Skip to main content

Active and Busy Time Scheduling Problem: A Survey

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12000))

Abstract

We present an overview of recent research on the busy time and active time scheduling model, which has its applications in energy efficient scheduling for cloud computing systems, optical network design and computer memories. The major feature of this type of scheduling problems is to aggregate job execution into as few time slots as possible to save energy. The difference between busy time and active time is that the former refers to multiple machines while the latter refers to a single machine. After summarizing the previous results on this topic, we propose a few potential future directions for each model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alicherry, M., Bhatia, R.: Line system design and a generalized coloring problem. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 19–30. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39658-1_5

    Chapter  Google Scholar 

  2. Amur, H., Cipar, J., Gupta, V., Ganger, G.R., Kozuch, M.A., Schwan, K.: Robust and flexible power-proportional storage. In: Proceedings of the 1st ACM Symposium on Cloud Computing, pp. 217–228. ACM (2010)

    Google Scholar 

  3. Bampis, E.: Algorithmic issues in energy-efficient computation. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_1

    Chapter  Google Scholar 

  4. Baptiste, P.: Scheduling unit tasks to minimize the number of idle periods: a polynomial time algorithm for offline dynamic power management. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, pp. 364–367. Society for Industrial and Applied Mathematics (2006)

    Google Scholar 

  5. Chang, J., Gabow, H.N., Khuller, S.: A model for minimizing active processor time. Algorithmica 70(3), 368–405 (2014). https://doi.org/10.1007/s00453-013-9807-y

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, J., Khuller, S., Mukherjee, K.: Lp rounding and combinatorial algorithms for minimizing active and busy time. J. Sched. 20(6), 657–680 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chen, S., Ljubić, I., Raghavan, S.: The regenerator location problem. Netw.: Int. J. 55(3), 205–220 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Flammini, M., Marchetti-Spaccamela, A., Monaco, G., Moscardelli, L., Zaks, S.: On the complexity of the regenerator placement problem in optical networks. IEEE/ACM Trans. Netw. (TON) 19(2), 498–511 (2011)

    Article  Google Scholar 

  9. Flammini, M., et al.: Minimizing total busy time in parallel scheduling with application to optical networks. Theor. Comput. Sci. 411(40–42), 3553–3562 (2010)

    Article  MathSciNet  Google Scholar 

  10. Fong, K.C.K., Li, M., Li, Y., Poon, S.-H., Wu, W., Zhao, Y.: Scheduling tasks to minimize active time on a processor with unlimited capacity. In: Gopal, T.V., Jäger, G., Steila, S. (eds.) TAMC 2017. LNCS, vol. 10185, pp. 247–259. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55911-7_18

    Chapter  Google Scholar 

  11. Gerards, M.E., Hurink, J.L., Hölzenspies, P.K.: A survey of offline algorithms for energy minimization under deadline constraints. J. sched. 19(1), 3–19 (2016)

    Article  MathSciNet  Google Scholar 

  12. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM Sigact News 36(2), 63–76 (2005)

    Article  Google Scholar 

  13. Khandekar, R., Schieber, B., Shachnai, H., Tamir, T.: Minimizing busy time in multiple machine real-time scheduling. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  14. Koehler, F., Khuller, S.: Optimal batch schedules for parallel machines. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 475–486. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_41

    Chapter  Google Scholar 

  15. Koehler, F., Khuller, S.: Busy Time scheduling on a bounded number of machines (Extended Abstract). Algorithms and Data Structures. LNCS, vol. 10389, pp. 521–532. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_44

    Chapter  Google Scholar 

  16. Kumar, S., Khuller, S.: Brief announcement: a greedy 2 approximation for the active time problem. In: SPAA, pp. 347–349 (2018)

    Google Scholar 

  17. Kumar, V., Rudra, A.: Approximation algorithms for wavelength assignment. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 152–163. Springer, Heidelberg (2005). https://doi.org/10.1007/11590156_12

    Chapter  Google Scholar 

  18. Mertzios, G.B., Shalom, M., Voloshin, A., Wong, P.W., Zaks, S.: Optimizing busy time on parallel machines. Theor. Comput. Sci. 562, 524–541 (2015)

    Article  MathSciNet  Google Scholar 

  19. Oprescu, A.M., Kielmann, T.: Bag-of-tasks scheduling under budget constraints. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 351–359. IEEE (2010)

    Google Scholar 

  20. Ren, R., Tang, X.: Online flexible job scheduling for minimum span. In: Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 55–66. ACM (2017)

    Google Scholar 

  21. Saradhi, C.V., et al.: A framework for regenerator site selection based on multiple paths. In: 2010 Conference on Optical Fiber Communication (OFC/NFOEC), Collocated National Fiber Optic Engineers Conference, pp. 1–3. IEEE (2010)

    Google Scholar 

  22. Shalom, M., Voloshin, A., Wong, P.W., Yung, F.C., Zaks, S.: Online optimization of busy time on parallel machines. Theor. Comput. Sci. 560, 190–206 (2014)

    Article  MathSciNet  Google Scholar 

  23. Shi, W., Hong, B.: Resource allocation with a budget constraint for computing independent tasks in the cloud. In: 2010 IEEE Second International Conference on Cloud Computing Technology and Science, pp. 327–334. IEEE (2010)

    Google Scholar 

  24. Winkler, P., Zhang, L.: Wavelength assignment and generalized interval graph coloring. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 830–831. Society for Industrial and Applied Mathematics (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minming Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chau, V., Li, M. (2020). Active and Busy Time Scheduling Problem: A Survey. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41672-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41671-3

  • Online ISBN: 978-3-030-41672-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics