Skip to main content

Synthesising Light Field Volume Visualisations Using Image Warping in Real-Time

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1182))

  • 743 Accesses

Abstract

We extend our prior research on light field view synthesis for volume data presented in the conference proceedings of VISIGRAPP 2019 [13]. In that prior research, we identified the best Convolutional Neural Network, depth heuristic, and image warping technique to employ in our light field synthesis method. Our research demonstrated that applying backward image warping using a depth map estimated during volume rendering followed by a Convolutional Neural Network produced high quality results. In this body of work, we further address the generalisation of Convolutional Neural Network applied to different volumes and transfer functions from those trained upon. We show that the Convolutional Neural Network (CNN) fails to generalise on a large dataset of head magnetic resonance images. Additionally, we speed up our implementation to enable better timing comparisons while remaining functionally equivalent to our previous method. This produces a real-time application of light field synthesis for volume data and the results are of high quality for low-baseline light fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson, E.H., et al.: The plenoptic function and the elements of early vision. In: Computational Models of Visual Processing, pp. 3–20. MIT (1991)

    Google Scholar 

  2. Frayne, S.: The looking glass (2018). https://lookingglassfactory.com/. Accessed 22 Nov 2018

  3. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 43–54. SIGGRAPH 1996. ACM (1996). https://doi.org/10.1145/237170.237200, http://doi.acm.org/10.1145/237170.237200

  4. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. 35(6), 193:1–193:10 (2016). https://doi.org/10.1145/2980179.2980251, http://doi.acm.org/10.1145/2980179.2980251

    Article  Google Scholar 

  5. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  6. Lanman, D., Luebke, D.: Near-eye light field displays. ACM Trans. Graph. (TOG) 32(6), 220 (2013)

    Article  Google Scholar 

  7. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. SIGGRAPH 1996. ACM (1996)

    Google Scholar 

  8. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, vol. 1, p. 4 (2017)

    Google Scholar 

  9. Lin, Z., Shum, H.Y.: A geometric analysis of light field rendering. Int. J. Comput. Vis. 58(2), 121–138 (2004). https://doi.org/10.1023/B:VISI.0000015916.91741.27

    Article  Google Scholar 

  10. Lochmann, G., Reinert, B., Buchacher, A., Ritschel, T.: Real-time novel-view synthesis for volume rendering using a piecewise-analytic representation. In: Vision, Modeling and Visualization. The Eurographics Association (2016)

    Google Scholar 

  11. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: International Conference on Learning Representations (2017)

    Google Scholar 

  12. Mark, W.R., McMillan, L., Bishop, G.: Post-rendering 3D warping. In: Proceedings of the 1997 Symposium on Interactive 3D Graphics, pp. 7–16. ACM (1997)

    Google Scholar 

  13. Martin, S., Bruton, S., Ganter, D., Manzke, M.: Using a Depth Heuristic for Light Field Volume Rendering, pp. 134–144, May 2019. https://www.scitepress.org/PublicationsDetail.aspx?ID=ZRRCGeI7xV8=&t=1

  14. Mildenhall, B., et al.: Local light field fusion: Practical view synthesis with prescriptive sampling guidelines. arXiv preprint arXiv:1905.00889 (2019)

    Article  Google Scholar 

  15. Mueller, K., Shareef, N., Huang, J., Crawfis, R.: Ibr-assisted volume rendering. In: Proceedings of IEEE Visualization, vol. 99, pp. 5–8. Citeseer (1999)

    Google Scholar 

  16. Park, S., Kim, Y., Park, S., Shin, J.A.: The impacts of three-dimensional anatomical atlas on learning anatomy. Anat. Cell Biol. 52(1), 76–81 (2019). https://doi.org/10.5115/acb.2019.52.1.76, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449593/

    Article  Google Scholar 

  17. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  18. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Trans. Graph. 36(6), 235:1–235:11 (2017). https://doi.org/10.1145/3130800.3130855

    Article  Google Scholar 

  19. Poldrack, R.A., et al.: A phenome-wide examination of neural and cognitive function. Sci. Data 3, 160110 (2016)

    Article  Google Scholar 

  20. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view CNNs for object classification on 3D data. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5648–5656 (2016)

    Google Scholar 

  21. Roettger, S.: Heart volume dataset (2018). http://schorsch.efi.fh-nuernberg.de/data/volume/Subclavia.pvm.sav. Accessed 15 Aug 2018

  22. Shade, J., Gortler, S., He, L.W., Szeliski, R.: Layered depth images. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 231–242. SIGGRAPH 1998. ACM, New York (1998). https://doi.org/10.1145/280814.280882, http://doi.acm.org/10.1145/280814.280882

  23. Shi, L., Hassanieh, H., Davis, A., Katabi, D., Durand, F.: Light field reconstruction using sparsity in the continuous fourier domain. ACM Trans. Graph. 34(1), 1–13 (2014). https://doi.org/10.1145/2682631

    Article  Google Scholar 

  24. Shojaii, R., et al.: Reconstruction of 3-dimensional histology volume and its application to study mouse mammary glands. J. Vis. Exp.: JoVE 89, e51325 (2014). https://doi.org/10.3791/51325

  25. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  26. Srinivasan, P.P., Wang, T., Sreelal, A., Ramamoorthi, R., Ng, R.: Learning to synthesize a 4D RGBD light field from a single image. In: IEEE International Conference on Computer Vision (ICCV), pp. 2262–2270, October 2017. https://doi.org/10.1109/ICCV.2017.246

  27. Sundén, E., et al.: Inviwo - an extensible, multi-purpose visualization framework. In: IEEE Scientific Visualization Conference (SciVis), pp. 163–164, October 2015. https://doi.org/10.1109/SciVis.2015.7429514

  28. Vagharshakyan, S., Bregovic, R., Gotchev, A.: Light field reconstruction using shearlet transform. IEEE Trans. Pattern Anal. Mach. Intell. 40(1), 133–147 (2018). https://doi.org/10.1109/tpami.2017.2653101

    Article  Google Scholar 

  29. Wang, T.-C., Zhu, J.-Y., Hiroaki, E., Chandraker, M., Efros, A.A., Ramamoorthi, R.: A 4D light-field dataset and CNN architectures for material recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 121–138. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_8

    Chapter  Google Scholar 

  30. Wanner, S., Goldluecke, B.: Variational light field analysis for disparity estimation and super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 606–619 (2014). https://doi.org/10.1109/TPAMI.2013.147

    Article  Google Scholar 

  31. Wanner, S., Meister, S., Goldluecke, B.: Datasets and benchmarks for densely sampled 4D light fields. In: Vision, Modeling, and Visualization (2013)

    Google Scholar 

  32. Wu, G., Liu, Y., Dai, Q., Chai, T.: Learning sheared EPI structure for light field reconstruction. IEEE Trans. Image Process. 28(7), 3261–3273 (2019). https://doi.org/10.1109/TIP.2019.2895463

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, G., et al.: Light field image processing: an overview. IEEE J. Sel. Top. Sig. Process. 11(7), 926–954 (2017). https://doi.org/10.1109/jstsp.2017.2747126

    Article  Google Scholar 

  34. Wu, G., Zhao, M., Wang, L., Dai, Q., Chai, T., Liu, Y.: Light field reconstruction using deep convolutional network on EPI. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1638–1646, July 2017. https://doi.org/10.1109/CVPR.2017.178

  35. Yoon, Y., Jeon, H.G., Yoo, D., Lee, J.Y., So Kweon, I.: Learning a deep convolutional network for light-field image super-resolution. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 24–32, December 2015. https://doi.org/10.1109/ICCVW.2015.17

  36. Zellmann, S., Aumüller, M., Lang, U.: Image-based remote real-time volume rendering: decoupling rendering from view point updates. In: ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 1385–1394. ASME (2012)

    Google Scholar 

  37. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  38. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: Learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)

Download references

Acknowledgements

This research has been conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 13/IA/1895.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seán K. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martin, S.K., Bruton, S., Ganter, D., Manzke, M. (2020). Synthesising Light Field Volume Visualisations Using Image Warping in Real-Time. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics