
Geometric Total Variation for Image
Vectorization, Zooming and Pixel Art

Depixelizing ?

Bertrand Kerautret1 and Jacques-Olivier Lachaud2

1 Univ. Lyon 2, LIRIS, CNRS, France
bertrand.kerautret@liris.cnrs.fr

2 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc
CNRS, LAMA, 73000 Chambéry, France
jacques-olivier.lachaud@univ-smb.fr

Abstract. We propose an original method for vectorizing an image or
zooming it at an arbitrary scale. The core of our method relies on the
resolution of a geometric variational model and therefore offers theoretic
guarantees. More precisely, it associates a total variation energy to every
valid triangulation of the image pixels. Its minimization induces a trian-
gulation that reflects image gradients. We then exploit this triangulation
to precisely locate discontinuities, which can then simply be vectorized
or zoomed. This new approach works on arbitrary images without any
learning phase. It is particularly appealing for processing images with
low quantization like pixel art and can be used for depixelizing such im-
ages. The method can be evaluated with an online demonstrator, where
users can reproduce results presented here or upload their own images.

Keywords: Image Vectorization · Image Super-Resolution · Total Vari-
ation · Depixelizing Pixel Art

1 Introduction

There exist many methods for zooming into raster images, and they can be
divided into two groups. The first group gathers “image super-resolution” or
“image interpolation” techniques and tries to deduce colors on the zoomed image
from nearby colors in the original image. These methods compute in the raster
domain and their output is not scalable. The second group is composed of “image
vectorization” approaches and tries to build a higher level representation of
the image made of painted polygons and splines. These representations can be
zoomed, rotated or transformed. Each approach has its own merits, but none
perform well both on cmaera pictures and on drawings or pixel art.
Image interpolation/super resolution.

These approaches construct an interpolated image with higher resolution. A
common trait is that they see the image as a continuous function, such that

? This work has been partly funded by CoMeDiC ANR-15-CE40-0006 research grant.

ar
X

iv
:2

00
7.

15
93

3v
1

 [
ee

ss
.I

V
]

 3
1

Ju
l 2

02
0

2 B. Kerautret and J.-O. Lachaud

we only see its sampling in the original image. Their diversity lies generally
in the choice of the space of continuous functions. For instance linear/cubic
interpolation just fits linear/cubic functions, but much more complicated spaces
have been considered. For instance the method proposed by Getreuer introduces
the concept of contour stencils [6,7] to accurately estimate the edge orientation.
Roussos and Maragos proposed another strategy using a tensor driven diffusion
[19] (see also [8]).

Due to the increasing popularity of convolutional neural network (CNN), sev-
eral authors propose super resolution networks to obtain super resolution image.
For instance Shi et al. define a CNN architecture exploiting feature maps com-
puted in low resolution space [22]. After learning, this strategy reduces the com-
putational complexity for a fixed super-resolution and gives interesting results
on photo pictures. Of course, all these approaches do not provide any vectorial
representation and give low quality results on images with low quantization or
pixel art images. Another common feature is their tendency to “invent” false
oscillating contours, like in Fourier super-resolution.

Pixel art super-resolution. A subgroup of these methods is dedicated to the
interpolation of pixel art images, like the classic HqX magnification filter [23]
where X represents the scale factor. We may quote a more advanced approach
which proposes as well a full vectorization of pixel art image [13]. Even if the
resulting reconstruction for tiny images is nice looking, the proposed approach
is designed specifically for hand-crafted pixel art image and is not adaptable to
photo pictures.

Image vectorization. Recovering a vector-based representation from a bitmap
image is a classical problem in the field of digital geometry, computer graphics
and pattern recognition. Various commercial design softwares propose such a
feature, like IndesignTM, or Vector Magic [10] and their algorithms are naturally
not disclosed. Vectorization is also important for technical document analysis
and is often performed by decomposition into arcs and straight line segments
[9]. For binary images, many vectorization methods are available and may rely on
dominant points detection [16,17], relaxed straightness properties [1], multi-scale
analysis [5] or digital curvature computation [11,15].

Extension to grey level images is generally achieved by image decomposition
into level sets, vectorization of each level, then fusion (e.g. [12]). Extension to
color images is not straightforward. Swaminarayan and Prasad proposed to use
contour detection associated to a Delaunay triangulation [25] but despite the
original strategy, the digital geometry of the image is not directly exploited like
in above-mentionned approaches. Other methods define the vectorization as a
variational problem, like Lecot and Levy who use the Mumford Shah piecewise
smooth model and an intermediate triangulation step to best approximate the
image [14]. Other comparable methods construct the vectorization from topolog-
ical preservation criteria [24], from splines and adaptive Delaunay triangulation
[4] or from Bézier-curves-patch-based representation [26]. We may also cite the
interactive method proposed by Price and Barrett that let a user edit interac-
tively the reconstruction from a graph cut segmentation [18].

Geometric Total Variation 3

Our contribution. We propose an original approach to this problem, which bor-
rows and mixes techniques from both groups of methods, thus making it very
versatile. We start with some notations that will be used thoughout the paper.
Let Ω be some open subset of R2, here a rectangular subset defining the im-
age domain. Let K be the image range, a vector space that is generally R for
monochromatic images and R3 for color image, equipped with some norm ‖·‖K .
We assume in the following that gray-level and color components lie in [0, 1].

First our approach is related with the famous Total Variation (TV), a well
known variational model for image denoising or inpainting [20]. Recall that if f
is a differentiable function in Ω, its total variation can be simply defined as:

TV(f) :=

∫
Ω

‖∇f(x)‖K dx. (1)

In a more general setting, the total variation is generally defined by duality. As
noted by many authors [3], different discretizations of TV are not equivalent.
However they are all defined locally with neighboring pixels, and this is why
they are not able to fully capture the structure of images.

In Section 2, we propose a geometric total variation. Its optimization seeks
the triangulation of lattice points of Ω that minimizes a well-defined TV cor-
responding to a piecewise linear function interpolating the image. The optimal
triangulation does not always connect neighboring pixels and align its edges with
image discontinuities. For instance digital straight segments are recognized by
the geometric total variation.

In Section 3, we show how to construct a vector representation from the
obtained triangulation, by regularizing a kind of graph dual to the triangulation.
Section 4 shows a super-resolution algorithm that builds a zoomed raster image
with smooth Bezier discontinuities from the vector representation. Finally, in
Section 5 we compare our approach to other super-resolution and vectorization
methods and discuss the results.

2 Geometric Total Variation

The main idea of our geometric total variation is to structure the image domain
into a triangulation, whose vertices are the pixel centers located at integer co-
ordinates. Furthermore, any triangle of this triangulation should cover exactly
three lattice points (its vertices). The set of such triangulations of lattice points
in Ω is denoted by T (Ω).

Let s be an image, i.e. a function from the set of lattice points of Ω to K. We
define the geometric total variation of s with respect to an arbitrary triangulation
T of T (Ω) as

GTV(T, s) :=

∫
Ω

‖∇ΦT,s(x)‖K dx, (2)

where ΦT,s(x) is the linear interpolation of s in the triangle of T containing x.
Note that points of Ω whose gradient is not defined have null measure in the
above integral (they belong to triangle edges of T).

4 B. Kerautret and J.-O. Lachaud

And the Geometric Total Variation (GTV) of s is simply the smallest among
all possible triangulations:

GTVT (Ω)(s) := min
T∈T (Ω)

GTV(T, s). (3)

In other words, the GTV of a digital image s is the smallest continuous
total variation among all natural triangulations sampling s. Since T (Ω) will not
change in the following, we will omit it as subscript and write simply GTV(s).

One should note that classical discrete TV models associated to a digital
image generally overestimate its total variation (in fact, the perimeter of its
level-sets due to the co-area formula) [3]. Classical discrete TV models TV(s)
are very close to GTV(T, s) when T is any trivial Delaunay triangulation of the
lattice points. By finding more meaningful triangulation, GTV(s) will often be
much smaller than TV(s).
Combinatorial expression of geometric total variation. Since ΦT,s(x) is the linear
interpolation of s in the triangle τ of T containing x, it is clear that its gradient
is constant within the interior of τ . If τ = pqr where p,q, r are the vertices of
τ , one computes easily that for any x in the interior of τ , we have

∇ΦT,s(x) = s(p)(r− q)⊥ + s(q)(p− r)⊥ + s(r)(q− p)⊥. (4)

We thus define the discrete gradient of s within a triangle pqr as

∇s(pqr) := s(p)(r− q)⊥ + s(q)(p− r)⊥ + s(r)(q− p)⊥, (5)

where x⊥ is the vector x rotated by π
2 . Now it is well known that any lattice

triangle that has no integer point in its interior has an area 1
2 (just apply Pick’s

theorem for instance). It follows that for any triangulation T of T (Ω), every
triangle has the same area 1

2 . We obtain the following expression for the GTV:

GTV(T, s) =

∫
Ω

‖∇ΦT,s(x)‖K dx

=
∑

pqr∈T

∫
pqr

‖∇ΦT,s(x)‖K dx (integral is additive)

=
∑

pqr∈T

∫
pqr

‖∇s(pqr)‖K dx (by (4) and (5))

=
1

2

∑
pqr∈T

‖∇s(pqr)‖K (since Area(pqr) =
1

2
) (6)

Minimization of GTV. Since we have a local combinatorial method to compute
the GTV of an arbitrary triangulation, our approach to find the optimal GTV
of some image s will be greedy, iterative and randomized. We will start from
an arbitrary triangulation (here the natural triangulation of the grid where each
square has been subdivided in two triangles) and we will flip two triangles when-
ever it decreases the GTV.

Geometric Total Variation 5

T
ri

a
n
g
u
la

ti
o
n
s

GTV 1
2

(
2 + 3

√
2
)
≈ 3.121 1

2

(
1 +
√

5 + 2
√

2
)
≈ 3.032 1

2

(
1 +
√

13 +
√

2
)
≈ 3.010

Table 1. Illustration of geometric total variation on a simple black and white image.
Even if the pixel values of the image are the same (represented by black and white
disks), different triangulations of the pixels yield different GTV. In this case, the right
one is the optimal triangulation and is clearly more aligned with the underlying contour.
Vectorizing or zooming the right triangulation will provide more interesting results.

This approach is similar in spirit to the approach of Bobenko and Springborn
[2], whose aim is to define discrete minimal surfaces. However they minimize the
Dirichlet energy of the triangulation (i.e. squared norm of gradient) and they
show that the optimum is related to the intrinsic Delaunay triangulation of the
sampling points, which can be reached by local triangle flips. On the contrary, our
energy has not this nice convexity property and it is easy to see for instance that
minima are generally not unique. We have also checked that there is a continuum
of energy if we minimize the p-norm ‖·‖pK for 1 ≤ p ≤ 2. For p = 2 the optimum
is trivially the Delaunay triangulation of the lattice points. When p is decreased
toward 1, we observe that triangle edges are more and more perpendicular to
the discrete gradient.

Figure 1 shows the GTV of several triangulations in the simple case of a
binary image representing an edge contour with slope 2

3 . It shows that the smaller
the GTV the more align with the digital contour is the triangulation.

Algorithm 1 is the main function that tries to find a triangulation T which is
as close as possible to GTV(s). It starts from any triangulation of s (line 6 : we
just split into two triangles each square between four adjacent pixels). Then it
proceeds by passes (line 7). At each pass (line 10), every potential arc is checked
for a possible flip by a call to CheckArc (Algorithm 2) at line 13. The arc is
always flipped if it decreases the GTV and randomly flipped if it does not change
the GTV (line 14). Arcs close to the flip are queued (line 16) since their further
flip may decrease the GTV later. The algorithm stops when the number of flips
decreasing the GTV is zero (flips keeping the same GTV are not counted).

Function CheckArc (Algorithm 2) checks if flipping some arc would de-
crease the GTV. It first checks if the arc/edge is flippable at line 3 (e.g. not
on the boundary). Then it is enough to check only one arc per edge (line 5).
Afterwards the edge may be flipped only if the four points surrounding the faces
touching the edge form a strictly convex quadrilateron (line 6). Finally it com-
putes the local GTV of the two possible decompositions of this quadrilateron
using formula (6) and outputs the corresponding case (from line 7).

Note that the randomization of flips in the case where the energy GTV is
not changed is rather important in practice. As said above, it is not a “convex”

6 B. Kerautret and J.-O. Lachaud

1 function OptimizeGTV(s : Image) : Triangulation ;
2 var T : Triangulation /* the triangulation that is optimized */;
3 var Q : Queue<Arc>/* the queue of arcs currently being checked */;
4 var Q′ : Queue<Arc>/* the queue of arcs to be checked after */;
5 begin
6 T ← TrivialTriangulation(Pixels(s));

/* All arcs may be flipped at the beginning. */

7 for all arcs a of T do Push a in Q′;
8 repeat
9 Swap(Q,Q′);

10 n← 0 /* Counts the number of flips that decrease GTV */;
11 while ¬IsEmpty(Q) do
12 Pop a from Q ;
13 c← CheckArc(s, T, a) ;
14 if c > 0 or (c = 0 and FlipCoin() = Heads) then
15 if c > 0 then n← n+ 1;
16 Push arcs of two faces around a in Q′;
17 Flip(T, a) /* After, a represents the flipped arc */;

18 until n = 0;
19 return T ;

Algorithm 1: Function OptimizeGTV outputs a triangulation which is as
close as possible to GTV(s). It builds a trivial triangulation of the pixels of s
then optimize its GTV by flipping its edges in a greedy and randomized way.

1 function CheckArc(s : Image, T : Triangulation, a : Arc) : Integer ;
2 begin
3 if ¬isFlippable(T, a) then return -1 ;
4 P ← VerticesOfFacesAroundArc(T, a) ;

/* P [0] is Tail(T, a), P [2] is Head(T, a), P [0]P [1]P [2] and

P [0]P [2]P [3] are the two faces having a in common. */

5 if P [0] < P [2] then return -1 ;
6 if ¬isConvex(P) then return -1 ;
7 Ecur = ‖∇s(P [0]P [1]P [2])‖K + ‖∇s(P [0]P [2]P [3])‖K ;
8 Eflip = ‖∇s(P [0]P [1]P [3])‖K + ‖∇s(P [1]P [2]P [3])‖K ;
9 if Eflip < Ecur then return 1 ;

10 else if Eflip = Ecur then return 0 ;
11 else return -1 ;

Algorithm 2: Function CheckArc checks if flipping the arc a of triangulation
T decreases GTV(T, s) (returns 1), does not change GTV(T, s) (returns 0), or
returns −1 in all the other cases.

Geometric Total Variation 7

original linear gradient TV linear gradient GTV crisp gradient GTV

Fig. 1. Zoom ×16 of the images in leftmost column: (middle left) displaying the triv-
ial triangulation given by a simple discretization of TV painted with induced linear
gradient over each triangle, (middle right) displaying the triangulation after GTV op-
timization painted with induced linear gradient over each triangle, (rightmost) same
as before except that triangles are painted with a crisped version of the same gradient.

energy since it is easy to find instances where there are several optima (of course,
our search space being combinatorial, convexity is not a well defined notion).
Randomization helps in quitting local minima and this simple trick gives nice
results in practice.

Figure 1 illustrates the capacity of geometric total variation to capture the
direction of image discontinuities. In this simple application, we use the discrete
gradient on each triangle to display it with the corresponding linear shaded
gradient. Hence we can zoom arbitrarily any image. The results show that, if
we stay with the initial triangulation (as does standard discretization of TV),
zoomed image are not great. On the contrary, results are considerably improved if
we use the optimized triangulation of GTV. Last, we can simply render triangles
with a crisped version of this gradient. Results are very nice in case of images
with few colors like in pixel art.

8 B. Kerautret and J.-O. Lachaud

3 Contour Regularization

p

q
Contours within images are in-between pixels. In some
sense they are dual to the structure of the pixels. Since
the Geometric Total Variation has structured the rela-
tions between pixels, it is natural to define the contours
as a kind of dual graph to the optimal triangulation T ∗.
We wish also that these contour lines align nicely with
discontinuities.

To do so, we introduce a variable ta on each arc whose value is kept in [0, 1].
If the arc a is the oriented edge (p,q) then the position of the contour crossing
this edge will be xa = tap + (1− ta)q (see the upper floating figure).

We denote by a′ the arc opposite to a, i.e. (q,p). The face that is to the left
of a is denoted face(a) while the one to its right is face′(a). We will guarantee
that, at the end of each iteration, xa = xa′ . We associate to each arc a = (p,q)
a dissimilarity weight wa := ‖s(q)− s(p)‖K = wa′ . We introduce also a point
bf for each face f of T , which will lie at a kind of weighted barycenter of the
vertices of f .

Algorithm 3 regularizes these points and provides a graph of contours that is
a meaningful vectorization of the input bitmap image s. Note that the function
Intersection(a,y, z) returns the parameter t such that xa lies at the intersec-
tion of straight line (yz) and the arc a.

First it starts with natural positions for x and b (resp. middle of arcs and
barycenter of faces) at line 3 and line 4. Then it proceeds iteratively until sta-
bilization in the loop at line 8. Each iteration consists of three steps: (i) update
barycenters such that they are a convex combination of surrounding contour
points weighted by their dissimilarities (line 9), (ii) update contour points such
that they lie at the crossing of the arc and the nearby barycenters (line 11),
(iii) average the two displacements along each edge according to respective area
(line 13), thus guaranteeing that xa = xa′ for every arc. The area Area(a)
associated to an arc a is the area of the quadrilateron formed by the tail of a,
barycenters bface(a) and bface′(a) and xa. Note that the coefficients α and α′

computed at line 14 have value 1 whenever the area is 1
6 .

Since this process is always computing convex combinations of points with
convex constraints, it converges quickly to a stable point. In all our experiments,
we choose ε = 0.001 and the process converges in a dozen of iterations. Figure 2
illustrates it. The contour mesh is defined simply as follows: there is one cell
per pixel, and for each pixel p, its cell is obtained by connecting the sequence
of points xa0 ,bface(a0),xa1 ,bface(a1) . . . for every arc a0, a1, . . . coming out of p.
Each cell of the contour mesh is displayed painted with the color of its pixel. It is
clear that the contour mesh is much more meaningful after GTV optimization,
and its further regularization remove some artefacts induced by the discretiza-
tion. Last but not least, our approach guarantees that sample points always keep
their original color.

Geometric Total Variation 9

1 function RegularizeContours(s : Image, T : Triangulation) ;
Result: Positions of contour points on arcs and barycenter on faces

2 begin
3 for every face f = pqr of T do bf ← 1

3
(p + q + r);

4 for every arc a of T do

5 if ¬isUpdateable(a) then t
(0)
a ← 1

2
;

6 else t
(0)
a ← Intersection(a,bface(a),bface′(a));

7 n← 0;
8 repeat
9 for every face f of T do /* Update barycenters */

10 bf ← 1
2
(bf +

∑
a∈∂f waxa/

∑
a∈∂f wa);

11 for every arc a of T with isUpdateable(a) do /* Update contours */

12 t
(n)
a ← 1

2
(t

(n)
a + Intersection(a,bface(a),bface′(a));

/* Average displacements along each edge according to area. */

13 for every arc a = pq of T with p < q and isUpdateable(a) do
14 (α, α′)← 1

2
(1 + 1/(6Area(a)), 1 + 1/(6Area(a′)));

15 t← 1
2
(αt

(n)
a + 1− α′t(n)

a′);

16 (t
(n+1)
a , t

(n+1)

a′)← (t, 1− t) ;

17 n← n+ 1;

18 until maxarc a of T |t(n)
a − t(n−1)

a | < ε;
19 return (x,b)

Algorithm 3: Function RegularizeContours iteratively moves contour
points and barycenters such that they align with the edges of the triangulation
that delineate image discontinuities.

before regularization after regularization

n
o

G
T

V
w

it
h

G
T

V

Fig. 2. Displays contour mesh: left column before regularization, right column after
regularization with Algorithm 3. Top row shows contour meshes when using the initial
trivial triangulation. Bottom row shows contour meshes when using the triangulation
T ∗ that optimize GTV(s). Note that boundary triangles are displayed in white.

10 B. Kerautret and J.-O. Lachaud

4 Raster Image Zooming with Smooth Contours

Contour meshes as presented in Section 3 are easily vectorized as polylines. It
suffices to gather cells with same pixel color as a regions and extract the common
boundaries of these regions. Furthermore, these polylines are easily converted to
smooth splines. We will not explore this track in this paper but rather present
a raster approach with similar objectives and features.

From the image s with lattice domain Ω, we wish to build a zoomed image
s′ with lattice domain Ω′. If the zoom factor is the integer z and Ω has width
w and height h, then Ω′ has width z(w − 1) + 1 and height z(h − 1) + 1. The
canonical injection of Ω into Ω′ is ιz : (x, y) 7→ (zx, zy). We use two auxiliary
binary images S (for similarity image) and D for (for discontinuity image) with
domain Ω′. We also define the tangent Ta at an arc a as the normalization of
vector bface(a) − bface′(a).

The zoomed image s′ is constructed as follows:

Similarity set We set to 1 the pixels of S that are in ιz(Ω). Furthermore, for
every arc a = (p,q), if wa = 0 then the digital straight segment between
ιz(p) and ιz(q) is also set to 1. Last, we set the color s′ at these pixels to
their color in s.

Discontinuity set For every face f , we count the number n of arcs whose
weight is not null. If n = 0 we simply set D(ιz(bf)) = 1. n = 1 is impossible.
If n = 2, let a1 and a2 be the two arcs with dissimilarities. We set D(p) = 1
for every pixel p ∈ Ω′ that belongs to the digitized Bezier curve of order
3, that links the points ιz(xa1) to ιz(xa2), is tangent to Ta1 and Ta2 , and
pass through point ιz(

1
2 (bf + I)), with I the intersection of the two lines

defined by xai and tangent Tai , i = 1, 2. If n = 3, for every arc a of f , we
set D(p) = 1 for every pixel p ∈ Ω′ that belongs to the digitized Bezier
curve of order 2 connecting ιz(xa) to ιz(bf) and tangent to Ta. Last we set
the color s′ at all these pixels by linear interpolation of the colors of pixels
surrounding s.

Voronoi maps We then compute the voronoi map Vor(S) (resp. Vor(D)), which
associates to each pixel of Ω′ the closest point p of Ω′ such that S(p) = 1
(resp. such that D(p) = 1).

Image interpolation For all pixel p of Ω′ such that S(p) = 0 and D(p) = 0,
let q = Vor(S)(p) and q′ = Vor(D)(p). We compute the distances d =
‖q − p‖ and d′ = ‖q′ − p‖. We use an amplification factor β ∈ [0, 1]: when
close to 0, it tends to make linear shaded gradient while close to 1, it makes
contours very crisp.

s′(p) =

{
(1− 2d′

d+d′)s
′(q′) + 2d′

d+d′ (βs
′(q) + (1− β)s′(q′)) when d′ ≤ d,

(1− 2d
d+d′)s

′(q) + 2d
d+d′ (βs

′(q) + (1− β)s′(q′)) otherwise.

In experiments, we always set β = 0.75 which gives good results, especially
for image with low quantization. Of course, many other functions can be
designed and the crispness could also be parameterized locally, for instance
as a function of the GTV of the triangle.

Geometric Total Variation 11

Fig. 3. Illustration of raster image zooming with smooth contours. On the left, simi-
larity set is drawn in blue while discontinuity set is drawn in red. The final result is
displayed on the right.

Antialiasing discontinuities To get images that are slightly more pleasant to
the eye, we perform a last pass where we antialias every pixel p such that
D(p) = 1. We simply perform a weighted average within a 3 × 3 window,
with pixels in S having weight 4, pixels in D having weight 0.25 and other
pixels having weight 1.

Figure 3 illustrates this method of raster image zooming which provides crisp
discontinuities that follow Bezier curves. Comparing with Figure 2, image con-
tours are no more polygonal lines but look like smooth curves. Last this method
still guarantees that original pixel colors are kept.

5 Experimental Evaluation and Discussion

Our method can both produce vectorized image or make rasterized zoomed im-
ages, either from camera pictures or tiny image with low quantization like pixel
art images. To measure its performance, several other super-resolution methods
have been tested on the set of images given in the first column of Figure 4, with
parameters kept constant across all input images. First, we experimented the
method based on geometric stencils proposed by Getreuer [6] with default pa-
rameters, which is implemented in the online demonstrator [7]. As shown in the
second column of the figure, results appear noisy with oscillations near edges,
which are well visible on pixel art images (e.g. x-shape or dolphin images). Such
defaults are also visible on ara or barbara image near the white area. Another
super-resolution method was experimented which uses on a convolutional neural
network [22]. Like the previous method, numerous perturbations are also visible
both on pixel art images (x-shape or dolphin) but also in homogeneous areas
close to strong gradients of ipol-coarsened image. We have tried different param-
eters but they lead to images with comparable quality. On the contrary, due to
its formulation, our method does not produce false contours or false colors, and
works indifferently on pixel art images or camera pictures.

Other comparisons are presented on Figure 5 in order to give an overview of
the behavior of five other methods. The two first methods complement the com-
parisons on pixel art image with respectively the depixelizing method proposed
by Kopf and Lischinski [13] implemented in Inkscape, and a commercial sofware

12 B. Kerautret and J.-O. Lachaud

(a) original (b) Geom. stencil [7] (c) CNN [22] (d) Our approach

x
-s

h
a
p

e

total time: 8ms total time: 413ms total time: 218ms

d
o
lp

h
in

total time: 11ms total time: 398ms total time: 320ms

ip
o
l

co
a
rs

en
ed

total time: 63ms total time:425ms total time: 2032ms

b
a
rb

a
ra

total time: 28ms total time: 412ms total time: 1029ms

a
ra

total time: 202ms total time: 551ms total time: 8524ms
The time measures were obtained on a 2.9 GHz Intel Core i7 for (c,d) and on IPOL server for (b).

Fig. 4. Comparison of the proposed approach (d) with other methods on Geometric
Stencils [7] (b) and based on Convolution Neural Network [22] (c).

proposed by Vector Magic Inc [10]. Our method captures better the direction
of discontinuities of the underlying shape with less contour oscillations (see the
border of dolphin or x-shape). Two other methods were tested on barbara im-
age: Roussos and Maragos tensor-driven method [8] and Potrace vectorization
software [21]. Again, results appear with oscillations around strong gradients
with Roussos-Maragos algorithm, while Potrace software tends to smooth too
much the image. Finally we also applied the Hqx magnification filter proposed
by Stepin [23] that provides interesting zoom results but presents some artefacts
(see for instance the X center of Hq4x) and limited scale factor (i.e. 4). Note that
other comparisons can easily be done with the following online demonstrator:
https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280 and source code is
available on a GitHub repository: https://github.com/kerautret/GTVimageVect.

https://ipolcore.ipol.im/demo/clientApp/demo.html?id=280
https://github.com/kerautret/GTVimageVect

Geometric Total Variation 13

Depixelizing [13] vector magic [10]

approx. time: < 0.5 s approx. time: 2 s

approx. time: < 0.5 s approx. time: 2 s

Roussos-Maragos [8] Potrace [21]

total time : 503ms approx. time: 5 s

Hq4x [23] Hq4x(Hq4x) Hq4x [23] Hq4x(Hq4x)

total time : 158ms total time: 152ms total time : 142ms total time: 320ms

Fig. 5. Other complementary comparisons on five other approaches. The time mea-
sures were obtained on a 2.9 GHz Intel Core i7 for all experiments expect Roussos-
Maragos obtained on IPOL server. We use the default parameters expect for Potrace:
we select 512 passes with color option.

6 Conclusion

We have presented an original approach to the problem of image vectorization
and image super-resolution. It is based on a combinatorial variational model,
which introduces geometry into the classical total variation model. We have
compared our method both to state-of-the-art vectorization and super-resolution
methods and it behaves well both for camera pictures and pixel art images.
We have also provided an online demonstrator, which allows users to reproduce
results or test our method with new images. In future works, we plan to compare
quantitatively our method with state-of-the-art techniques, and also use our
approach to train a CNN for zooming into pixel art images.

References

1. Partha Bhowmick and Bhargab B. Bhattacharya. Fast Polygonal Approximation
of Digital Curves Using Relaxed Straightness Properties. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(9):1590–1602, 2007.

2. Alexander I Bobenko and Boris A Springborn. A discrete laplace–beltrami operator
for simplicial surfaces. Discrete & Computational Geometry, 38(4):740–756, 2007.

3. Laurent Condat. Discrete total variation: New definition and minimization. SIAM
Journal on Imaging Sciences, 10(3):1258–1290, 2017.

4. Laurent Demaret, Nira Dyn, and Armin Iske. Image compression by linear splines
over adaptive triangulations. Signal Processing, 86(7):1604–1616, 2006.

14 B. Kerautret and J.-O. Lachaud

5. Fabien Feschet. Multiscale analysis from 1d parametric geometric decomposition
of shapes. In IEEE, editor, ICPR, pages 2102–2105, 2010.

6. Pascal Getreuer. Contour Stencils: Total Variation along Curves for Adaptive
Image Interpolation. SIAM J. on Imaging Sciences, 4(3):954–979, January 2011.

7. Pascal Getreuer. Image Interpolation with Geometric Contour Stencils. Image
Processing On Line, 1:98–116, September 2011.

8. Pascal Getreuer. Roussos-Maragos Tensor-Driven Diffusion for Image Interpola-
tion. Image Processing On Line, 1:178–186, September 2011.

9. Xavier Hilaire and Karl Tombre. Robust and accurate vectorization of line draw-
ings. IEEE TPAMI, 28(6):890–904, 2006.

10. Vector Magic Inc. Vector magic, 2010. http://vectormagic.com.
11. B. Kerautret, J.-O. Lachaud, and B. Naegel. Curvature based corner detector for

discrete, noisy and multi-scale contours. IJSM, 14(2):127–145, December 2008.
12. Bertrand Kerautret, Phuc Ngo, Yukiko Kenmochi, and Antoine Vacavant.

Greyscale image vectorization from geometric digital contour representations. In
DGCI 2017, pages 319–331, 2017.

13. Johannes Kopf and Dani Lischinski. Depixelizing Pixel Art. In ACM SIGGRAPH
2011 Papers, pages 99:1–99:8, 2011. Vancouver, British Columbia, Canada.

14. Gregory Lecot and Bruno Levy. Ardeco: automatic region detection and conversion.
In 17th Eurographics Symposium on Rendering-EGSR’06, pages 349–360, 2006.

15. Hairong Liu, Longin Jan Latecki, and Wenyu Liu. A Unified Curvature Defini-
tion for Regular, Polygonal, and Digital Planar Curves. Int. J. Comput. Vision,
80(1):104–124, 2008.

16. Majed Marji and Pepe Siy. Polygonal representation of digital planar curves
through dominant point detection – a nonparametric algorithm. Pattern Recogni-
tion, 37(11):2113–2130, 2004.

17. Thanh Phuong Nguyen and Isabelle Debled-Rennesson. A discrete geometry ap-
proach for dominant point detection. Pattern Recognition, 44(1):32–44, 2011.

18. Brian Price and William Barrett. Object-based vectorization for interactive image
editing. The Visual Computer, 22(9-11):661–670, September 2006.

19. Anastasios Roussos and Petros Maragos. Vector-valued image interpolation by an
anisotropic diffusion-projection PDE. In International Conference on Scale Space
and Variational Methods in Computer Vision, pages 104–115. Springer, 2007.

20. Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based
noise removal algorithms. 1992.

21. Peter Selinger. Potrace: http://potrace.sourceforge.net, 2001-2017.
22. Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz, Andrew P. Aitken, Rob

Bishop, Daniel Rueckert, and Zehan Wang. Real-Time Single Image and Video
Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network. In
CVPR, pages 1874–1883, Las Vegas, NV, USA, June 2016. IEEE.

23. M. Stepin. Hqx magnification filter, 2003. http://web.archive.org/web/

20070717064839/www.hiend3d.com/hq4x.html.

24. Jian Sun, Lin Liang, Fang Wen, and Heung-Yeung Shum. Image vectorization
using optimized gradient meshes. In Trans. on Graphics, volume 26, page 11.
ACM, 2007.

25. S. Swaminarayan and L. Prasad. Rapid Automated Polygonal Image Decomposi-
tion. In 35th Workshop AIPR’06, pages 28–28, October 2006.

26. Tian Xia, Binbin Liao, and Yizhou Yu. Patch-based image vectorization with
automatic curvilinear feature alignment. In Trans. on Graphics, volume 28, page
115. ACM, 2009.

http:// vectormagic.com
http://potrace.sourceforge.net
http://web.archive.org/web/ 20070717064839/www.hiend3d.com/hq4x.html.
http://web.archive.org/web/ 20070717064839/www.hiend3d.com/hq4x.html.

	Geometric Total Variation for Image Vectorization, Zooming and Pixel Art Depixelizing

