning in mammography and breast histology, an overview and future trends. Med. Image Anal. 76, 45–67 (2018)

    Article  Google Scholar 

  13. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  Google Scholar 

  14. Rampun, A., Scotney, B.W., Morrow, P.J., Wang, H.: Breast mass classification in mammograms using ensemble convolutional neural networks. In: 2018 IEEE 20th International Conference on e-Health Networking, Applications and Services (Healthcom), Ostrava, pp. 1–6 (2018)

    Google Scholar 

  15. Mohseni Salehi, S.S., Erdogmus, D., Gholipour, A.: Auto-context convolutional neural network (auto-net) for brain extraction in magnetic resonance imaging. IEEE Trans. Med. Imag. 36(11), 2319–2330 (2017)

    Article  Google Scholar 

  16. Rajchl, M., et al.: DeepCut: object segmentation from bounding box annotations using convolutional neural networks. IEEE Trans. Med. Imag. 36(2), 674–683 (2017). https://doi.org/10.1109/TMI.2016.2621185

    Article  Google Scholar 

  17. Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. (TOG) 23(3), 309–314 (2004)

    Article  Google Scholar 

  18. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  19. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus) (2015). arXiv preprint arXiv:1511.07289

  20. Hinton, G.: Neural Networks for Machine Learning - Lecture 6a - Overview of mini-batch gradient descent. https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf. Accessed 4 July 2019

  21. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  22. Jarvis, D.A., Finney, C.R., Griffiths, P.D.: Normative volume measurements of the fetal intra-cranial compartments using 3D volume in utero MR imaging. Eur Radiol. 29(7), 3488–3495 (2019)

    Article  Google Scholar 

  23. Griffiths, P.D., et al.: A on behalf of the MERIDIAN collaborative group. (2017) Use of MRI in the diagnosis of fetal brain abnormalities in utero (MERIDIAN): a multicentre, prospective cohort study. Lancet 389, 538–546 (2017)

    Article  Google Scholar 

  24. Griffiths, P.D., Jarvis, D., McQuillan, H., Williams, F., Paley, M., Armitage, P.: MRI of the foetal brain using a rapid 3D steady-state sequence. Br. J. Radiol. 86(1030), 20130168 (2013)

    Article  Google Scholar 

  25. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrik Rampun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rampun, A., Jarvis, D., Griffiths, P., Armitage, P. (2020). Automated 2D Fetal Brain Segmentation of MR Images Using a Deep U-Net. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12047. Springer, Cham. https://doi.org/10.1007/978-3-030-41299-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41299-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41298-2

  • Online ISBN: 978-3-030-41299-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics