Skip to main content

SFLNet: Direct Sports Field Localization via CNN-Based Regression

  • Conference paper
  • First Online:
Book cover Pattern Recognition (ACPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12046))

Included in the following conference series:

Abstract

In this paper we propose a novel approach to build a single shot regressor, called SFLNet, that directly predicts a parameter set relating a sports field seen in an input frame to its metric model. This problem is challenging due to the huge intra-class variance of sports fields and the large number of free parameters to be predicted. To address these issues, we propose to train our regressor in combination with semantic segmentation in a multi-task learning framework. We also introduce an additional module to exploit the spacial consistency of sports fields, which boosts both regression and segmentation performances. SFLNet can be learned with a training dataset that can be semi-automatically built from human annotated point-to-point correspondences. To our knowledge, this work is the first attempt to solve this sports field localization problem relying only on an end-to-end deep learning framework. Experiments on our new dataset based on basketball games validate our approach over baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.stats.com/.

  2. 2.

    https://chyronhego.com/products/sports-tracking/tracab-optical-tracking/.

  3. 3.

    We avoid sampling when the game is stopping in order not to sample duplicate frames.

  4. 4.

    https://pytorch.org/.

References

  1. Theagarajan, R., Pala, F., Zhang, X., Bhanu, B.: Soccer: who has the ball? Generating visual analytics and player statistics. In: CVPR Workshop (2018)

    Google Scholar 

  2. Giancola, S., Amine, M., Dghaily, T., Ghanem, B.: SoccerNet: a scalable dataset for action spotting in soccer videos. In: CVPR Workshop (2018)

    Google Scholar 

  3. Gupta, A., Little, J.J., Woodham, R.J.: Using Line and Ellipse Features for Rectification of Broadcast Hockey Video, In: CRV (2011)

    Google Scholar 

  4. Chen, J., Zhu, F., Little, J.J.: A two-point method for PTZ camera calibration in sports. In: WACV (2018)

    Google Scholar 

  5. Homayounfar, N., Fidler, S., Urtasun, R.: Sports field localization via deep structured models. In: CVPR (2017)

    Google Scholar 

  6. Chen, J., Little, J.J.: Sports camera calibration via synthetic data. arXiv preprint (2018)

    Google Scholar 

  7. Sharma, R.A., Bhat, B., Gandhi, V., Jawahar, C.V.: Automated top view registration of broadcast football videos. In: WACV (2018)

    Google Scholar 

  8. Zhang, H., et al.: Context encoding for semantic segmentation. In: CVPR (2018)

    Google Scholar 

  9. Wu, H., Zhang, J., Huang, K.: FastFCN: rethinking dilated convolution in the backbone for semantic segmentation. arXiv preprint (2019)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR (2016)

    Google Scholar 

  11. Lin, C.-H., Lucey, S.: Inverse compositional spatial transformer networks. In: CVPR (2017)

    Google Scholar 

  12. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  13. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  14. Kendall, A., Cipolla, R.: Modelling uncertainty in deep learning for camera relocalization. In: ICRA (2016)

    Google Scholar 

  15. Kendall, A., Cipolla, R.: Geometric loss functions for camera pose regression with deep learning. In: CVPR (2017)

    Google Scholar 

  16. Kendall, A., Grimes, M., Cipolla, R.: PoseNet: a convolutional network for real-time 6-DOF camera relocalization. In: ICCV (2015)

    Google Scholar 

  17. Brahmbhatt, B., Gu, J., Kim, K., Hays, J., Kautz, J.: Geometry-aware learning of maps for camera localization. In: CVPR (2018)

    Google Scholar 

  18. Sattler, T., Zhou, Q., Pollefeys, M., Leal-Taixé, L.: Understanding the limitations of CNN-based absolute camera pose regression. In: CVPR (2019)

    Google Scholar 

  19. Carr, P., Sheikh, Y., Matthews, I.: Point-less calibration: camera parameters from gradient-based alignment to edge images. In: WACV (2012)

    Google Scholar 

  20. Kim, H., Hong, K.S.: Soccer video mosaicing using self-calibration and line tracking. In: ICPR (200)

    Google Scholar 

  21. Yamada, A., Shirai, Y., Miura, J.: Tracking players and a ball in video image sequence and estimating camera parameters for 3D interpretation of soccer games. In: ICPR (2002)

    Google Scholar 

  22. Farin, D., Krabbe, S., With, P.H.N., de Effelsberg, W.: Robust camera calibration for sport videos using court models. In: Electronic Imaging (2004)

    Google Scholar 

  23. Watanabe, T., Haseyama, M., Kitajima, H.: A soccer field tracking method with wire frame model from TV images. In: ICIP (2004)

    Google Scholar 

  24. Wang, F., Sun, L., Yang, B., Yang, S.: Fast arc detection algorithm for play field registration in soccer video mining. In: ICSMC (2006)

    Google Scholar 

  25. Okuma, K., Little, J.J., Lowe, D.G.: Automatic rectification of long image sequences. In: ACCV (2004)

    Google Scholar 

  26. Dubrofsky, E., Woodham, R.J.: Combining line and point correspondences for homography estimation. In: Bebis, G., et al. (eds.) ISVC 2008. LNCS, vol. 5359, pp. 202–213. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89646-3_20

    Chapter  Google Scholar 

  27. Hess, R., Fern, A.: Improved video registration using nondistinctive local image features. In: CVPR (2007)

    Google Scholar 

  28. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint (2017)

    Google Scholar 

  29. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: CVPR (2017)

    Google Scholar 

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  31. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  32. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuhei Tarashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tarashima, S. (2020). SFLNet: Direct Sports Field Localization via CNN-Based Regression. In: Palaiahnakote, S., Sanniti di Baja, G., Wang, L., Yan, W. (eds) Pattern Recognition. ACPR 2019. Lecture Notes in Computer Science(), vol 12046. Springer, Cham. https://doi.org/10.1007/978-3-030-41404-7_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41404-7_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41403-0

  • Online ISBN: 978-3-030-41404-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics