Skip to main content

Orthogonal Compaction: Turn-Regularity, Complete Extensions, and Their Common Concept

  • Conference paper
  • First Online:
Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2019)

Abstract

The compaction problem in orthogonal graph drawing aims to construct efficient drawings on the orthogonal grid. The objective is to minimize the total edge length or area of a planar orthogonal grid drawing. However, any collisions, i.e. crossing edges, overlapping faces, or colliding vertices, must be avoided. The problem is NP-hard. Two common compaction methods are the turn-regularity approach by Bridgeman et al. [4] and the complete-extension approach by Klau and Mutzel [23]. Esser [14] has shown that both methods are equivalent and follow a common concept to avoid collisions.

We present both approaches and their common concept in detail. We introduce an algorithm to transform the turn-regularity formulation into the complete-extension formulation and vice versa in \(\mathcal {O}(n)\) time, where n is the number of vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, R., Magnanti, T., Orlin, J.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Batini, C., Nardelli, E., Tamassia, R.: A layout algorithm for data flow diagrams. IEEE Trans. Software Eng. 12(4), 538–546 (1986). https://doi.org/10.1109/TSE.1986.6312901

    Article  Google Scholar 

  3. Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Softw. 4(2–3), 163–173 (1984). https://doi.org/10.1016/0164-1212(84)90006-2

    Article  Google Scholar 

  4. Bridgeman, S., Di Battista, G., Didimo, W., Liotta, W., Tamassia, R., Vismara, L.: Turn-regularity and optimal area drawings of orthogonal representations. Comput. Geom. 16(1), 53–93 (2000). https://doi.org/10.1016/S0925-7721(99)00054-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Chimani, M., Mutzel, P., Bomze, I.: A new approach to exact crossing minimization. In: Halperin, D., Mehlhorn, K. (eds.) ESA 2008. LNCS, vol. 5193, pp. 284–296. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87744-8_24

    Chapter  Google Scholar 

  6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  7. Di Battista, G., Garg, A., Liotta, G.: An experimental comparison of three graph drawing algorithms. In: SCG 1995: Proceedings of the 11th Annual Symposium on Computational Geometry, pp. 306–315. ACM (1995). https://doi.org/10.1145/220279.220312

  8. Di Battista, G., Liotta, G.: Upward planarity checking: “faces are more than polygons”. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 72–86. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-37623-2_6

    Chapter  Google Scholar 

  9. Eiglsperger, M.: Automatic layout of UML class diagrams: a topology-shape-metrics approach. Ph.D. thesis, University of Tübingen, Tübingen, Germany (2003)

    Google Scholar 

  10. Eiglsperger, M., Fekete, S.P., Klau, G.W.: Orthogonal graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 121–171. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8_6

    Chapter  Google Scholar 

  11. Eiglsperger, M., Kaufmann, M.: Fast compaction for orthogonal drawings with vertices of prescribed size. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 124–138. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_11

    Chapter  MATH  Google Scholar 

  12. Eiglsperger, M., Kaufmann, M., Siebenhaller, M.: A topology-shape-metrics approach for the automatic layout of UML class diagrams. In: SOFTVIS 2003: Proceedings of the 2003 ACM Symposium on Software Visualization, pp. 189–198. ACM (2003). https://doi.org/10.1145/774833.774860

  13. Esser, A.M.: Kompaktierung orthogonaler Zeichnungen. Entwicklung und Analyse eines IP-basierten Algorithmus. Master’s thesis, University of Cologne, Cologne, Germany (2014)

    Google Scholar 

  14. Esser, A.M.: Equivalence of turn-regularity and complete extensions. In: VISIGRAPP/IVAPP 2019: Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 39–47. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007353500390047

  15. Garey, M., Johnson, D.: Crossing number is NP-complete. SIAM J. Algebr. Discrete Methods 4(3), 312–316 (1983). https://doi.org/10.1137/0604033

    Article  MathSciNet  MATH  Google Scholar 

  16. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2002). https://doi.org/10.1137/s0097539794277123

    Article  MathSciNet  MATH  Google Scholar 

  17. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(4), 549–568 (1974). https://doi.org/10.1145/321850.321852

    Article  MathSciNet  MATH  Google Scholar 

  18. Jünger, M., Mutzel, P., Spisla, C.: Orthogonal compaction using additional bends. In: VISIGRAPP/IVAPP 2018: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, pp. 144–155 (2018). https://doi.org/10.5220/0006713301440155

  19. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44969-8

    Book  MATH  Google Scholar 

  20. Király, Z., Kovács, P.: Efficient implementations of minimum-cost flow algorithms. arXiv preprint arXiv:1207.6381 (2012)

  21. Klau, G.W.: A combinatorial approach to orthogonal placement problems. Ph.D. thesis, Saarland University, Saarbrücken, Germany (2001). https://doi.org/10.1007/978-3-642-55537-4_4

    Chapter  Google Scholar 

  22. Klau, G.W., Klein, K., Mutzel, P.: An experimental comparison of orthogonal compaction algorithms. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 37–51. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_5

    Chapter  Google Scholar 

  23. Klau, G.W., Mutzel, P.: Optimal compaction of orthogonal grid drawings (extended abstract). In: Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610, pp. 304–319. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-8_23

    Chapter  Google Scholar 

  24. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. Wiley, Hoboken (1990). https://doi.org/10.1007/978-3-322-92106-2

    Book  MATH  Google Scholar 

  25. Patrignani, M.: On the complexity of orthogonal compaction. Comput. Geom. Theory Appl. 19(1), 47–67 (2001). https://doi.org/10.1016/S0925-7721(01)00010-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Soukup, J.: Circuit layout. Proc. IEEE 69(10), 1281–1304 (1981). https://doi.org/10.1109/proc.1981.12167

    Article  Google Scholar 

  27. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987). https://doi.org/10.1137/0216030

    Article  MathSciNet  MATH  Google Scholar 

  28. Tamassia, R. (ed.): Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC, Boca Raton (2013). https://doi.org/10.1201/b15385

    Book  MATH  Google Scholar 

  29. Tamassia, R., Di Battista, G., Batini, C.: Automatic graph drawing and readability of diagrams. IEEE Trans. Syst. Man Cybern. 18(1), 61–79 (1988). https://doi.org/10.1109/21.87055

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Michael Jünger, University of Cologne, and his amazing team, which committed itself to Graph Drawing, enthused me with this area of research and always supported me with explanations, discussions, and suggestions: Christiane Spisla, Martin Gronemann, Sven Mallach, Francesco Mambelli, Daniel Schmidt.

My special thanks go to Joachim Köhler and all my colleagues at Fraunhofer IAIS, who support me advancing my research on Graph Drawing and bringing it together with projects from the area of document processing and table recognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander M. Esser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Esser, A.M. (2020). Orthogonal Compaction: Turn-Regularity, Complete Extensions, and Their Common Concept. In: Cláudio, A., et al. Computer Vision, Imaging and Computer Graphics Theory and Applications. VISIGRAPP 2019. Communications in Computer and Information Science, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-41590-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41590-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41589-1

  • Online ISBN: 978-3-030-41590-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics