Skip to main content

Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity

  • Chapter
  • First Online:
Complexity and Approximation

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12000))

Abstract

Ker-I Ko was among the first people to recognize the importance of resource-bounded Kolmogorov complexity as a tool for better understanding the structure of complexity classes. In this brief informal reminiscence, I review the milieu of the early 1980’s that caused an up-welling of interest in resource-bounded Kolmogorov complexity, and then I discuss some more recent work that sheds additional light on the questions related to Kolmogorov complexity that Ko grappled with in the 1980’s and 1990’s.

In particular, I include a detailed discussion of Ko’s work on the question of whether it is \({\mathsf{NP}}\)-hard to determine the time-bounded Kolmogorov complexity of a given string. This problem is closely connected with the Minimum Circuit Size Problem (\({\mathsf{MCSP}}\)), which is central to several contemporary investigations in computational complexity theory.

Supported in part by NSF Grants CCF-1514164 and CCF-1909216.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If the reader is not familiar with Kolmogorov complexity, then we recommend some excellent books on this topic [25, 44].

  2. 2.

    Levin was Kolmogorov’s student, but he did not receive his Ph.D. until after he emigrated to the US, and Albert Meyer was his advisor at MIT. The circumstances around Levin being denied his Ph.D. in Moscow are described in the excellent article by Trakhtenbrot [59].

  3. 3.

    This result also appears as Exercise 13.20 in what was probably the most popular complexity theory textbook for the early 1980’s [33], which credits Levin for that result, but not for what is now called the Cook-Levin theorem.

  4. 4.

    In [1], in addition to Levin, Adleman also credits Meyer and McCreight [46] with developing similar ideas. I have been unable to detect any close similarity, although the final paragraph of [46] states “Our results are closely related to more general definitions of randomness proposed by Kolmogorov, Martin-Löf, and Chaitin” [and here the relevant literature is cited, before continuing] “A detailed discussion must be postponed because of space limitations” [and here Meyer and McCreight include a citation to a letter from the vice-president of Academic Press (which presumably communicated the space limitations to the authors).] Indeed, Meyer and McCreight were interested in when a decidable (and therefore very non-random) set can be said to “look random” and thereby deserve to be called pseudorandom. We will return to this topic later in the paper.

  5. 5.

    During the review and revision phase of preparing this paper, I was given a paper that settles this question! Ilango, Loff, and Oliveira have now shown that the “circuit” version of this problem (which they call \({\mathsf{Partial}\hbox {-}\mathsf{MCSP}}\)) is \({\mathsf{NP}}\)-complete [35]. For additional discussion of this result and how it contrasts with Ko’s work [38], see [4].

  6. 6.

    In particular, this is the problem that Trakhtenbrot calls “Task 5” in [59].

References

  1. Adleman, L.M.: Time, space and randomness. Technical report, MIT/LCS/TM-131, MIT (1979)

    Google Scholar 

  2. Allender, E.: Some consequences of the existence of pseudorandom generators. In: Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC), pp. 151–159 (1987). https://doi.org/10.1145/28395.28412, see also [3]

  3. Allender, E.: Some consequences of the existence of pseudorandom generators. J. Comput. Syst. Sci. 39(1), 101–124 (1989). https://doi.org/10.1016/0022-0000(89)90021-4

    Article  MathSciNet  MATH  Google Scholar 

  4. Allender, E.: The new complexity landscape around circuit minimization. In: Proceedings of the 14th International Conference on Language and Automata Theory and Applications (LATA) (2020, to appear)

    Google Scholar 

  5. Allender, E., Buhrman, H., Friedman, L., Loff, B.: Reductions to the set of random strings: the resource-bounded case. Logical Methods Comput. Sci. 10(3) (2014). https://doi.org/10.2168/LMCS-10(3:5)2014

  6. Allender, E., Buhrman, H., Koucky, M., van Melkebeek, D., Ronneburger, D.: Power from random strings. SIAM J. Comput. 35, 1467–1493 (2006). https://doi.org/10.1137/050628994

    Article  MathSciNet  MATH  Google Scholar 

  7. Allender, E., Das, B.: Zero knowledge and circuit minimization. Inf. Comput. 256, 2–8 (2017). https://doi.org/10.1016/j.ic.2017.04.004. Special issue for MFCS 2014

    Article  MathSciNet  MATH  Google Scholar 

  8. Allender, E., Grochow, J., van Melkebeek, D., Morgan, A., Moore, C.: Minimum circuit size, graph isomorphism and related problems. SIAM J. Comput. 47, 1339–1372 (2018). https://doi.org/10.1137/17M1157970

    Article  MathSciNet  MATH  Google Scholar 

  9. Allender, E., Hirahara, S.: New insights on the (non)-hardness of circuit minimization and related problems. ACM Trans. Comput. Theory (ToCT) 11(4), 27:1–27:27 (2019). https://doi.org/10.1145/3349616

    Article  MathSciNet  MATH  Google Scholar 

  10. Allender, E., Holden, D., Kabanets, V.: The minimum oracle circuit size problem. Comput. Complex. 26(2), 469–496 (2017). https://doi.org/10.1007/s00037-016-0124-0

    Article  MathSciNet  MATH  Google Scholar 

  11. Allender, E., Ilango, R., Vafa, N.: The non-hardness of approximating circuit size. In: van Bevern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 13–24. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19955-5_2

    Chapter  Google Scholar 

  12. Allender, E., Koucky, M., Ronneburger, D., Roy, S.: The pervasive reach of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput. Syst. Sci. 77, 14–40 (2010). https://doi.org/10.1016/j.jcss.2010.06.004

    Article  MathSciNet  MATH  Google Scholar 

  13. Allender, E., Watanabe, O.: Kolmogorov complexity and degrees of tally sets. In: Proceedings: Third Annual Structure in Complexity Theory Conference, pp. 102–111. IEEE Computer Society (1988). https://doi.org/10.1109/SCT.1988.5269, see also [14]

  14. Allender, E., Watanabe, O.: Kolmogorov complexity and degrees of tally sets. Inf. Comput. 86(2), 160–178 (1990). https://doi.org/10.1016/0890-5401(90)90052-J

    Article  MathSciNet  MATH  Google Scholar 

  15. Antunes, L., Fortnow, L., van Melkebeek, D., Vinodchandran, N.V.: Computational depth: concept and applications. Theor. Comput. Sci. 354(3), 391–404 (2006). https://doi.org/10.1016/j.tcs.2005.11.033

    Article  MathSciNet  MATH  Google Scholar 

  16. Arvind, V., et al.: Reductions to sets of low information content. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 162–173. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_72. See also [17]

    Chapter  Google Scholar 

  17. Arvind, V., et al.: Reductions to sets of low information content. In: Ambos-Spies, K., Homer, S., Schoning, U. (eds.) Complexity Theory: Current Research, pp. 1–46. Cambridge University Press (1993)

    Google Scholar 

  18. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo random bits. In: 23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 112–117 (1982). https://doi.org/10.1109/SFCS.1982.72, see also [19]

  19. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseudo-random bits. SIAM J. Comput. 13(4), 850–864 (1984). https://doi.org/10.1137/0213053

    Article  MathSciNet  MATH  Google Scholar 

  20. Book, R.V., Lutz, J.H.: On languages with very high information content. In: Proceedings of the Seventh Annual Structure in Complexity Theory Conference, pp. 255–259. IEEE Computer Society (1992). https://doi.org/10.1109/SCT.1992.215400, see also [21]

  21. Book, R.V., Lutz, J.H.: On languages with very high space-bounded Kolmogorov complexity. SIAM J. Comput. 22(2), 395–402 (1993). https://doi.org/10.1137/0222029

    Article  MathSciNet  MATH  Google Scholar 

  22. Buhrman, H., Fortnow, L., Laplante, S.: Resource-bounded Kolmogorov complexity revisited. SIAM J. Comput. 31(3), 887–905 (2001). https://doi.org/10.1137/S009753979834388X

    Article  MathSciNet  MATH  Google Scholar 

  23. Buhrman, H., Mayordomo, E.: An excursion to the Kolmogorov random strings. JCSS 54, 393–399 (1997). https://doi.org/10.1006/jcss.1997.1484

    Article  MathSciNet  MATH  Google Scholar 

  24. Daley, R.: On the inference of optimal descriptions. Theor. Comput. Sci. 4(3), 301–319 (1977). https://doi.org/10.1016/0304-3975(77)90015-9

    Article  MathSciNet  MATH  Google Scholar 

  25. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, Heidelberg (2010). https://doi.org/10.1007/978-0-387-68441-3

    Book  MATH  Google Scholar 

  26. Gavaldà, R., Torenvliet, L., Watanabe, O., Balcázar, J.L.: Generalized Kolmogorov complexity in relativized separations (extended abstract). In: Rovan, B. (ed.) MFCS 1990. LNCS, vol. 452, pp. 269–276. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0029618

    Chapter  Google Scholar 

  27. Golovnev, A., Ilango, R., Impagliazzo, R., Kabanets, V., Kolokolova, A., Tal, A.: \({\rm AC}^0[{\rm p}]\) lower bounds against MCSP via the coin problem. In: 46th International Colloquium on Automata, Languages, and Programming, (ICALP). LIPIcs, vol. 132, pp. 66:1–66:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.66

  28. Hemachandra, L.A., Wechsung, G.: Using randomness to characterize the complexity of computation. In: Proceedings of the IFIP 11th World Computer Congress on Information Processing 1989, pp. 281–286. North-Holland/IFIP (1989), see also [29]

    Google Scholar 

  29. Hemachandra, L.A., Wechsung, G.: Kolmogorov characterizations of complexity classes. Theor. Comput. Sci. 83(2), 313–322 (1991). https://doi.org/10.1016/0304-3975(91)90282-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Hirahara, S.: Non-black-box worst-case to average-case reductions within NP. In: 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 247–258 (2018). https://doi.org/10.1109/FOCS.2018.00032

  31. Hirahara, S., Santhanam, R.: On the average-case complexity of MCSP and its variants. In: 32nd Conference on Computational Complexity, CCC. LIPIcs, vol. 79, pp. 7:1–7:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.7

  32. Hitchcock, J.M., Pavan, A.: On the NP-completeness of the minimum circuit size problem. In: Conference on Foundations of Software Technology and Theoretical Computer Science (FST&TCS). LIPIcs, vol. 45, pp. 236–245. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.236

  33. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Boston (1979)

    MATH  Google Scholar 

  34. Ilango, R.: Approaching MCSP from above and below: Hardness for a conditional variant and AC\(^0[p]\). In: 11th Innovations in Theoretical Computer Science Conference, ITCS. LIPIcs, vol. 151, pp. 34:1–34:26. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2020). https://doi.org/10.4230/LIPIcs.ITCS.2020.34

  35. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of minimizing circuits and communication (2019, manuscript)

    Google Scholar 

  36. Kabanets, V., Cai, J.Y.: Circuit minimization problem. In: ACM Symposium on Theory of Computing (STOC), pp. 73–79 (2000). https://doi.org/10.1145/335305.335314

  37. Ko, K.: On the notion of infinite pseudorandom sequences. Theor. Comput. Sci. 48(3), 9–33 (1986). https://doi.org/10.1016/0304-3975(86)90081-2

    Article  MathSciNet  MATH  Google Scholar 

  38. Ko, K.: On the complexity of learning minimum time-bounded Turing machines. In: Proceedings of the Third Annual Workshop on Computational Learning Theory, (COLT), pp. 82–96 (1990), see also [39]

    Google Scholar 

  39. Ko, K.: On the complexity of learning minimum time-bounded Turing machines. SIAM J. Comput. 20(5), 962–986 (1991). https://doi.org/10.1137/0220059

    Article  MathSciNet  MATH  Google Scholar 

  40. Ko, K.-I., Orponen, P., Schöning, U., Watanabe, O.: What is a hard instance of a computational problem? In: Selman, A.L. (ed.) Structure in Complexity Theory. LNCS, vol. 223, pp. 197–217. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-16486-3_99. See also [51]

    Chapter  Google Scholar 

  41. Kolmogorov, A.N.: Three approaches to the quantitative definition ofinformation’. Probl. Inf. Transm. 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  42. Levin, L.: Universal search problems. Probl. Inf. Transm. 9, 265–266 (1973)

    Google Scholar 

  43. Levin, L.A.: Randomness conservation inequalities; information and independence in mathematical theories. Inf. Control 61(1), 15–37 (1984). https://doi.org/10.1016/S0019-9958(84)80060-l

    Article  MathSciNet  MATH  Google Scholar 

  44. Li, M., Vitanyi, P.M.B.: An Introduction to Kolmogorov Complexity and Its Applications. Texts in Computer Science, 4th edn. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-11298-1

    Book  MATH  Google Scholar 

  45. McKay, D.M., Murray, C.D., Williams, R.R.: Weak lower bounds on resource-bounded compression imply strong separations of complexity classes. In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 1215–1225 (2019). https://doi.org/10.1145/3313276.3316396

  46. Meyer, A., McCreight, E.: Computationally complex and pseudo-random zero-one valued functions. In: Theory of Machines and Computations, pp. 19–42. Elsevier (1971)

    Google Scholar 

  47. Murray, C., Williams, R.: On the (non) NP-hardness of computing circuit complexity. Theory Comput. 13(4), 1–22 (2017). https://doi.org/10.4086/toc.2017.v013a004

    Article  MathSciNet  Google Scholar 

  48. Oliveira, I., Santhanam, R.: Conspiracies between learning algorithms, circuit lower bounds and pseudorandomness. In: 32nd Conference on Computational Complexity, CCC. LIPIcs, vol. 79, pp. 18:1–18:49. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CCC.2017.18

  49. Oliveira, I.C., Pich, J., Santhanam, R.: Hardness magnification near state-of-the-art lower bounds. In: 34th Computational Complexity Conference (CCC). LIPIcs, vol. 137, pp. 27:1–27:29. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.CCC.2019.27

  50. Oliveira, I.C., Santhanam, R.: Hardness magnification for natural problems. In: 59th IEEE Annual Symposium on Foundations of Computer Science (FOCS), pp. 65–76 (2018). https://doi.org/10.1109/FOCS.2018.00016

  51. Orponen, P., Ko, K., Schoning, U., Watanabe, O.: Instance complexity. J. ACM 41(1), 96–121 (1994). https://doi.org/10.1145/174644.174648

    Article  MathSciNet  MATH  Google Scholar 

  52. Paul, W.J., Seiferas, J.I., Simon, J.: An information-theoretic approach to time bounds for on-line computation (preliminary version). In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, STOC 1980, pp. 357–367. ACM, New York (1980). https://doi.org/10.1145/800141.804685, see also [53]

  53. Paul, W.J., Seiferas, J.I., Simon, J.: An information-theoretic approach to time bounds for on-line computation. J. Comput. Syst. Sci. 23(2), 108–126 (1981). https://doi.org/10.1016/0022-0000(81)90009-X

    Article  MathSciNet  MATH  Google Scholar 

  54. Peterson, G.L.: Succinct representation, random strings, and complexity classes. In: 21st Annual Symposium on Foundations of Computer Science (FOCS), pp. 86–95 (1980). https://doi.org/10.1109/SFCS.1980.42

  55. Pitt, L., Valiant, L.G.: Computational limitations on learning from examples. J. ACM 35(4), 965–984 (1988). https://doi.org/10.1145/48014.63140

    Article  MathSciNet  MATH  Google Scholar 

  56. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. J. ACM 40(1), 95–142 (1993). https://doi.org/10.1145/138027.138042

    Article  MathSciNet  MATH  Google Scholar 

  57. Rudow, M.: Discrete logarithm and minimum circuit size. Inf. Process. Lett. 128, 1–4 (2017). https://doi.org/10.1016/j.ipl.2017.07.005

    Article  MathSciNet  MATH  Google Scholar 

  58. Sipser, M.: A complexity theoretic approach to randomness. In: Proceedings of the 15th Annual ACM Symposium on Theory of Computing (STOC), pp. 330–335 (1983). https://doi.org/10.1145/800061.808762

  59. Trakhtenbrot, B.A.: A survey of Russian approaches to perebor (brute-force searches) algorithms. IEEE Ann. Hist. Comput. 6(4), 384–400 (1984)

    Article  Google Scholar 

  60. Watanabe, O.: Kolmogorov Complexity and Computational Complexity, 1st edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  61. Wilber, R.E.: Randomness and the density of hard problems. In: 24th Annual Symposium on Foundations of Computer Science (FOCS), pp. 335–342 (1983). https://doi.org/10.1109/SFCS.1983.49

  62. Yao, A.C.: Theory and applications of trapdoor functions (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science (FOCS), pp. 80–91 (1982). https://doi.org/10.1109/SFCS.1982.45

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Allender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Allender, E. (2020). Ker-I Ko and the Study of Resource-Bounded Kolmogorov Complexity. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41672-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41671-3

  • Online ISBN: 978-3-030-41672-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics