
An Efficient Approximation Algorithm for the Steiner Tree Problem

Chi-Yeh Chen
Department of Computer Science and Information Engineering,

National Cheng Kung University,
Taiwan, ROC.

chency@csie.ncku.edu.tw.

November 2, 2018

Abstract

The Steiner tree problem is one of the classic and most fundamental NP-hard problems:
given an arbitrary weighted graph, seek a minimum-cost tree spanning a given subset of the
vertices (terminals). Byrka et al. proposed a 1.3863 + ε-approximation algorithm in which the
linear program is solved at every iteration after contracting a component. Goemans et al. shown
that it is possible to achieve the same approximation guarantee while only solving hypergraphic
LP relaxation once. However, optimizing hypergraphic LP relaxation exactly is strongly NP-
hard. This article presents an efficient two-phase heuristic in greedy strategy that achieves an
approximation ratio of 1.4295.
Key words: Steiner trees, approximation algorithms, graph Steiner problem, network design.

1 Introduction

The Steiner tree problem is one of the classic and most fundamental NP-hard problems. Given
an arbitrary weighted graph with a distinguished vertex subset, the Steiner tree problem asks for a
shortest tree spanning the distinguished vertices. This problem is widely used in many fields, such as
VLSI routing [12], wireless communications [16, 15], transportation [11], wirelength estimation [5],
and network routing [14]. The Steiner tree problem is NP-hard even in the very special cases of
Euclidean or rectilinear metrics [8]. In fact, it is NP-hard to approximate the Steiner tree problem
within a factor 96/95 [6]. Hence, an approximation algorithm with a small and provable guarantee
is thirsted by researchers. Recall that an α-approximation algorithm for a minimization problem is
a polynomial-time algorithm that finds approximate solutions to NP-hard optimization problems
with cost at most α times the optimum value.

Arora [1] established that Euclidean and rectilinear minimum-cost Steiner trees can be ap-
proximated in polynomial time within a factor of 1 + ε for any constant ε > 0. For arbi-
trary weighted graphs, a sequence of improved approximation algorithms appeared in the litera-
tures [19, 20, 2, 21, 17, 13, 10, 18, 4] and the best approximation ratio achievable within polynomial
time was improved from 2 to 1.39.

Byrka et al. proposed an LP-based approximation algorithm that achieves approximation ra-
tio of ln 4 + ε for general graphs [4]. However, the linear program is solved at every iteration
after contracting a component. Goemans et al. [9] shown that it is possible to achieve the same
approximation guarantee while only solving hypergraphic LP relaxation once. However, optimiz-
ing hypergraphic LP relaxation exactly is strongly NP-hard [9]. Borchers and Du [3] show that
ρk ≤ 1 + blog2 kc

−1 where ρk is the worst-case ratio of the cost of optimal k-restricted Steiner tree

1

ar
X

iv
:1

70
9.

03
86

7v
5

 [
cs

.D
S]

 1
 N

ov
 2

01
8

to the cost of optimal Steiner tree. We may therefore choose k = 21/ε appropriately to obtain a
1 + ε approximation to hypergraphic LP relaxation, for any ε > 0. The number of variables and
constraints will consequently be more than n2

1/ε
where n is the number of terminals [7].

2 Notation and Preliminaries

Given a graph G = (V,E) with nonnegative edge costs (or weights) cost : E → R+ and a subset
R ⊆ V of terminals of the vertices of G, the Steiner tree problem asks for a minimum-cost Steiner
tree spanning R. Any tree in G spanning R is called a Steiner tree, and any non-terminal vertices
contained in a Steiner tree are referred to as Steiner points. The cost of a tree is the sum of its
edge costs. The graph G is assumed to be a complete graph and let GR be a complete graph that
induced by R.

For any graph H, we denote by MST (H) a minimum spanning tree of a graph H and by
cost(H) the sum of the costs of all edges in H. We thus abbreviate mst(H) = cost(MST (H)), i.e.,
the cost of a minimum spanning tree of H.

A terminal-spanning tree is a Steiner tree that does not contain any Steiner points. Let mst
be the cost of minimum terminal-spanning tree MST (GR). A minimum-cost Steiner tree spanning
subset R′ ⊂ R in which all terminals are leaves is called a full component. Any Steiner tree can
be decomposed into full components by splitting all the non-leaf terminals [18]. Our algorithm
will starts with a minimum-cost terminal spanning tree, and iteratively adds full components to
improve it. Any full component is assumed to have its own copy of each Steiner point so that full
components chosen by our algorithm do not share Steiner points.

Let Γ(K) be the terminal set of a given full component K. Let E0(R
′) be the set of zero-cost

edges in which all edges connect all pairs of terminals in R′. For brevity, let E0(H) = E0(Γ(H)).
We call a Steiner tree S is a well solution if |Γ(Ki) ∩ Γ(Kj)| ≤ 1 for any two full components Ki

and Kj in S. Let Loss(K) be the minimum-cost sub-forest of K. A simple method of computing
Loss(K) is given by the following lemma.

Lemma 2.1. [18]. For any full component K, Loss(K) = MST (K ∪ E0(K))− E0(K).

We denote the cost of Loss(K) by loss(K). Let C[K] be a loss-contracted full component that
can be obtained by collapsing each connected component of Loss(K) into a single node. We denote
by Optk an optimal k-restricted Steiner tree. Let optk and lossk be the cost and loss of Optk,
respectively. Let opt be the cost of the optimal Steiner tree. For brevity, this article uses T/E0(R

′)
to denote the minimum spanning tree of T ∪ E0(R

′) for R′ ⊂ R.
The gain of a full component K with respect to T is defined as

gainT (K) = cost(T)−mst(T ∪ E0(K))− cost(K),

and the load of of a full component K with respect to T is defined as

loadT (K) = cost(K) +mst(T ∪ E0(K))− cost(T).

Let ΨT1,T2(K) = cost(T1)− cost(T2)−mst(T1 ∪E0(K)) +mst(T2 ∪E0(K)). The following lemma
shows that if no full component can improve a terminal-spanning tree T , then cost(T) ≤ optk.

Lemma 2.2. [18]. Let T be a terminal-spanning tree; if gainT (K) ≤ 0 for any k-restricted full
component K, then cost(T) ≤ optk.

2

a b

c

Figure 1: A full component K: squares denote terminals, circles denote Steiner and bold black
edges indicate K − Loss(K). A subgraph B = ({a, b, c} , {{a, c} , {b, c}}) is a basic component in
K where an edge {a, c} belongs to Loss(K) and another edge {b, c} belongs to K − Loss(K).

3 Two-phase Algorithm

This section proposes a k-restricted two-phase heuristic (k-TPH) which is described in Algo-
rithm 1. Let T t be the terminal-spanning tree at the end of iteration t and let Kt be the chosen
full component at the end of iteration t. The first phase finds a terminal-spanning tree Tbase such
that no full component can improve it. The terminal-spanning tree Tbase is a based criterion for
the second phase. We denote by S1 the solution in the first phase, and by S2 the solution in the
second phase. The first phase is a loss-contracting algorithm. The criterion function of K with
respect to T t−1 is defined as

r =
gainT t−1(K)

loss(K)
.

A chosen full component Ki may be modified by other chosen full component. Assume that some
edges {e1, e2, . . .} in T t−1 that are corresponding to C[Ki] are deleted when adding C[Kt] to T t−1.
Some components are obtained by Ki − {e1, e2, . . .} and each component can be replaced by a full
component with same terminals. The full component Ki is replaced by these full components. That
is because we want to ensure that 1

2 · cost(S1) ≤ cost(Tbase). If no edge in T t−1 is corresponding to
C[Ki], we keep a basic component from Ki that is a Steiner point directly connect to two terminals
in which an edge belongs to Loss(Ki) and another edge belongs to Ki − Loss(Ki) (see Figure 1).
It guarantees that the chosen full components never be chosen again. However, it may bring that
some Steiner points are leaves in S1. Fortunately, these Steiner points can be removed. Therefore,
this paper assume that no Steiner point is leaf in S1.

The second phase calls the k-restricted enhanced relative greedy heuristic (k-ERGH), which
is described in Algorithm 2, to obtain a Steiner tree S2. The k-ERGH iteratively finds a full
component K for modifying the terminal-spanning trees T 0

origin = MST (GR) and T 0
base. When a

full component Kt has been chosen, the algorithm contracts the cost of the corresponding edges in
T t−1origin to zero, that is, T torigin = MST (T t−1origin ∪E0(Kt)). Similarly, T tbase = MST (T t−1base ∪E0(Kt)).

The criterion function of K with respect to T t−1origin and T t−1base is defined as

f(K) =
loadT t−1

base
(K)

ΨT t−1
origin,T

t−1
base

(K)
.

The following steps analyze the complexity of k-TPH. Recall that, n is the number of terminals.
In the first phase, the number of iterations cannot exceed the number of full Steiner components
O(nk). The gain of a full component K can be found in time O(k) after precomputing the longest

3

edges between any pair of nodes in the current minimum spanning tree, which may be accomplished
in time O(n log n) [18]. Thus, the runtime of all the iterations in the first phase can be bounded
by O(kn2k+1 log n). We also can obtain the runtime of all the iterations in the second phase is
bounded by O(kn2k+1 log n). Thus, the total runtime is O(kn2k+1 log n).

Algorithm 1 The k-restricted two-phase heuristic (k-TPH)

1: ——————–The first phase——————–
2: T 0 = MST (GS)
3: for t = 1, 2, . . . do
4: Find a k-restricted full component Kt = K with maximizes

r =
gainT t−1(K)

loss(K)

5: if r ≤ 0 then
6: Tbase = T t−1 and exit for-loop
7: end if
8: if there exist some edges {e1, e2, . . .} ⊆ T t−1−MST (T t−1∪E0(Kt)) and {e1, e2, . . .} ⊆ C(Ki)

for i 6= t then
9: Some components are obtained by Ki − {e1, e2, . . .} and each components can be replaced

by a full component with same terminals.
10: Replaced the full component Ki by these full components.
11: (for convenient to describe algorithm, we reuse the notain Ki to represent these full com-

ponents.)
12: end if
13: T t = MST (T 0 ∪ C[K1] ∪ · · · C[Kt])
14: S1 = MST (T 0 ∪K1 ∪ · · · ∪Kt)
15: if no edge in T t is corresponding to C[Ki] for i 6= t then
16: Keep a basic component from Ki.
17: (we also reuse the notain Ki to represent this basic component.)
18: end if
19: end for
20: ——————–The second phase——————–
21: S2 = k-ERGH(Tbase)
22: return the minimum-cost tree S between S1 and S2.

4 Approximation ratio of the k-TPH

This section shows the approximation result of the k-TPH. When a full component K has been
chosen, the following lemma shows that the first phase never choose the full component K even it
has been replaced by some full components.

Lemma 4.1. The first phase never choose the chosen full components again.

Proof. Assume that the first phase choose a full component Kt = K. If MST (T
⋃t′

i=1 C[Ki]) contain
all edges e ∈ C[K] in the iteration t′ > t, gainT (K) ≤ 0 and the first phase never choose the full

component K again. If MST (T
⋃t′

i=1 C[Ki]) does not contain some edge e ∈ C[K] in the iteration

4

Algorithm 2 The k-restricted enhanced relative greedy heuristic (k-ERGH)

Require: Tbase.
1: T 0

base = Tbase and T 0
origin = MST (GS)

2: for t = 1, 2, . . . do
3: Find a k-restricted full component Kt = K which minimizes

f(K) =
loadT t−1

base
(K)

ΨT t−1
origin,T

t−1
base

(K)

4: T torigin = MST (T t−1origin ∪ E0(Kt))

5: T tbase = MST (T t−1base ∪ E0(Kt))
6: if c(T torigin) = c(T tbase) then

7: return MST (T 0
origin ∪K1 ∪K2 · · · ∪Kt)

8: end if
9: end for

t′ > t, the edge e has been improved by a chosen full component. The full component K is divided
into two components by removing the edge e. Let A and B be two connected components of
K − {e}. The full component Kt is replaced by two full components KA and KB with terminals

sets Γ(A) and Γ(B), respectively. We have T t
′

= MST (T
⋃t−1
i=1 C[Ki] ∪ KA ∪ KB

⋃t′

i=t+1C[Ki]),
gainT t′ (K) ≤ gainT t′ (A∪B) ≤ gainT t′ (A)+gainT t′ (B) and loss(K) = loss(A)+ loss(B). Finally,

gainT t′ (K)

loss(K)
≤

gainT t′ (A)) + gainT t′ (B)

loss(B) + loss(B)

≤ max

{
gainT t′ (A)

loss(A)
,
gainT t′ (B)

loss(B)

}
.

We show thatKA never be replaced by A. We knows that cost(KA) ≤ cost(A) and gainT t′ (KA) ≤ 0.
The full component KA is superior to A. We also can obtain that KB never be replaced by B. The
first phase never choose the full component K again.

If no edge in T t
′

is corresponding to C[K], we keep a basic component in K. Then, we can find
a full component that superior to K. The chosen full components never be chosen again.

Lemma 4.2. cost(T 0
base) ≥

1
2 · cost(S1).

Proof. The cost of the Steiner tree in the first phase is

cost(S1) = cost(T 0
base) +

∑
Kj∈S1

loss(Kj).

Since loss(K) ≤ 1
2 · cost(K) [18] for any full component K,

cost(S1) ≤ cost(T 0
base) +

∑
Kj∈S1

1

2
· cost(Kj)

≤ cost(T 0
base) +

1

2
· cost(S1)

which yields cost(T 0
base) ≥

1
2 · cost(S1).

5

Lemma 4.3. If no full component can improve the terminal-spanning tree T ,

loadT

(
n⋃
i=1

Ki

)
≥

n∑
i=1

loadT (Ki)

for full components K1,K2, . . . ,Kn.

Proof. The proof can be obtained by the following chain of inequalities:

loadT

(
n⋃
i=1

Ki

)
= cost

(
n⋃
i=1

Ki

)
+mst

(
T ∪

n⋃
i=1

E0 (Ki)

)
− cost(T)

=
n∑
i=1

cost(Ki) +mst

T ∪ i⋃
j=1

E0 (Kj)

− cost
T/ i−1⋃

j=1

E0 (Kj)

≥

n∑
i=1

cost(Ki) +mst (T ∪ E0 (Ki))− cost(T)

=

n∑
i=1

loadT (Ki).

The following lemma guarantees that the solution of k-TPH at the second phase is a well
solution.

Lemma 4.4. For any chosen full components Ki and Kj, |Γ(Ki) ∩ Γ(Kj)| ≤ 1.

Proof. Without loss of generality, assume that |Γ(Ki) ∩ Γ(Kj)| = 2 and j < i. Both T i−1origin −
MST (T i−1origin ∪ E0(Ki)) and T i−1base −MST (T i−1base ∪ E0(Ki)) contain a zero-cost edge that is from

E0(Kj). Since any full component cannot improve T 0
base, MST (T 0

base ∪ K) = T 0
base ∪ Loss(K)

for any full component K. We can find a edge e ∈ Ki − Loss(Ki) such that ΨT i−1
origin,T

i−1
base

(Ki) =

ΨT i−1
origin,T

i−1
base

(A)+ΨT i−1
origin,T

i−1
base

(B) and loadT i−1
base

(Ki) ≥ loadT i−1
base

(A∪B) ≥ loadT i−1
base

(A)+loadT i−1
base

(B)

(from Lemma 4.3) where A and B are two connected components of Ki − {e}. Finally,

loadT i−1
base

(Ki)

ΨT i−1
origin,T

i−1
base

(Ki)
≥

loadT i−1
base

(A) + loadT i−1
base

(B)

ΨT i−1
origin,T

i−1
base

(A) + ΨT i−1
origin,T

i−1
base

(B)
≥ min

{
loadT i−1

base
(A)

ΨT i−1
origin,T

i−1
base

(A)
,

loadT i−1
base

(B)

ΨT i−1
origin,T

i−1
base

(B)

}

which contradicts the choice of Ki.

Lemma 4.5. For any Steiner tree S, loadT 0
base

(S) ≥ loadT i−1
base

(
S/
⋃i−1
j=1E0 (Ki)

)
.

Proof. Since no full component can improve the terminal-spanning tree T 0
base, cost(S)−cost(T 0

base)−
mst

(
S ∪

⋃i−1
j=1E0 (Ki)

)
+ mst

(
T 0
base ∪

⋃i−1
j=1E0 (Ki)

)
≥ 0. The proof can be obtained by the

6

following chain of inequalities:

loadT 0
base

(S) = cost(S)− cost(T 0
base)

= mst

S ∪ i−1⋃
j=1

E0 (Ki)

−mst
T 0

base ∪
i−1⋃
j=1

E0 (Ki)

+cost(S)− cost(T 0

base)−mst

S ∪ i−1⋃
j=1

E0 (Ki)

+mst

T 0
base ∪

i−1⋃
j=1

E0 (Ki)

≥ mst

S ∪ i−1⋃
j=1

E0 (Ki)

−mst
T 0

base ∪
i−1⋃
j=1

E0 (Ki)

= loadT i−1

base

S/ i−1⋃
j=1

E0 (Ki)

 .

Lemma 4.6. If loadT i−1
base/E0(C)(K) ≤ ΨT i−1

origin,T
i−1
base/E0(C)(K) for any full components C and K,

loadT i−1
base/E0(C)(K)

ΨT i−1
origin,T

i−1
base/E0(C)(K)

≥
loadT i−1

base
(K)

ΨT i−1
origin,T

i−1
base

(K)
.

Proof. Since loadT i−1
base/E0(C)(K) ≤ ΨT i−1

origin,T
i−1
base/E0(C)(K) and cost(T i−1base/E0 (C)) − mst(T i−1base ∪

E0 (C) ∪ E0 (K)) ≤ cost(T i−1base) − mst(T
i−1
base ∪ E0 (K)), the proof can be obtained by the follow-

ing chain of inequalities:

loadT i−1
base/E0(C)(K)

ΨT i−1
origin,T

i−1
base/E0(C)(K)

=
cost(K) +mst(T i−1base ∪ E0 (C) ∪ E0 (K))− cost(T i−1base/E0 (C))

cost(T i−1origin)− cost(T i−1base/E0 (C))−mst(T i−1origin ∪ E0(K)) +mst(T i−1base ∪ E0 (C) ∪ E0(K))

≥
cost(K) +mst(T i−1base ∪ E0 (K))− cost(T i−1base)

cost(T i−1origin)− cost(T i−1base)−mst(T
i−1
origin ∪ E0(K)) +mst(T i−1base ∪ E0(K))

=
loadT i−1

base
(K)

ΨT i−1
origin,T

i−1
base

(K)
.

Based on the analysis in [21], the bound on the cost of our solution is as follows.

Theorem 4.7. The k-TPH finds a Steiner tree S such that

cost(S) ≤
(

ln
mst− cost(T 0

base)

optk − cost(T 0
base)

+ 1

)
·
(
optk − cost(T 0

base)
)

+ cost(T 0
base).

7

Proof. Let Mi = cost(T iorigin)− cost(T ibase) and mi = Mi−1 −Mi. Therefore, f(Ki) =
load

Ti−1
base

(Ki)

mi
.

Let Opti−1k =
(
Optk/

⋃i−1
l=1 E0 (kl)

)
−
⋃i−1
l=1 E0 (Kl). For i = 1, . . . , r+1 and loadT 0

base
(Optk) ≤Mi−1,

we have

loadT 0
base

(Optk)

Mi−1
=

loadT 0
base

(Optk)

ΨT i−1
origin,T

i−1
base

(Optk)

Lem 4.5
≥

loadT i−1
base

(Opti−1k)

ΨT i−1
origin,T

i−1
base

(Opti−1k)

=

∑
Xj∈Opti−1

k
load

T i−1
base/

⋃j−1
l=1 E0(Xl)

(Xj)∑
Xj∈Opti−1

k
Ψ
T i−1
origin/

⋃j−1
l=1 E0(Xl),T

i−1
base/

⋃j−1
l=1 E0(Xl)

(Xj)

≥

∑
Xj∈Opti−1

k
load

T i−1
base/

⋃j−1
l=1 E0(Xl)

(Xj)∑
Xj∈Opti−1

k
Ψ
T i−1
origin,T

i−1
base/

⋃j−1
l=1 E0(Xl)

(Xj)

Lem 4.6
≥

∑
Xj∈Opti−1

k
loadT i−1

base
(Xj)∑

Xj∈Opti−1
k

ΨT i−1
origin,T

i−1
base

(Xj)

≥ min
Xj∈Opti−1

k

{
loadT i−1

base
(Xj)

ΨT i−1
origin,T

i−1
base

(Xj)

}

≥
loadT i−1

base
(Ki)

mi
.

Replacing mi = Mi−1 −Mi into the above inequality yields

Mi ≤Mi−1

(
1−

loadT i−1
base

(Ki)

loadT 0
base

(Optk)

)
(1)

for i = 1, 2, . . . , t. From the inequality (1),

Mr ≤ M0

t∏
i=1

(
1−

loadT i−1
base

(Ki)

loadT 0
base

(Optk)

)
.

Taking the natural logarithms of both sides and using the inequality ln(1 + x) ≤ x,

ln
M0

Mr
≥ −

t∑
i=1

ln

(
1−

loadT i−1
base

(Ki)

loadT 0
base

(Optk)

)

≥

∑t
i=1 loadT i−1

base
(Ki)

loadT 0
base

(Optk)
. (2)

Since k-TPA interrupts at Mt = c(T torigin)−c(T tbase) = 0, there exists Mr > loadT 0
base

(Optk) ≥Mr+1

for some r < t.
The value mr+1 can be split into two values m∗ and m′ such that

m∗ = Mr − loadT 0
base

(Optk), (3)

8

m′ = loadT 0
base

(Optk)−Mr+1, (4)

According to inequality (3), we have

M∗r+1 = Mr −m∗ = Mr −Mr + loadT 0
base

(Optk) = loadT 0
base

(Optk). (5)

The value loadT rbase(Kr+1) also can be split into w∗ and w′ such that
loadTr

base
(Kr+1)

mr+1
= w∗

m∗ = w′

m′ .

Since
loadTr

base
(Kr+1)

mr+1
= w∗

m∗ , inequality (2) implies that

ln
M0

M∗r+1

≥

∑r
i=1 loadT i−1

base
(Ki) + w∗

loadT 0
base

(Optk)
. (6)

Since
loadTr

base
(Kr+1)

mr+1
≤

load
T0
base

(Optk)

Mr
≤ 1, we have

w′ ≤ m′. (7)

The ratio related to the cost of approximate Steiner tree after r + 1 iterations is at most

cost(S2)− cost(T 0
base)

optk − cost(T 0
base)

=
mst(T 0

origin ∪
⋃t
i=1Ki)− cost(T 0

base)

loadT 0
base

(Optk)

Lem 4.4
≤

∑r+1
i=1 loadT i−1

base
(Ki) +Mr+1

loadT 0
base

(Optk)

=

∑r
i=1 loadT i−1

base
(Ki) + w∗ + w′ +Mr+1

loadT 0
base

(Optk)

(6)
≤ ln

M0

M∗r+1

+
w′ +Mr+1

loadT 0
base

(Optk)

(7)
≤ ln

M0

M∗r+1

+
m′ +Mr+1

loadT 0
base

(Optk)

(4)
= ln

M0

M∗r+1

+ 1

(5)
= ln

M0

loadT 0
base

(Optk)
+ 1

= ln
cost(T 0

origin)− cost(T 0
base)

optk − cost(T 0
base)

+ 1

= ln
mst− cost(T 0

base)

optk − cost(T 0
base)

+ 1

which yields

cost(S) ≤ cost(S2) ≤
(

ln
mst− cost(T 0

base)

optk − cost(T 0
base)

+ 1

)
·
(
optk − cost(T 0

base)
)

+ cost(T 0
base). (8)

9

Since cost(T 0
base) ≤ optk (from Lemma 2.2) and cost(T 0

base) ≥
1
2 · cost(S1) ≥

1
2 · optk (from

Lemma 4.2), we can assume that cost(T 0
base) = α · optk for α ∈

(
1
2 , 1
)
. The following result can be

obtained.

Theorem 4.8. If cost(T 0
base) = α · optk for α ∈

(
1
2 , 1
)
, the k-TPH finds a Steiner tree S such that

cost(S) ≤
(

ln
mst− α · optk
optk − α · optk

+ 1

)
· (optk − α · optk) + α · optk.

and

cost(S) ≤ 2 · α · optk.

Proof. From Theorem 4.7, we have

cost(S) ≤
(

ln
mst− α · optk
optk − α · optk

+ 1

)
· (optk − α · optk) + α · optk.

According to Lemma 4.2, cost(S) ≤ 2 · cost(T 0
base) = 2 · α · optk.

5 Performance of the k-TPH in general graphs

The following corollaries gives a bound on the cost of the Steiner tree generated by k-TPH.

Corollary 5.1. The k-TPH has an approximation ratio of at most 1.4295.

Proof. We have mst ≤ 2 · opt (see [19]). Theorem 4.8 yield

cost(S)

opt
≤

(
ln

2 · opt− α · optk
optk − α · optk

+ 1

)
· (1− α)

optk
opt

+ α · optk
opt

=

(
ln

2
ρk
− α

1− α
+ 1

)
· (1− α) ρk + α · ρk

and

cost(S)

opt
≤ 2 · α · ρk,

where ρk is the worst-case ratio of optk
opt . Borchers and Du [3] show that ρk ≤ 1 + blog2 kc

−1 and
limk→∞ ρk = 1. When k →∞, the approximation ratio of the k-TPH converges to

A(α) =

(
ln

2− α
1− α

+ 1

)
· (1− α) + α.

and

B(α) = 2 · α.

Since A(α) is decreasing in α and B(α) is increasing in α, solving A(α) = B(α) yeilds α∗ ≈ 0.7147.
The k-TPH has an approximation ratio of at most A(α∗) ≈ 1.4295.

10

References

[1] S. Arora, “Polynomial time approximation schemes for euclidean traveling salesman and other
geometric problems,” Journal of the ACM, vol. 45, no. 5, pp. 753–782, 1998.

[2] P. Berman and V. Ramaiyer, “Improved approximations for the steiner tree problem,” Journal
of Algorithms, vol. 17, no. 3, pp. 381–408, 1994.

[3] A. Borchers and D.-Z. Du, “The k-steiner ratio in graphs,” SIAM Journal on Computing,
vol. 26, no. 3, pp. 857–869, 1997.

[4] J. Byrka, F. Grandoni, T. Rothvoss, and L. Sanitá, “Steiner tree approximation via iterative
randomized rounding,” Journal of the ACM, vol. 60, no. 1, pp. 6:1–6:33, Feb. 2013.

[5] A. E. Caldwell., A. B. Kahng, S. Mantik, I. L. Markov, and A. Zelikovsky, “On wirelength
estimations for row-based placement,” in ISPD ’98: Proceedings of the 1998 international
symposium on Physical design. New York, NY, USA: ACM, 1998, pp. 4–11.

[6] M. Chleb́ık and J. Chleb́ıková, “The steiner tree problem on graphs: Inapproximability re-
sults,” Theoretical Computer Science, vol. 406, no. 3, pp. 207–214, 2008, algorithmic Aspects
of Global Computing.

[7] A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità, “On the equivalence of the bidirected
and hypergraphic relaxations for steiner tree,” Mathematical Programming, vol. 160, no. 1,
pp. 379–406, Nov 2016. [Online]. Available: https://doi.org/10.1007/s10107-016-0987-5

[8] M. R. Garey and D. S. Johnson, Computers and intractability. wh freeman, 2002, vol. 29.

[9] M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen, “Matroids and integrality gaps
for hypergraphic steiner tree relaxations,” in Proceedings of the Forty-fourth Annual ACM
Symposium on Theory of Computing, ser. STOC ’12. New York, NY, USA: ACM, 2012, pp.
1161–1176. [Online]. Available: http://doi.acm.org/10.1145/2213977.2214081

[10] S. Hougardy and H. J. Prömel, “A 1.598 approximation algorithm for the steiner problem in
graphs,” in SODA ’99: Proceedings of the tenth annual ACM-SIAM symposium on Discrete
algorithms. Philadelphia, ACM, New York: Society for Industrial and Applied Mathematics,
1999, pp. 448–453.

[11] F. K. Hwang, D. S. Richards, and P. Winter, The Steiner Tree Problem. Elsevier Science
Publishers, Amsterdam, 1992, annuals of Discrete Mathematics 53.

[12] A. B. Kahng and G. Robins, On Optimal Interconnections for VLSI. Kluwer Academic, 1995.

[13] M. Karpinski and A. Zelikovsky, “New approximation algorithms for the steiner tree problems,”
Journal of Combinatorial Optimization, vol. 1, pp. 47–65, 1997.

[14] B. Korte, H. J. Prömel, and A. Steger, “Steiner trees in vlsi-layout,” Paths, Flows, and VLSI-
Layout, pp. 185–214, 1990.

[15] W. Liang, “Constructing minimum-energy broadcast trees in wireless ad hoc networks,” in
Proceedings of the 3rd ACM International Symposium on Mobile Ad Hoc Networking &Amp;
Computing, ser. MobiHoc ’02. New York, NY, USA: ACM, 2002, pp. 112–122.

11

https://doi.org/10.1007/s10107-016-0987-5
http://doi.acm.org/10.1145/2213977.2214081

[16] M. Min, H. Du, X. Jia, C. X. Huang, S. C.-H. Huang, and W. Wu, “Improving construction
for connected dominating set with steiner tree in wireless sensor networks,” Journal of Global
Optimization, vol. 35, no. 1, pp. 111–119, May 2006.

[17] H. J. Prömel and A. Steger, “Rnc-approximation algorithms for the steiner problem,” in
STACS ’97: Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer
Science. London, UK: Springer-Verlag, 1997, pp. 559–570.

[18] G. Robins and A. Zelikovsky, “Tighter bounds for graph steiner tree approximation,” SIAM
Journal on Discrete Mathematics, vol. 19, no. 1, pp. 122–134, 2005.

[19] H. Takahashi and A. Matsuyama, “An approximate solution for the steiner problem in graphs,”
Mathematica Japonica, vol. 24, pp. 573–577, 1980.

[20] A. Zelikovsky, “An 11/6-approximation algorithm for the network steiner problem,” Algorith-
mica, vol. 9, no. 5, pp. 463–470, May 1993.

[21] ——, “Better approximation bounds for the network and euclidean steiner tree problems,” in
Technical report CS-96-06, University of Virginia, Charlottesville, VA, USA, 1996.

12

	1 Introduction
	2 Notation and Preliminaries
	3 Two-phase Algorithm
	4 Approximation ratio of the k-TPH
	5 Performance of the k-TPH in general graphs

