Skip to main content

Localization and Grading of Building Roof Damages in High-Resolution Aerial Images

  • Conference paper
  • First Online:
  • 744 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1182))

Abstract

According to the United States National Centers for Environmental Information (NCEI), 2017 was one of the most expensive year of losses due to numerous weather and climate disaster events. To reduce the expenditures handling insurance claims and interactive adjustment of losses, automatic methods analyzing post-disaster images of large areas are increasingly being employed. In our work, roof damage analysis was carried out from high-resolution aerial images captured after a devastating hurricane. We compared the performance of a conventional (Random Forest) classifier, which operates on superpixels and relies on sophisticated, hand-crafted features, with two Convolutional Neural Networks (CNN) for semantic image segmentation, namely, SegNet and DeepLabV3+. The results vary greatly, depending on the complexity of the roof shapes. In case of homogeneous shapes, the results of all three methods are comparable and promising. For complex roof structures the results show that the CNN based approaches perform slightly better than the conventional classifier; the performance of the latter one is, however, most predictable depending on the amount of training data and most successful in the case this amount is low. On the building level, all three classifiers perform comparable well. However, an important prerequisite for accurate damage grading of each roof is its correct delineation. To achieve it, a procedure on multi-modal registration has been developed and summarized in this work. It allows adjusting freely available GIS data with actual image data and it showed a robust performance even in case of severely destroyed buildings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  2. Bodensteiner, C., Hebel, M., Arens, M.: Accurate single image multi-modal camera pose estimation. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 296–309. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35740-4_23

    Chapter  Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Brooks, R., Nelson, T., Amolins, K., Hall, G.B.: Semi-automated building footprint extraction from orthophotos. Geomatica 69(2), 231–244 (2015)

    Article  Google Scholar 

  5. Bulatov, D.: Alignment of building footprints using quasi-nadir aerial photography. In: Felsberg, M., Forssén, P.-E., Sintorn, I.-M., Unger, J. (eds.) SCIA 2019. LNCS, vol. 11482, pp. 361–373. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20205-7_30

    Chapter  Google Scholar 

  6. Bulatov, D., Häufel, G., Lucks, L., Pohl, M.: Land cover classification in combined elevation and optical images supported by OSM data, mixed-level features, and non-local optimization algorithms. Photogram. Eng. Remote Sens. 85(3), 179–195 (2019)

    Article  Google Scholar 

  7. Bulatov, D., Solbrig, P., Gross, H., Wernerus, P., Repasi, E., Heipke, C.: Context-based urban terrain reconstruction from UAV-videos for geoinformation applications. ISPRS Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 3822, 75–80 (2011)

    Google Scholar 

  8. Carletta, J.: Assessing agreement on classification tasks: the kappa statistic. Comput. Linguist. 22(2), 249–254 (1996)

    Google Scholar 

  9. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Chapter  Google Scholar 

  10. Cooner, A.J., Shao, Y., Campbell, J.B.: Detection of urban damage using remote sensing and machine learning algorithms: revisiting the 2010 Haiti earthquake. Remote Sens. 08–00868(10), 1–17 (2016)

    Google Scholar 

  11. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  12. Dell’Acqua, F., Gamba, P.: Remote sensing and earthquake damage assessment: experiences, limits, and perspectives. Proc. IEEE 100(10), 2876–2890 (2012)

    Article  Google Scholar 

  13. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html

  14. Fujita, A., Sakurada, K., Imaizumi, T., Ito, R., Hikosaka, S., Nakamura, R.: Damage detection from aerial images via convolutional neural networks. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 5–8. IEEE (2017)

    Google Scholar 

  15. Gamba, P., Dell’Acqua, F., Odasso, L.: Object-oriented building damage analysis in VHR optical satellite images of the 2004 tsunami over Kalutara, Sri Lanka. In: Urban Remote Sensing Joint Event, 2007, pp. 1–5. IEEE (2007)

    Google Scholar 

  16. Genuer, R., Poggi, J.M., Tuleau-Malot, C.: Variable selection using random forests. Pattern Recogn. Lett. 31(14), 2225–2236 (2010)

    Article  Google Scholar 

  17. Geusebroek, J.M., Van den Boomgaard, R., Smeulders, A.W.M., Geerts, H.: Color invariance. IEEE Trans. Pattern Anal. Mach. Intell. 23(12), 1338–1350 (2001)

    Article  Google Scholar 

  18. Gueguen, L., Hamid, R.: Large-scale damage detection using satellite imagery. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1321–1328 (2015)

    Google Scholar 

  19. Haklay, M.: How good is volunteered geographical information? A comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plann. B Plann. Des. 37(4), 682–703 (2010)

    Article  Google Scholar 

  20. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vision 50(3), 329–343 (2002)

    Article  MATH  Google Scholar 

  21. Huyck, C.K., Adams, B.J., Cho, S., Chung, H.C., Eguchi, R.T.: Towards rapid citywide damage mapping using neighborhood edge dissimilarities in very high-resolution optical satellite imagery-application to the 2003 Bam, Iran, earthquake. Earthquake Spectra 21(S1), 255–266 (2005)

    Article  Google Scholar 

  22. Im, J., Jensen, J., Tullis, J.: Object-based change detection using correlation image analysis and image segmentation. Int. J. Remote Sens. 29(2), 399–423 (2008)

    Article  Google Scholar 

  23. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead Simplex method in low dimensions. SIAM J. Optim. 9(1), 112–147 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  25. Lucks, L., Pohl, M., Bulatov, D., Thönessen, U.: Superpixel-wise assessment of building damage from aerial images. In: International Conference on Computer Vision Theory and Applications (VISAPP), pp. 211–220 (2019)

    Google Scholar 

  26. Ma, J., Qin, S.: Automatic depicting algorithm of earthquake collapsed buildings with airborne high resolution image. In: 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp. 939–942. IEEE (2012)

    Google Scholar 

  27. Marcos, D., et al.: Learning deep structured active contours end-to-end. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8877–8885. IEEE (2018)

    Google Scholar 

  28. Peng, J., Zhang, D., Liu, Y.: An improved snake model for building detection from urban aerial images. Pattern Recogn. Lett. 26(5), 587–595 (2005)

    Article  Google Scholar 

  29. Pesaresi, M., Gerhardinger, A., Haag, F.: Rapid damage assessment of built-up structures using VHR satellite data in tsunami-affected areas. Int. J. Remote Sens. 28(13–14), 3013–3036 (2007)

    Article  Google Scholar 

  30. Pohl, M., Meidow, J., Bulatov, D.: Simplification of polygonal chains by enforcing few distinctive edge directions. In: Sharma, P., Bianchi, F.M. (eds.) SCIA 2017. LNCS, vol. 10270, pp. 3–14. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59129-2_1

    Chapter  Google Scholar 

  31. Rathje, E.M., Woo, K.S., Crawford, M., Neuenschwander, A.: Earthquake damage identification using multi-temporal high-resolution optical satellite imagery. In: Proceedings of the IEEE on Geoscience and Remote Sensing Symposium, vol. 7, pp. 5045–5048. IEEE (2005)

    Google Scholar 

  32. Sirmacek, B., Unsalan, C.: Damaged building detection in aerial images using shadow information. In: 4th International Conference on Recent Advances in Space Technologies, pp. 249–252. IEEE (2009)

    Google Scholar 

  33. Tasar, O., Maggiori, E., Alliez, P., Tarabalka, Y.: Polygonization of binary classification maps using mesh approximation with right angle regularity. In: IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, pp. 6404–6407. IEEE (2018)

    Google Scholar 

  34. Tomowski, D., Klonus, S., Ehlers, M., Michel, U., Reinartz, P.: Change visualization through a texture-based analysis approach for disaster applications. In: ISPRS Proceedings on Advanced Remote Sensing Science, vol. XXXVIII, pp. 263–269 (2010)

    Google Scholar 

  35. Tu, J., Li, D., Feng, W., Han, Q., Sui, H.: Detecting damaged building regions based on semantic scene change from multi-temporal high-resolution remote sensing images. ISPRS Int. J. Geo-Inf. 6(5), 131 (2017)

    Article  Google Scholar 

  36. Vargas-Muñoz, J., Marcos, D., Lobry, S., Dos Santos, J.A., Falcão, A.X., Tuia, D.: Correcting misaligned rural building annotations in open street map using convolutional neural networks evidence. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 1284–1287. IEEE (2018)

    Google Scholar 

  37. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images. Int. J. Comput. Vision 62(1–2), 61–81 (2005)

    Article  Google Scholar 

  38. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Proceeding on European Conference on Computer Vision, pp. 211–224 (2010)

    Chapter  Google Scholar 

  39. Vetrivel, A., Gerke, M., Kerle, N., Nex, F., Vosselman, G.: Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning. ISPRS J. Photogram. Remote Sens. 140, 45–59 (2017)

    Article  Google Scholar 

  40. Warnke, S., Bulatov, D.: Variable selection for road segmentation in aerial images. ISPRS Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci. 42, 297–304 (2017)

    Article  Google Scholar 

  41. Weinmann, M., Jutzi, B., Hinz, S., Mallet, C.: Semantic point cloud interpretation based on optimal neighborhoods, relevant features and efficient classifiers. ISPRS J. Photogram. Remote Sens. 105, 286–304 (2015)

    Article  Google Scholar 

  42. Zampieri, A., Charpiat, G., Girard, N., Tarabalka, Y.: Multimodal image alignment through a multiscale chain of neural networks with application to remote sensing. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  43. Zhang, J.F., Xie, L.L., Tao, X.X.: Change detection of remote sensing image for earthquake-damaged buildings and its application in seismic disaster assessment. J. Nat. Disasters 11(2), 59–64 (2002)

    Google Scholar 

  44. Zhu, X.X., et al.: Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 5(4), 8–36 (2017). https://doi.org/10.1109/MGRS.2017.2762307

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Lucks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Böge, M., Bulatov, D., Lucks, L. (2020). Localization and Grading of Building Roof Damages in High-Resolution Aerial Images. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics