Skip to main content

Design and Characterization of Light Field and Holographic Near-Eye Displays

  • Chapter
  • First Online:
  • 2289 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11900))

Abstract

The light field and holographic displays constitute two important categories of advanced three-dimensional displays that are aimed at delivering all physiological depth cues of the human visual system, such as stereo cues, motion parallax, and focus cues, with sufficient accuracy. As human observers are the end-users of such displays, the delivered spatial information (e.g., perceptual spatial resolution) and view-related image quality factors (e.g., focus cues) are significantly dependent on the characteristics of the human visual system. Retinal image formation models enable rigorous characterization and subsequently efficient design of light field and holographic displays. In this chapter the ray-based near-eye light field and wave-based near-eye holographic displays are reviewed, and the corresponding retinal image formation models are discussed. In particular, most of the discussion is devoted to characterization of the perceptual spatial resolution and focus cues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adelson, E.H., Bergen, J.R.: The plenoptic function and the elements of early vision (1991)

    Google Scholar 

  2. Akpinar, U., Sahin, E., Gotchev, A.: Viewing simulation of integral imaging display based on wave optics. In: 2018–3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4. IEEE (2018)

    Google Scholar 

  3. Amako, J., Miura, H., Sonehara, T.: Speckle-noise reduction on kinoform reconstruction using a phase-only spatial light modulator. Appl. Opt. 34(17), 3165–3171 (1995)

    Article  Google Scholar 

  4. Banks, M.S., Hoffman, D.M., Kim, J., Wetzstein, G.: 3D displays. Annu. Rev. Vis. Sci. 2(1), 397–435 (2016). pMID: 28532351

    Article  Google Scholar 

  5. Boev, A., Poikela, M., Gotchev, A.P., Aksay, A.: Modelling of the stereoscopic HVS (2009)

    Google Scholar 

  6. Bregovic, R., Sahin, E., Vagharshakyan, S., Gotchev, A.: Signal processing methods for light field displays. In: Bhattacharyya, S.S., Deprettere, E.F., Leupers, R., Takala, J. (eds.) Handbook of Signal Processing Systems, pp. 3–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91734-4_1

    Chapter  Google Scholar 

  7. Cholewiak, S.A., Love, G.D., Banks, M.S.: Creating correct blur and its effect on accommodation. J. Vis. 18(9), 1 (2018)

    Article  Google Scholar 

  8. Cottaris, N.P., Jiang, H., Ding, X., Wandell, B.A., Brainard, D.H.: A computational observer model of spatial contrast sensitivity: effects of wavefront-based optics, cone mosaic structure, and inference engine. bioRxiv (2018)

    Google Scholar 

  9. Curcio, C.A., et al.: Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. J. Comp. Neurol. 312(4), 610–24 (1991)

    Article  Google Scholar 

  10. Dorman, R., van Ee, R.: 50 years of stereoblindness: reconciliation of a continuum of disparity detectors with blindness for disparity in near or far depth. i-Perception 8(6), 204166951773854 (2017)

    Google Scholar 

  11. Golan, L., Shoham, S.: Speckle elimination using shift-averaging in high-rate holographic projection. Opt. Express 17(3), 1330–1339 (2009)

    Article  Google Scholar 

  12. Goodman, J.W.: Introduction to Fourier Optics, 2nd edn. McGraw-Hill (1996)

    Google Scholar 

  13. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph (1996)

    Google Scholar 

  14. Held, R.T., Cooper, E.A., Banks, M.S.: Blur and disparity are complementary cues to depth. Curr. Biol.: CB 22(5), 426–431 (2012)

    Article  Google Scholar 

  15. Hilaire, P.S.: Modulation transfer function and optimum sampling of holographic stereograms. Appl. Opt. 33(5), 768–774 (1994)

    Article  Google Scholar 

  16. Hoffman, D.M., Girshick, A.R., Akeley, K., Banks, M.S.: Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8(3), 33 (2008)

    Article  Google Scholar 

  17. Honda, T., et al.: Three-dimensional display technologies satisfying “super multiview condition”. In: Optics East (2001)

    Google Scholar 

  18. Hua, H.: Enabling focus cues in head-mounted displays. Proc. IEEE 105(5), 805–824 (2017)

    Article  Google Scholar 

  19. Hua, H., Javidi, B.: A 3D integral imaging optical see-through head-mounted display. Opt. Express 22(11), 13484–13491 (2014)

    Article  Google Scholar 

  20. Huang, F.C., Chen, K., Wetzstein, G.: The light field stereoscope: immersive computer graphics via factored near-eye light field displays with focus cues. ACM Trans. Graph. 34(4), 60:1–60:12 (2015)

    Google Scholar 

  21. Huang, H., Hua, H.: Systematic characterization and optimization of 3D light field displays. Opt. Express 25(16), 18508–18525 (2017)

    Article  Google Scholar 

  22. Huang, H., Hua, H.: Effects of ray position sampling on the visual responses of 3D light field displays. Opt. Express 27(7), 9343–9360 (2019)

    Article  MathSciNet  Google Scholar 

  23. Jang, C., Bang, K., Moon, S., Kim, J., Lee, S., Lee, B.: Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. (TOG) 36(6), 190 (2017)

    Article  Google Scholar 

  24. Kelly, D.H.: Motion and vision. II. Stabilized spatio-temporal threshold surface. J. Opt. Soc. Am. 69(10), 1340–1349 (1979)

    Article  Google Scholar 

  25. Konrad, R., Padmanaban, N., Molner, K., Cooper, E.A., Wetzstein, G.: Accommodation-invariant computational near-eye displays. ACM Trans. Graph. 36(4), 88:1–88:12 (2017)

    Article  Google Scholar 

  26. Lanman, D., Luebke, D.: Near-eye light field displays. ACM Trans. Graph. 32(6), 220:1–220:10 (2013)

    Article  Google Scholar 

  27. Lee, S., et al.: Foveated retinal optimization for see-through near-eye multi-layer displays. IEEE Access 6, 2170–2180 (2018)

    Article  Google Scholar 

  28. Legge, G.E.: A power law for contrast discrimination. Vis. Res. 21(4), 457–467 (1981)

    Article  Google Scholar 

  29. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 31–42. ACM (1996)

    Google Scholar 

  30. Liang, J., Williams, D.R.: Aberrations and retinal image quality of the normal human eye. J. Opt. Soc. Am. A 14(11), 2873–2883 (1997)

    Article  Google Scholar 

  31. Liu, M., Lu, C., Li, H., Liu, X.: Near eye light field display based on human visual features. Opt. Express 25(9), 9886–9900 (2017)

    Article  Google Scholar 

  32. Lucente, M.E.: Diffraction-specific Fringe Computation for Electro-holography. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1994)

    Google Scholar 

  33. Macleod, D.I.A., Williams, D.R., Makous, W.: A visual nonlinearity fed by single cones. Vis. Res. 32, 347–363 (1992)

    Article  Google Scholar 

  34. Maimone, A., Georgiou, A., Kollin, J.S.: Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36(4), 85:1–85:16 (2017)

    Article  Google Scholar 

  35. Mäkinen, J., Sahin, E., Gotchev, A.: Analysis of accommodation cues in holographic stereograms. In: 2018–3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON), pp. 1–4, June 2018

    Google Scholar 

  36. Marcos, S., Moreno, E., Navarro, R.: The depth-of-field of the human eye from objective and subjective measurements. Vis. Res. 39(12), 2039–2049 (1999)

    Article  Google Scholar 

  37. McCrickerd, J.T., George, N.: Holographic stereogram from sequential component photographs. Appl. Phys. Lett. 12(1), 10–12 (1968)

    Article  Google Scholar 

  38. Nadenau, M.J., Reichel, J., Kunt, M.: Performance comparison of masking models based on a new psychovisual test method with natural scenery stimuli. Sig. Process. Image Commun. 17(10), 807–823 (2002)

    Article  Google Scholar 

  39. Navarro, R.: The optical design of the human eye: a critical review. J. Optom. 2, 3–18 (2009)

    Article  Google Scholar 

  40. Owens, D.A.: A comparison of accommodative responsiveness and contrast sensitivity for sinusoidal gratings. Vis. Res. 20(2), 159–167 (1980)

    Article  Google Scholar 

  41. Park, J.H.: Recent progress in computer-generated holography for three-dimensional scenes. J. Inf. Disp. 18(1), 1–12 (2017)

    Article  Google Scholar 

  42. Pelli, D.G., Bex, P.: Measuring contrast sensitivity. Vis. Res. 90, 10–14 (2013)

    Article  Google Scholar 

  43. Qin, Z., et al.: Image formation modeling and analysis of near-eye light field displays. J. Soc. Inf. Disp. 27, 238–250 (2019)

    Article  Google Scholar 

  44. Schor, C.M.: A dynamic model of cross-coupling between accommodation and convergence: simulations of step and frequency responses. Optom. Vis. Sci.: Off. Publ. Am. Acad. Optom. 69(4), 258–269 (1992)

    Article  Google Scholar 

  45. Seshadrinathan, K., et al.: Image quality assessment, Chapter 21. In: Bovik, A. (ed.) The Essential Guide to Image Processing, pp. 553–595. Academic Press, Boston (2009)

    Chapter  Google Scholar 

  46. Stern, A., Yitzhaky, Y., Javidi, B.: Perceivable light fields: matching the requirements between the human visual system and autostereoscopic 3-D displays. Proc. IEEE 102(10), 1571–1587 (2014)

    Article  Google Scholar 

  47. Strasburger, H., Rentschler, I., Jüttner, M.: Peripheral vision and pattern recognition: a review. J. Vis. 11(5), 13 (2011)

    Article  Google Scholar 

  48. Sun, F.C., Stark, L., Nguyen, A., Wong, J., Lakshminarayanan, V., Mueller, E.: Changes in accommodation with age: static and dynamic. Am. J. Optom. Physiol. Opt. 65(6), 492–498 (1988)

    Article  Google Scholar 

  49. Sun, Q., Huang, F.C., Kim, J., Wei, L.Y., Luebke, D., Kaufman, A.: Perceptually-guided foveation for light field displays. ACM Trans. Graph. 36(6), 192:1–192:13 (2017)

    Article  Google Scholar 

  50. Utsugi, T., Yamaguchi, M.: Speckle-suppression in hologram calculation using ray-sampling plane. Opt. Express 22(14), 17193–17206 (2014)

    Article  Google Scholar 

  51. Van Nes, F.L., Bouman, M.A.: Spatial modulation transfer in the human eye. J. Opt. Soc. Am. 57(3), 401–406 (1967)

    Article  Google Scholar 

  52. Wandell, B.: Foundations of Vision. Sinauer Associates (1995)

    Google Scholar 

  53. Waters, J.P.: Holographic image synthesis utilizing theoretical methods. Appl. Phys. Lett. 9(11), 405–407 (1966)

    Article  Google Scholar 

  54. Watson, A.B.: A formula for human retinal ganglion cell receptive field density as a function of visual field location. J. Vis. 14(7), 1–17 (2014)

    Article  Google Scholar 

  55. Williams, D., Sekiguchi, N., Brainard, D.: Color, contrast sensitivity, and the cone mosaic. Proc. Nat. Acad. Sci. U.S.A. 90(21), 9770–9777 (1993)

    Article  Google Scholar 

  56. Yamaguchi, M.: Light-field and holographic three-dimensional displays. J. Opt. Soc. Am. A 33(12), 2348–2364 (2016)

    Article  Google Scholar 

  57. Yamaguchi, M., Endoh, H., Honda, T., Ohyama, N.: High-quality recording of a full-parallax holographic stereogram with a digital diffuser. Opt. Lett. 19(2), 135–137 (1994)

    Article  Google Scholar 

  58. Yaraş, F., Kang, H., Onural, L.: Real-time phase-only color holographic video display system using led illumination. Appl. Opt. 48(34), H48–H53 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdem Sahin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sahin, E., Mäkinen, J., Akpinar, U., Miyanishi, Y., Gotchev, A. (2020). Design and Characterization of Light Field and Holographic Near-Eye Displays. In: Magnor, M., Sorkine-Hornung, A. (eds) Real VR – Immersive Digital Reality. Lecture Notes in Computer Science(), vol 11900. Springer, Cham. https://doi.org/10.1007/978-3-030-41816-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41816-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41815-1

  • Online ISBN: 978-3-030-41816-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics