Skip to main content

A Reproducibility Study for Visual MRSI Data Analytics

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019)

Abstract

Magnetic Resonance Spectroscopy Imaging (MRSI) is a spectral imaging method that measures per voxel spectral information of chemical resonance, from which metabolite concentrations can be computed. In recent work, we proposed a system that uses coordinated views between image-space visualizations and visual representations of the spectral (or feature) space. Coordinated interaction allowed us to analyze all metabolite concentrations together instead of focusing only at single metabolites at a time [8]. In this paper, we want to relate our findings to different results reported in the literature. MRSI is particularly useful for tumor classification and measuring its infiltration of healthy tissue. We compare the metabolite compositions obtained in the various tissues of our data against the compositions reported by other brain tumor studies using a visual analytics approach. It visualizes the similarities in a plot obtained using dimensionality reduction methods. We test our data against various sources to test the reproducibility of the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Board: PDQ Adult Treatment Editorial: Adult central nervous system tumors treatment PDQ®. In: PDQ Cancer Information Summaries. National Cancer Institute (US) (2018)

    Google Scholar 

  2. Burnet, N.G., Thomas, S.J., Burton, K.E., Jefferies, S.J.: Defining the tumour and target volumes for radiotherapy. Cancer Imaging 4(2), 153–161 (2004)

    Article  Google Scholar 

  3. Crane, J.C., Olson, M.P., Nelson, S.J.: SIVIC: open-source, standards-based software for DICOM MR spectroscopy workflows. Int. J. Biomed. Imaging 2013, 1–12 (2013). https://doi.org/10.1155/2013/169526

    Article  Google Scholar 

  4. Feng, D., Kwock, L., Lee, Y., Taylor, R.M.: Linked exploratory visualizations for uncertain MR spectroscopy data. In: Park, J., Hao, M.C., Wong, P.C., Chen, C. (eds.) Visualization and Data Analysis 2010. SPIE, January 2010. https://doi.org/10.1117/12.839818

  5. Gujar, S.K., Maheshwari, S., Björkman-Burtscher, I., Sundgren, P.C.: Magnetic resonance spectroscopy. J. Neuro Ophthalmol. 25(3), 217–226 (2005)

    Article  Google Scholar 

  6. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, E.: DNA visual and analytic data mining. In: Proceedings of IEEE Visualization 1997 (Cat. No. 97CB36155), pp. 437–441, October 1997. https://doi.org/10.1109/VISUAL.1997.663916

  7. Howe, F., et al.: Metabolic profiles of human brain tumors using quantitative in vivo \(^1\)H magnetic resonance spectroscopy. Magn. Reson. Med. 49(2), 223–232 (2003). https://doi.org/10.1002/mrm.10367

    Article  Google Scholar 

  8. Jawad., M., Molchanov., V., Linsen., L.: Coordinated image- and feature-space visualization for interactive magnetic resonance spectroscopy imaging data analysis. In: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: IVAPP, pp. 118–128. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007571801180128

  9. Johnson, H.J., McCormick, M., Ibáñez, L., Consortium, T.I.S.: The ITK Software Guide, 3rd edn. Kitware Inc. (2013). http://www.itk.org/ItkSoftwareGuide.pdf

  10. Kandogan, E.: Star coordinates: a multi-dimensional visualization technique with uniform treatment of dimensions. In: Proceedings of the IEEE Information Visualization Symposium, Late Breaking Hot Topics, pp. 9–12 (2000)

    Google Scholar 

  11. Kinoshita, Y., Yokota, A.: Absolute concentrations of metabolites in the human brain tumors using in vitro proton magnetic resonance spectroscopy. NMR Biomed. 10(1), 2–12 (1997)

    Article  Google Scholar 

  12. Li, C., Gore, J.C., Davatzikos, C.: Multiplicative Intrinsic Component Optimization (MICO) for MRI bias field estimation and tissue segmentation. Magn. Reson. Imaging 32(7), 913–923 (2014)

    Article  Google Scholar 

  13. Liu, S., Maljovec, D., Wang, B., Bremer, P., Pascucci, V.: Visualizing high-dimensional data: advances in the past decade. IEEE Trans. Vis. Comput. Graph. 23(3), 1249–1268 (2017). https://doi.org/10.1109/TVCG.2016.2640960

    Article  Google Scholar 

  14. Matkovic, K., Freiler, W., Gracanin, D., Hauser, H.: ComVis: a coordinated multiple views system for prototyping new visualization technology. In: 2008 12th International Conference Information Visualisation, pp. 215–220. IEEE (2008)

    Google Scholar 

  15. Maudsley, A., et al.: Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging. NMR Biomed. 19(4), 492–503 (2006)

    Article  Google Scholar 

  16. McKnight, T.R., Noworolski, S.M., Vigneron, D.B., Nelson, S.J.: An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J. Magn. Reson. Imaging Official J. Int. Soc. Magn. Reson. Med. 13(2), 167–177 (2001)

    Google Scholar 

  17. Molchanov, V., Linsen, L.: Interactive design of multidimensional data projection layout. In: Elmqvist, N., Hlawitschka, M., Kennedy, J. (ed.) EuroVis - Short Papers. The Eurographics Association (2014). https://doi.org/10.2312/eurovisshort.20141152

  18. Molchanov, V., Linsen, L.: Shape-preserving star coordinates. IEEE Trans. Visual Comput. Graphics 25(1), 449–458 (2019). https://doi.org/10.1109/TVCG.2018.2865118

    Article  Google Scholar 

  19. Nunes, M., Laruelo, A., Ken, S., Laprie, A., Bühler, K.: A survey on visualizing magnetic resonance spectroscopy data. In: Proceedings of the 4th Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 21–30. Eurographics Association (2014)

    Google Scholar 

  20. Nunes, M., et al.: An integrated visual analysis system for fusing MR spectroscopy and multi-modal radiology imaging. In: 2014 IEEE Conference on Visual Analytics Science and Technology (VAST), pp. 53–62. IEEE (2014)

    Google Scholar 

  21. Pagliosa, L., Telea, A.: Radviz++: improvements on radial-based visualizations. Informatics 6(2), 16–38 (2019). https://doi.org/10.3390/informatics6020016

    Article  Google Scholar 

  22. Peeling, J., Sutherland, G.: High-resolution \(^1\)H NMR spectroscopy studies of extracts of human cerebral neoplasms. Magn. Reson. Med. 24(1), 123–136 (1992). https://doi.org/10.1002/mrm.1910240113

    Article  Google Scholar 

  23. Provencher, S.W.: Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30(6), 672–679 (1993)

    Article  Google Scholar 

  24. Raschke, F., Jones, T., Barrick, T., Howe, F.: Delineation of gliomas using radial metabolite indexing. NMR Biomed. 27(9), 1053–1062 (2014)

    Article  Google Scholar 

  25. Reynolds, G., Wilson, M., Peet, A., Arvanitis, T.: An algorithm for the automated quantitation of metabolites in in-vitro NMR signals. Magn. Reson. Med. 56(6), 1211–1219 (2006)

    Article  Google Scholar 

  26. Rowland, B., et al.: 30th Annual Scientific Meeting Beyond the Metabolic Map: An Alternative Perspective on MRSI Data, ESMRMB 2013, p. 270 (2013)

    Google Scholar 

  27. Scheenen, T.W., Heerschap, A., Klomp, D.W.: Towards \(^{1}\)H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses. Magn. Reson. Mater. Phys., Biol. Med. 21(1–2), 95–101 (2008)

    Article  Google Scholar 

  28. Schroeder, W., Martin, K., Lorensen, B., Avila, S.L., Avila, R., Law, C.: The Visualization Toolkit, 4th edn. Kitware Inc. (2006). https://www.vtk.org/vtk-textbook/

  29. Stefan, D., et al.: Quantitation of magnetic resonance spectroscopy signals: the jMRUI software package. Meas. Sci. Technol. 20(10), 104035 (2009)

    Article  Google Scholar 

  30. Teoh, S.T., Ma, K.L.: StarClass: interactive visual classification using star coordinates. In: SDM, pp. 178–185. SIAM (2003)

    Google Scholar 

  31. Vanhamme, L., Sundin, T., Hecke, P.V., Huffel, S.V.: MR spectroscopy quantitation: a review of time-domain methods. NMR Biomed. 14(4), 233–246 (2001)

    Article  Google Scholar 

  32. Wilson, M., Reynolds, G., Kauppinen, R.A., Arvanitis, T.N., Peet, A.C.: A constrained least-squares approach to the automated quantitation of in vivo \(^{1}\)H magnetic resonance spectroscopy data. Magn. Reson. Med. 65(1), 1–12 (2011)

    Article  Google Scholar 

  33. Wolf, I., et al.: The medical imaging interaction ToolKit MITK: a toolkit facilitating the creation of interactive software by extending VTK and ITK, vol. 5367, p. 5367 (2004). https://doi.org/10.1117/12.535112

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Linsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jawad, M., Molchanov, V., Linsen, L. (2020). A Reproducibility Study for Visual MRSI Data Analytics. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics