Skip to main content

Confidence Map Based 3D Cost Aggregation with Multiple Minimum Spanning Trees for Stereo Matching

  • Conference paper
  • First Online:
  • 1579 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Abstract

Stereo matching is a challenging problem due to the mismatches caused by difficult environment conditions. In this paper, we propose an enhanced version of our previous work, denoted as 3DMST-CM, to handle challenging cases and obtain a high-accuracy disparity map based on the ambiguity of image pixels. We develop a module of distinctiveness analysis to classify pixels into distinctive and ambiguous pixels. Then distinctive pixels are utilized as anchor pixels to help match ambiguous pixels accurately. The experimental results demonstrate the effectiveness of our method and reach state-of-the-art on the Middlebury 3.0 benchmark.

D. Xu—Equally contributed to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Scharstein, D., Szeliski, R.H.H.: Middlebury stereo evaluation. Version 3. http://vision.middlebury.edu/stereo/eval3/

  2. Drouyer, S., Beucher, S., Bilodeau, M., Moreaud, M., Sorbier, L.: Sparse stereo disparity map densification using hierarchical image segmentation. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 172–184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_14

    Chapter  MATH  Google Scholar 

  3. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  4. Kim, K.R., Kim, C.S.: Adaptive smoothness constraints for efficient stereo matching using texture and edge information. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3429–3433. IEEE (2016)

    Google Scholar 

  5. Li, L., Yu, X., Zhang, S., Zhao, X., Zhang, L.: 3D cost aggregation with multiple minimum spanning trees for stereo matching. Appl. Opt. 56(12), 3411–3420 (2017)

    Article  Google Scholar 

  6. Li, L., Zhang, S., Yu, X., Zhang, L.: PMSC: PatchMatch-based superpixel cut for accurate stereo matching. IEEE Trans. Circuits Syst. Video Technol. 28(3), 679–692 (2016)

    Article  Google Scholar 

  7. Mao, W., Wang, M., Zhou, J., Gong, M.: Semi-dense stereo matching using dual CNNs. In: IEEE Winter Conference on Applications of Computer Vision, pp. 1588–1597 (2019). https://doi.org/10.1109/WACV.2019.00174

  8. Mozerov, M.G., van de Weijer, J.: One-view occlusion detection for stereo matching with a fully connected CRF model. IEEE Trans. Image Process. 28(6), 2936–2947 (2019)

    Article  MathSciNet  Google Scholar 

  9. Park, H., Lee, K.M.: Look wider to match image patches with convolutional neural networks. IEEE Signal Process. Lett. 24(12), 1788–1792 (2016)

    Article  Google Scholar 

  10. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3

    Chapter  Google Scholar 

  11. Shi, C., Wang, G., Pei, X., He, B., Lin, X.: Stereo matching using local plane fitting in confidence-based support window. IEICE Trans. Inf. Syst. 95(2), 699–702 (2012)

    Article  Google Scholar 

  12. Shi, C., Wang, G., Yin, X., Pei, X., He, B., Lin, X.: High-accuracy stereo matching based on adaptive ground control points. IEEE Trans. Image Process. 24(4), 1412–1423 (2015)

    Article  MathSciNet  Google Scholar 

  13. Taniai, T., Matsushita, Y., Sato, Y., Naemura, T.: Continuous 3D label stereo matching using local expansion moves. IEEE Trans. Pattern Anal. Mach. Intell. 40(11), 2725–2739 (2018)

    Article  Google Scholar 

  14. Ye, X., Li, J., Wang, H., Huang, H., Zhang, X.: Efficient stereo matching leveraging deep local and context information. IEEE Access 5, 18745–18755 (2017)

    Article  Google Scholar 

  15. Zbontar, J., LeCun, Y.: Computing the stereo matching cost with a convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1592–1599 (2015)

    Google Scholar 

  16. Zhang, C., Li, Z., Cheng, Y., Cai, R., Chao, H., Rui, Y.: MeshStereo: a global stereo model with mesh alignment regularization for view interpolation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2057–2065 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guijin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Y. et al. (2020). Confidence Map Based 3D Cost Aggregation with Multiple Minimum Spanning Trees for Stereo Matching. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics