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ABSTRACT

The emerging light-field and holographic displays aim at providing an immersive
visual experience, which in turn requires processing a substantial amount of visual
information. In this endeavour, the concept of plenoptic or light-field function plays
a very important role as it quantifies the light coming from a visual scene through
the multitude of rays going in any direction, at any intensity and at any instant in
time. Such a comprehensive function is multi-dimensional and highly redundant at
the same time, which raises the problem of its accurate sampling and reconstruction.

In this thesis, we develop a novel method for light field reconstruction from a
limited number of multi-perspective images (views).

First, we formalize the light field function in the epipolar image domain in terms
of a directional frame representation. We construct a frame (i.e. a dictionary) based
on the previously developed shearlet system. The constructed dictionary efficiently
represents the structural properties of the continuous light field function. This allows
us to formulate the light field reconstruction problem as a variational optimization
problem with a sparsity constraint.

Second, we develop an iterative optimization procedure by adapting the varia-
tional in-painting method originally developed for 2D image reconstruction. The
designed algorithm employs an iterative thresholding and yields an accurate recon-
struction using a relatively sparse set of samples in the angular domain.

Finally, we extended the method using various acceleration approaches. More
specifically, we improve its robustness by an additional overrelaxation step and make
use of the redundancy between different color channels and between epipolar images
through colorization and wavelet decomposition techniques.

Extensive experiments have demonstrated that these methods constitute the state
of the art for light field reconstruction. The resulting densely-sampled light fields
have high visual quality which is beneficial in applications such as holographic stere-
ograms, super-multiview displays, and light field compression.
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1 INTRODUCTION

Modern display systems aim at creating visual content that can be perceived by hu-
mans as a natural scene. A number of display prototypes that specifically address the
issue of higher realism by recreating 3D visual cues have been presented in recent
years. These include super multi-view„ integral imaging, light field, and holographic
displays [97], [96], [87] . In general, these systems require a high amount of infor-
mation to accurately depict the desired 3D scene. In practice, visual information
acquisition systems can vary from a gantry moving a single conventional camera,
through arrays of cameras, to the recently developed plenoptic cameras and complex
systems composed of multiple sensors. All these are technology-limited. Hence,
robust and efficient methods are needed to close the gap between the amount of
data that can be feasibly sensed and the visual content required by the new genera-
tion of display systems. To formalize such methods, both the sensed and required
information should be presented in a common framework.

A common approach used in computer graphics is to model and reconstruct the
scene using geometrical primitives [30], [51], [42], [79]. More specifically, sensed
visual information is used to model the underlying 3D scene in terms of geometric
structure and correspondingmaterial information. The latter represents the complex
light-scattering distribution properties of the scene’s surface. If such accurate decom-
position is achieved, the required visual information can be subsequently rendered
from the model. Various methods have been used to address particular difficulties in
finding such a decomposition or model.

An alternative concept of image-based rendering, or light field, has been intro-
duced in [38]. This concept provides a generalized framework for modeling the
visual information of a given scene in terms of a multidimensional function with
corresponding properties. In contrast to the scene reconstruction approach, image-
based rendering does not explicitly estimate and reconstruct geometrical information.
Instead, multiperspective images are used to model a continuous light field function.

13



This helps to efficiently describe both the required and acquired visual information as
differently-sampled versions of the same continuous light field function. This raises
the fundamental problem of its reconstruction from a given set of measurements,
which in turn encompasses the related problems of parametrization, acquisition,
processing, and analysis.

1.1 Scope of the thesis

The main goal of this thesis is to develop an effective and efficient method for contin-
uous light field reconstruction from a limited number of multi-perspective images
(views) representing a 3D visual scene. In contrast with conventional methods, which
employ scene geometry information in terms of depth maps to synthesise missing
views, we consider the light field reconstruction as a multi-dimensional signal sam-
pling and reconstruction problem and employ modern sparsification approaches to
solve it.

The solution is sought by exploiting the light field function’s structural redun-
dancy. In our concept, the acquisition system consists of a rectified camera array
which can efficiently describe the correspondences between the captured images.
These correspondences are formalized by the respective epipolar-plane images (EPI)
and the distinct directed-line structure therein. We favor the use of a discrete rep-
resentation, referred to as densely-sampled light field (DSLF), which serves as an
intermediary between the sensed images and the visual data needed to drive any dis-
play. With respect to DSLF, the sensed images form EPIs with holes. Therefore,
from a practical point of view, the reconstruction problem is reformulated as an
inpainting problem of filling in these holes.

Based on a detailed analysis of the light field’s structure and properties, we for-
mulate a regularized EPI reconstruction method utilising the sparsity in the shearlet
transform domain. This method is generalized for the case of continuous light field
function reconstruction. The redundancies in the color, spatial and angular domains
are properly incorporated in the corresponding variational optimization approaches.
The method’s performance is demonstrated by integrating it into important applica-
tions.
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1.2 Structure of the thesis

Chapter 2 covers the required theoretical preliminaries. It presents definitions of the
light field, and essential results about its parameterization, sampling and reconstruc-
tion. Sufficient sampling conditions for various basic 3D scenes are derived using
Fourier analysis. The current state of the art in light field reconstruction is reviewed.

The main contribution as a novel light field reconstruction method is presented
in Chapter 3.It includes the problem formulation and the required theoretical con-
siderations underpinning the proposed method in sufficient detail.

Chapter 4 presents various approaches aimed at accelerating the main method,
whereas Chapter 5 presents several important applications which are improved by
using our proposed reconstruction method. Chapter 6 summarises the work and
offers some concluding remarks.

1.3 Links to the publications

The dissertation encompasses four publications. An early work on intermediate view
synthesis formulated in terms of in-painting is presented in Publication I. It contains
the first version of the main method, where the regularization is formulated in terms
of sparsity in the shearlet transform domain (Section 3.2). Further theoretical and
practical extensions of the proposed method along with its extensive evaluation are
presented in Publication IV. Particularly, it develops the modified shearlet frame for
efficient interpolation which is presented in Section 3.3. Publication III develops
various accelerated versions of the main method, achieved by utilizing colorization
techniques and inter-EPI decorrelation methods (Section 4). Publication II presents
the importance and efficiency of our reconstruction method for the case of holo-
graphic stereogram generation, as presented in Section 5.

The author of the thesis is the first author for publications P.I, P.III, and P.IV and
was in charge of the analysis, implementation, experimental evaluation and the scien-
tific write-up of the presented methods. The author is the second listed author in P.II.
He contributed to developing the reconstruction method and generating experimen-
tal results (Sections 3 and 4 in P.II). The first author, postdoctoral researcher Erdem
Sahin, had a leading role in formulating the theoretical background connecting the
holographic stereogram formation with the DSLF representation (Section 2 in P.II).
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2 PRELIMINARIES

This chapter presents the general theoretical framework which forms the basis for de-
veloping the novel contributions presented later in the thesis. It summarises themath-
ematical formalization of the light field, its modeling and parametrization, and the
sampling and reconstruction in the spatial and frequency domains. It also overviews
the most recent research studies on light field reconstruction based on depth estima-
tion, machine learning and sparse representation.

2.1 Light field modeling and parametrization

Light is themediumwhich conveys information about the visual world. Its formaliza-
tion can be done following the plenoptic function concept, as proposed by Adelson
and Bergen [1]. In this concept, light from a scene is modeled as a dense field of
rays, where each ray is parameterized by its location in the 3D space (Vx ,Vy ,Vz ), its
direction (✓,�), wavelength � and time t . Thus, the resulting plenoptic 7D function,
representing the field, is a function of seven variables

P = P (✓,�,�, t ,Vx ,Vy ,Vz ).

The plenoptic function can be simplified by considering fixed time instants and
wavelength (e.g. for only the primary colours). Essentially, this reduces the number
of corresponding parameters,yielding a 5D light field formed by a set of panoramic
images at different 3D locations , expressed either in polar or Cartesian coordinates
[66].
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Figure 2.1 (a) Light radiance information can be described by considering radiance over the rays intersect-
ing the cube sides. (b) Two-plane parameterization, where an arbitrary ray is parameterized
using intersection points with two parallel planes.

2.1.1 The Lumigraph and 4D Light Field

In an attempt to further simplify the light field representation and make it practical
for a finite scene, Gortler et al. have proposed the Lumigraph [38]. This represen-
tation considers a 3D scene placed inside a virtual cube. Each of the cube’s six faces
is parametrized by a pair of orthogonal axes s and t , defining a plane, as shown in
Fig. 2.1 (a). The direction of any ray coming from the scene is then parametrized by
the intersection with the (s , t ) plane and a second plane parallel to it, as illustrated
in Fig. 2.1 (b). Any 4D point (s , t , u,v)maps to a ray, thus giving rise to a 4D light
field representation, similar to the plenoptic function for finite-size scenes.

A two-plane light field parametrization, leading to a 4D light field, as in Fig. 2.1 (b),
has been independently proposed by Levoy and Hanrahan [59], emphasizing its
usability for scenes in an occlusion-free region of space.

Both the Lumigraph and the two-plane parametrization offer simple yet effective
ways of describing light fields, and are highly applicable for scene analysis and view
synthesis. In particular, they allow a continuous light field L to be represented as a
weighted sum of its discrete samples, in generic signal processing fashion. Given the
coefficients xi , j ,p,q , associated with samples at locations (i , j , p, q), and introducing
localized 4D reconstruction kernels Bi , j ,p,q (s , t , u,v), the continuous light field L̃ is
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Figure 2.2 Epipolar-plane image formation using a pinhole camera moving over a fixed line. (a) Captured
data can be interpreted as a two plane parameterization of a light field for fixed values of the
s and u axes. (b) Corresponding epipolar-plane image where the radiance of the same 3D
point is observed from different camera positions distributed over the straight line.

obtained by

L̃(s , t , u,v) =
X

i

X

j

X

p

X

q
xi , j ,p,qBi , j ,p,q (s , t , u,v).

For computational efficiency, the use of quadrilinear interpolation has been pro-
posed in [38]. This choice of reconstruction kernels tolerates a certain level of arti-
facts caused by the lack of any band-limited property of the light field.

2.1.2 Epipolar-plane image

The concept of an epipolar-plane image (EPI) originates from the stereo vision geom-
etry referred to as epipolar geometry [42]. Consider a stereo pair of images formed
under the pinhole camera model with optical centres cL and cR and epipoles eL, eR.
A world point P , its projections on the left and right images, pL and pR, the optical
centres, and the epipoles all lie on an epipolar plane. Correspondingly, given the
projection point pL, its corresponding point pR lies on the epipolar line pR � eR,
according to the epipolar constraint [42]. This constraint allows the search for match-
ing features to be simplified from a two-dimensional problem to a one-dimensional
problem (e.g. by rectifying the left and right images so that they lie on a single plane,
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Figure 2.3 Identical ray in different spherical light field parameterizations.

which makes all the epipolar lines parallel to the baseline).
The epipolar geometry has been generalized for the case of multiple images by

Bolles et al. in [10]. They attempted to describe a static 3D scene by a dense sequence
of images, which are interpreted as a solid block of data with equal temporal and
spatial continuity. The authors have demonstrated that, in the case of fixed camera
locations, each slice of the solid data block has a distinct structure directly related to
the scene’s geometry [10].

The Bolles et al. approach is directly applicable to the two-plane parameterized LF.
An EPI can be formed by fixing the parameters s and u and varying the parameters
t and v. In this way, the slice E(s ,u)(t ,v) = l (u,v, s , t ) is conventionally called a
horizontal EPI and the slice E(v,u)(t ,v) = l (u,v, s , t ) is called a vertical EPI. EPIs
implicitly characterize the scene’s structure, as each object point is transformed into
a line with a slope dependent on the point’s depth. A simple example of an EPI is
presented in Fig. 2.2.

2.1.3 Alternative parametrizations

Concrete visual acquisition systems usually motivate corresponding particular light
field parametrizations. For example, spherical and cylindrical parametrizations have
been introduced for the efficient representation of multiple images captured from
the same location. Efficient methods for stitching multiple images acquired with
conventional cameras into compound 360-degree cylindrical [22] or spherical panor-
amic images [78] have been proposed. An arbitrary virtual view can be synthesized
by warping the corresponding panoramic image to simulate panning and zooming
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effects. This approach can be interpreted as a light field interpolation from a fixed
point using cylindrical or spherical parameterizations.

Concentric mosaics is a parametrization model where the plenoptic function is
reduced to three dimensions [76]. Each ray is described by its radius, rotation angle,
and vertical elevation. The corresponding acquisition system consists of a camera
moving over planar concentric circles. Novel views are synthesized by combining
the appropriate rays so that the required rays are obtained by composing slits of the
captured images. This view synthesis only works when the corresponding viewpoint
is located inside the planar circular region.

Spherical parametrization assumes finite-size scenes confined within a unit sphere
[46]. The light ray is parametrized using an intersection point on the positional
sphere (✓p ,�p) used as a convex hull of the scene, as illustrated in Fig. 2.3 (a). The
direction of the ray is identified by the intersection point with the directional sphere
(✓d ,�d ). Two-sphere or spherical 4D light field parameterization is defined as a
function l sphere(✓p ,�p ,✓d ,�d ), or as a superposition of two functions,

l sphere = [l p (✓p ,�p )](✓d ,�d ) = l d (✓d ,�d ),

where each of them is defined on a sphere such as l p : V ! (V ! C ), l d : V ! C
and V = {(✓,�)|0 ✓< 2⇡,�⇡/2�⇡/2}.

Alternative sphere-sphere (2SP) and sphere-plane (SPP) parameterizations have
been proposed in [14]. Each ray is parameterized by its intersection points with the
same sphere (2SP) Fig. 2.3 (b), or by its angle and the 2D coordinate of the intersection
point of the ray and the orthogonal plane (SPP) Fig. 2.3 (c).

2.1.4 Acquisition systems

The developed parametrizations have stimulated the development of various light
field acquisition systems. For example, spherical parametrization is utilized in the
Stanford spherical gantry [59]. Another spherical LF capturing system has been
introduced in [69]. It can be considered as an advance on the concentric mosaic and
consists of two cameras rotated over a sphere surface. The captured spherical LF data
allows an efficient synthesis of views located within the recorded spherical volume.

The two-plane parametrization is directly associated with an array of cameras
(e.g. having a camera plane and an image plane). An example of a corresponding

21



acquisition system has been proposed in [91]. Identical data can be acquired using a
conventional camera moved by a gantry as demonstrated in [92]. The so-called light
field cameras, or plenoptic cameras, have been introduced in [34, 68]. In contrast
to conventional cameras, plenoptic cameras accommodate an additional micro-lens
array located between the main lens and the sensor. The sensed data is subsequently
interpreted as a narrow-baseline, two-plane paremeterized and uniformly-sampled
LF. Such aqcuisition systems have proved themselves to be usable, particularly in
microscopy [60].

Later in this dissertation, the two-plane parameterization is adopted as the main
way to describe light fields. Acquisition systems with a relatively wide baseline, e.g.
using camera array or gantry, are considered.

2.2 Light field sampling and reconstruction

The aim of light field rendering is to synthesize any arbitrary light ray or slice given a
set of rays or images representing a sampled version of the continuous light field. In
a classical signal sampling and reconstruction approach, the task requires specifying
the critical sampling rate and designing the corresponding anti-aliasing filter. This,
in turn, requires an analysis of the light field bandwidth, i.e. its support in a Fourier
domain.

This section overviews the classic works on LF sampling and reconstruction,
mainly based on the seminal paper by Chai et al. [20]. The two-plane parameteriza-
tion is used as a starting formalization and most of the results are derived for scenes
with Lambertian reflectance.

2.2.1 Light field representation in a Fourier domain

Consider (s , t ) to be the camera plane and (u,v) to be the image plane, as illustrated in
Fig. 2.2 (a). An arbitrary ray intersecting both planes uniquely determines a quadru-
ple q = (u,v, s , t ). Note, that in [20], the plane coordinates of (u,v) are defined
relative to the (s , t ) coordinates, in contrast to the global coordinate systems consid-
ered in the Lumigraph [38].
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A sampled LF ls is obtained with the use of a sampling function (pattern) p(q)

ls (q) = l (q)p(q) (2.1)

i.e. p(q) = 1when q is from the sampling grid and p(q) = 0 otherwise. A continuous
LF reconstruction is obtained with the use of a suitable anti-aliasing filter r

lr (q) = [r ⇤ ls ](q).

To find the Fourier spectra of both l and ls , the concept of epipolar-plane images
(EPIs), as presented in Section 2.1.2, is further utilized, along with a few simplifica-
tions. First, an occlusion-free scene is considered. This implies that the same 3Dpoint
can be observed from any location on the camera plane. Second, the Lambertian
reflectance of the scene surface guarantees constant radiance in different directions
for a fixed point on the surface. Under these assumptions, every EPI is formed as
a union of distinct lines, where each line corresponds to a particular scene point.
The line intensity corresponds to the light radiance from the point in different di-
rections and, for the Lambertian case, this is a constant. The disparity d of the
observed 3D point between two images located at (s , t1) and (s , t2) can be calculated
as d = v2 � v1 = (t1 � t2) f /z, where z = z(q) represents the scene depth, i.e. the
distance of the surface point corresponding to the q t h -ray from the camera plane,
and f is the distance between the two planes.

Without loss of generality, t1 = 0 is assumed to be the origin of the axis t . Thus,
for the light field l , the following equation is valid

l (q) = l
✓

u +
f

z(q)
s ,v +

f
z(q)

t , 0, 0
◆

.

This shows considerable redundancy in the 4D light field. For a constant-depth
plane z(q) = z0, as shown in [20], its Fourier transform takes the form:

L(⌦u ,⌦v ,⌦s ,⌦t ) = 4⇡2L
0
(⌦u ,⌦v )� (⌦s � f ⌦u/z0)� (⌦t � f ⌦v/z0) , (2.2)

where L0(⌦u ,⌦v ) is the Fourier transform of l 0(u,v) = l (u,v, 0, 0) and� is the Dirac
delta function. In this case, the support of the 4D function L on the 2D plane (⌦v ,⌦t )
is bounded by the line⌦t =⌦v f /z0, as shown in Fig. 2.4 (a). Identically, on the plane
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Figure 2.4 The Fourier transform support on (⌦t ,⌦v ) plane, (a) continuous light field with a constant
depth, (b) sampled light field with a constant depth, (c) depth varies between zmin and zmax.

(⌦u ,⌦s ), the corresponding line is ⌦s =⌦u f /z0.

Assume a uniform lattice sampling pattern defined by the sampling intervals�u,
�v, �s , and �t . The corresponding sampling function is p(q) = III�q (q), where
IIIT (t ) is the Dirac comb function and �q = (�u,�v,�s ,�t ). Thus, the Fourier
transform of the sampled LF Ls at frequency ⌦q = (⌦u ,⌦v ,⌦s ,⌦t ) is given by the
convolution

Ls (⌦q ) = L(⌦q ) ⇤ III2⇡/�q (⌦q ).

This effectively creates replicas of the LF baseband. For the baseband of the
constant-depth scene at z0, illustrated in Fig. 2.4 (a), the spectrum of the sampled
light field gets the form shown in Fig. 2.4 (b). Periodic replicas appear at intervals 2⇡

�t
along the ⌦t axis and

2⇡
�v along the ⌦v axis.

A scenewith spatially varying depthwith depth valueswithin the range of [zmin, zmax]
has support in the Fourier domain bounded by the lines ⌦t = f ⌦v/zmax,⌦t =
f ⌦v/zmin as shown in Fig. 2.4 (c) [20].

2.2.2 Optimal sampling and minimum samplig curve

In terms of frequency-domain support, a reconstruction filter should retain the base-
band and suppress its replicas. A direct approach is to apply a low-pass filter as-
suming a constant depth at infinity (c.f. Fig. 2.5 (a)). A better approach is to con-
sider a directional filter at a constant-depth plane zopt, where z�1opt = (z�1min+ z�1max)/2
(Fig. 2.5 (b)).).To avoid replica overlapping, the sampling interval between adjacent
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Figure 2.5 (a) Direct reconstruction filter based assuming with implicit assumption of infinite depth. (b)
Filtering using zopt. (c) Optimal packing in frequency domain is achieved in case of critical
camera spacing distance�tmax.

cameras has to be sufficiently small, which in turn creates practical problems for the
capture setting. It has been shown that the maximum camera spacing distance which
ensures non-overlapping bands is defined by [20]:

�tmax =
1

Kfv
f
�

z�1min� z�1max
�

,

where Kfv
=min (B s

v , 1/(2�v), 1/(2�v)) is the maximum frequency in the axis ⌦v .
Kfv

depends on the complexity of the texture information, represented by the highest
scene texture frequency B s

v and on the rendering camera resolution�v . If the textural
complexity is ignored and full-resolution images are rendered, then the maximal
frequency is Kfv

= 1/(2�v).

The location of spectral replicas for the case of�tmax is illustrated in Fig. 2.5 (c).

As shown in [20], the error in the case of maximum camera spacing �tmax is
e = dzmin

� dzopt = dzopt � dzmax
= 1/(2Kfv

). Thus, in the worst case, the error is
e =�v, i.e. one pixel.

Another result relating the scene geometry and sampling rate has been reported in
[62]. The authors again consider occlusion-free scenes with Lambertian reflectance
and they approximate the scene depth with a fixed depth plane, Z . Reconstruction
through bilinear interpolation in ray space is considered. For a point with an actual
depth of z0, the error is defined as |z0�Z |. It has been demonstrated that in order
to avoid ghosting artifacts due to aliasing in the novel view interpolation, the sam-
pling distance between adjacent camera locations d should satisfy

�

�

�

z�10 �Z�1
�

�

�

d  �,
where � is the camera’s spatial resolution. This result implies that the sampling dis-
tance should be taken so as to ensure that the disparities between adjacent views do
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Figure 2.6 (a) Uniform multi-layer depth decomposition represented in the frequencies domain. (b)
Minimum sampling curve for different rendering resolutions. Any point in the highlighted
region represents redundancy for rendering in joint image and geometric space.

not exceed one pixel. An artifact-free LF rendering for a scene within a depth range
[zmin, zmax] can be achieved by specifying a constant-depth plane at

zopt =
2zminzmax

zmin+ zmax
.

This again suggests that the sampling rate on the camera plane is inversely propor-
tional to both the uncertainty of the geometry information and the camera resolu-
tion.

The analysis presented so far can be generalised for the case of multiple depth
layers. The idea is to represent the scene depth in terms of multi-layer decomposition,
where each layer can be processed independently using the corresponding optimal
filter for a constant-depth plane zi :

z�1i = �i z
�1
min+ (1��i )z�1max, �i = (i � 0.5)/Nd , i = 0, . . . ,Nd � 1.

In the Fourier domain, a uniform depth layering implies a division of the original
support, as illustrated in Fig. 2.6 (a). Given Nd number of layers, the required mini-
mum sampling rate is reduced and the achieved maximum camera spacing is related
with the layer bandwidth�tmax,Nd

=�tmaxNd .

In [20], an optimal sampling curve in the joint image and geometric space has been
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Figure 2.7 An illustration of the relation between base mesh and scene geometry in surface light field
parameterization as described in [93].

derived, as shown in Fig. 2.6 (b). For the full parallax LF interpolation, it illustrates
the optimal relation between the number of necessary images and the number of
uniform depth layers as Nd

p

Ni =Kfv
.

Filtering based LF reconstruction using the optimal sampling curve still implies
capturing of a significant number of images. Therefore more advanced methods are
required to achieve similar reconstruction quality using a lower number of images.

2.3 Surface light field

A direct parameterization of the scene surface is an alternative to the depth layering
approach, and this allows more complex scenes to be analysed [93].

The geometrical scene surface M is modelled by a projection ' : K0 ! M 2 R3
using the simplified base mesh K0. The radiance of a light ray in direction ! at
a point u on K0 is defined as the surface light field (SLF) L(u,!). It is simplified
to a piece-wise linear function depending on the ! parameter, and for a fixed u it
is referred to as a lumisphere [55]. Each lumisphere is recovered from a given set of
images using the least-squares approximation. The quality of the reconstruction using
the SLF parameterization greatly depends on the accuracy of the geometry of the
approximated scene. However, it allows non-Lambertian scenes to be represented
efficiently. The relation between the two-plane parameterized light field and the
surface light field together with the related spectral analysis has been developed in
[19], [25].
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Figure 2.9 (a) Epipolar-plane image for a Lambertian scene of slanted plane cosine texture. (b) Cor-
responding magnitude in the frequency plane with theoretical limits (dashed lines). (c) The
decay rate of the magnitude of the LF Fourier transform coefficients along ⌦t parameter.

Without loss of generality, the frequency analysis can be developed for 2D epipolar-
plane image. Similarly, the SLF ls (r,✓) is considered only on the plane (x, z), where
r is an arc length and ✓ is the direction of an emitted light ray. The two-plane param-
eterization is given by l (t ,v) as shown in Fig. 2.8 (a). As seen in the figure, for the
occlusion-free case, (x� t )/z = v/ f . An approximation ✓⇡ v/ f is valid for pinhole
cameras with relatively narrow fields of view. For the scene with constant-depth,
z = z0, the two parameterizations are related as l (t ,v) = ls (vz0/ f + t ,v/ f ) and the
corresponding Fourier transforms are related as

L(⌦v ,⌦t ) = f Ls (⌦t , f ⌦v � z0⌦t ).

For a non-Lambertian scene, the SLF is not a band-limited function. Nevertheless,
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as shown in [19], the following approximation of its Fourier transform Ls can be
considered

Ls (⌦r ,⌦✓)⇡ Ls (⌦r ,⌦✓)IB✓ (⌦✓),

where IB✓ is the indicator function with bandwidth B✓. This approximation suggests
that the surface’s BRDF is band-limited, or for a fixed point on the surface, the light
radiance slowly changes depending on the angle ✓. As a consequence

L(⌦v ,⌦t ) = f Ls (⌦t , f ⌦v � z0⌦t )IB✓ ( f ⌦v � z0⌦t )

and the spectrum has additional finite width 2B✓p
z20+ f 2

perpendicular to its tilt. An

illustration of this result is presented in Fig. 2.8 (b).
Depth that is modelled as a tilted plane is another case considered in [19]. For

this, the relation between the two parameterizations is

l (v, t ) = ls

✓

vz0+ f t � f x0
f cos�� v sin�

,
v
f

◆

where � is the angle of the tilted plane starting at point (x0, z0).
To give a more illustrative example, a sinusoidal texture ls (r,✓) = cos (⌦0 r ) is

considered. For a limited field of view |✓| < vm/ f , it has been shown that the
magnitude of the Fourier transform L in the first quadrant (⌦t > 0, ⌦s > 0) is [19]

|L(⌦t ,⌦v )|=
8

>

<

>

:

⌦0 f
2⌦2

t | sin�|
,

⌦0 f
f cos�+ vm | sin�| ⌦t  ⌦0 f

f cos�� vm | sin�|
0,otherwise.

(2.3)

This result is illustrated in Fig. 2.9 (a) for a slant �=⇡/6. One can clearly see the
bounds in Eq. 2.3 along the ⌦t axis and the function decay (Fig. 2.9 (b) (c)).

In the case of a scene with occlusions, an approach using silhouettes has been
proposed in [19]. The scene is initially divided into independent objects without
self-occlusions. The corresponding LF is represented as a composition of LFs gener-
ated by each object separately, and the silhouettes are defined as masking functions
representing occlusions. The spectrum of an occluded object is its unoccluded spec-
trum modulated by all the silhouettes of the occluding objects. The magnitude of
the Fourier transform for a simple scene with three constant depth planes occluding
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Figure 2.10 (a) Epipolar-plane image for a Lambertian scene consisting of three constant depth planes
occluding each other. (b) Corresponding magnitude in the frequency plane.

each other is shown in Fig. 2.10.

The general case for arbitrary depth has been studied in [25]. The bandwidth of
the LF is, in general, non band-limited, and the method proposes only analysing the
boundaries for an essential bandwidth. The main assumption is of an occlusion-free
scene given on the plane (t ,v) by depth function z(x) and corresponding texture
function g (r ) described in the curvilinear coordinates r = r (x). The essential band-
widths (essBW) are bounded by

essBW⌦t
{l }=

p

1+max |z 0|2
1� vmmax |z 0|BW{g}, essBW⌦v

{l } zmax
p

1+max |z 0|2
1� vmmax |z 0| BW{g},

where BW{g} is the bandwidth of the texture function g . As remarked in [37],
the worst case for the bandwidth expansion along the ⌦t axis is determined by the
steepest slope on the surface, whereas the worst case along the ⌦v axis is when the
surface is at the steepest point and furthest away from the camera, and the pixel is at
the boundary of the field-of-view.

The studies in [36] and [37] have proposed generalizations in terms of finite
field of view (FFoV) and finite scene width (FSW). A scene on a plane slanted by
an angle � with finite length given by (x(r ), z(x)), r 2 [0,T ], x 2 [x1, x2] is con-
sidered, c.f. Fig. 2.11 (a). The texture function h is defined as h(r ) = g (r ) for
r 2 [0,T ], andh(r ) = 0,otherwise, where g is a band-limited function. The FFoV
condition implies that the LF is 0, for |v |> vm . The final, rather complex form of
the LF Fourier transform is given in [37]. A generalization of Eq. 2.3 is obtained for
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Figure 2.11 (a) Light field parameterization for a slanted plane surface. (b) An epipolar-plane image for
a slanted plane scene with cos(⌦0 r ) texture function and FFoV, FSW constraints. (b) Cor-
responding to an epipolar-plane frequency plane representation with highlighted essential
bandwidth obtained in [37].

the essential part of the bandwidth along the ⌦t axis in the first quadrant as follows

⌦max
t =

BW{g}+ 2⇡/T
cos�� v̄m | sin�| .

The same along the ⌦v axis is

⌦max
v =⌦max

t
zmax

f
+ n(�, v̄m)

⇡
vm

⌦min
v =⌦max

t
zmin

f
� n(�, v̄m)

⇡
vm

for v̄m = vm/ f and

n(�, v̄m) =
3cos2�+ 3.5(v̄m sin�)2

3cos2�+ (v̄m sin�)2
.

Under the no-occlusion constraint, n(�, v̄m) 2 [1,1.625]. Moreover, the essen-
tial bandwidth for a slanted plane is bounded by a parallelogram as illustrated in
Fig. 2.11 (c), where

zG =
zmax+ zmin

2

and the bandwidth is

A=
zmax� zmin

zG
⌦max

t + n(�, v̄m)
2⇡ f
vmzG

.
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Based on these results, the optimal sampling distance on the camera plane for a slanted
plane case is

�tmax =
2⇡
A

=
2⇡zGvm

vm⌦t (zmax� zmin)+ 2⇡n(�, v̄m) f
.

The EPI under FFoV and FSW constraints and for a cosine texture function g (r ) =
cos (⌦0 r ) is shown in Fig. 2.11 (a). The corresponding magnitude in the frequency
domain is shown in Fig. 2.11 (b).

2.4 General methods for light field reconstruction

This section presents an overview of recent approaches to light field reconstruction.
The majority of these approaches are based on an accurate depth estimation, aimed
at subsequent scene reconstruction [89], [45], [48], [50]. These are are reviewed
in Subsection 2.4.1. Subsection 2.4.2 is devoted to reviewing methods for depth or
disparity estimation with consecutive post-processing using modern machine learn-
ing approaches [49], [95], [94], [40], [41], [75], [7]. An alternative reconstruction
method working in a continuous Fourier domain [74] is reviewed in Subsection 2.4.3.
Approaches to the related spatial super-resolution problem are presented in Subsec-
tion 2.4.4 [29], [6].

2.4.1 Depth based methods

Wanner et al. have proposed a method for estimating disparity directly from the light
field data [89]. First, a fast estimate is made of the local disparity using a structure
tensor working on epipolar plane images. Then, globally consistent depth maps
are obtained from the local estimates using convex regularization. The accurately
estimated sub-pixel precision disparity maps are then used for spatial and angular
super-resolution of the light field function, formulated as variation inverse problems.

This method has been developed for processing data from plenoptic cameras,
whose disparity range is relatively small.

Conventional disparity estimationmethods, employ a three-step framework: cost
volume construction (evaluating different depth hypotheses), cost volume filtering
(regularization using aggregation in the spatial domain), and label selection (selection
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of most probable depth hypothesis, typically by winner-takes-all) [45]. A similar
framework has been adopted in [48] for accurate estimation of the disparity from
light fields acquiredwith plenoptic cameras, i.e. images with relatively small disparity
ranges. Therefore, the approach focuses on developing an accurate sub-pixel displace-
ment algorithm, required for the cost volume construction. The latter consists of
two components to accommodate both the color differences between views and the
differences in the gradient images. The sub-pixel precision disparity map associated
with the central view can be further used for LF angular and spatial interpolation.

Alternative methods for disparity estimation from plenoptic data have been de-
veloped in [80], [100].

As opposed to using plenoptic data with a small disparity range, the method
described in [50] processes data captured by a gantry providing horizontal parallax
images. More specifically, the constructed system accurately moves a DSLR camera
horizontally to capture high-resolution multi-perspective images. For such a high
amount of data, a direct estimation of disparity maps using conventional methods
is inefficient. Therefore, the proposed technique utilizes a fine-to-coarse refinement
technique to obtain accurate disparity maps from sufficiently-dense sampled light
fields and avoids explicit global regularization. A novel sparse representation for
a set of adjacent EPIs is proposed , comprising a set of distinct lines, achieved by
considering a densely sampled LF. This representation is obtained first at the edges of
the high-resolution image and then proceeds to successively coarser EPI resolutions
with the aim of obtaining disparity estimation on the smooth spatial areas where the
edges are not well-defined. The technique effectively utilizes the EPI constraints and
is especially efficient for processing high spatio-angular LF datasets.

2.4.2 Machine learning methods

In recent years, there have been several attempts to solve the light field reconstruction
problem by machine learning means. Kalantari at. al. [49] have proposed a novel
learning-based approach aimed at intermediate view synthesis. The training dataset
is formed of plenoptic images captured with a Lytro Illum camera. Using only 4 of
the sub-aperture views, the aim is to reconstruct all the intermediate sub-aperture
views. This approach includes two convolutional neural networks (CNN): one for
disparity estimation and another for final view synthesis using the estimated disparity.
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Both networks are trained simultaneously by minimizing the error between the
synthesized and ground truth views. The disparity map at a location q on the camera
plane (u,v) is formalized as Dq = gd (K), where gd is a transform modeled by a
CNN, working on a cost volume K computed by warping all the available views
to the novel view position q using predefined disparity levels d1, . . . ,dL. For view
synthesis, another CNNdenoted by gc is used: Lq = gc (H ), whereH represents a set
of all the back-warped input views using the disparity map Dq . The role of the color
prediction CNN gc is to model the complex relationship between the final image
and the warped images around any occlusions. The two neural networks are trained
together using a dataset containing various patches of 60⇥60 spatial resolution. This
method has demonstrated superior results in comparison to [89], [48], especially
around occlusion boundaries.

The LF angular super-resolution problem has been cast as EPI high-frequency
details reconstruction in [95]. The insufficient sampling in the angular domain is
modeled in the EPI domain as

EL = EH #,
where # denotes a down-sampling operation applied to the original EH densely sam-
pled EPI, where the disparity does not exceed 1 pixel. The inverse problem is solved
by minimizing the following function

min
f

||EH �Dk f ((EL ⇤ k)") ||22,

where " denotes bicubic interpolation, k denotes a predefined 1D kernel in the spa-
tial domain, Dk denotes a non-blind deblurring operator, and f represents a high-
frequency reconstruction operator in the angular domain, modeled as a CNN.

The convolution kernel k (usually a Gaussian function) extracts low-frequency
features from EL. The CNN f is designed as a residual neural network with three
convolution layers with decreasing kernel sizes together with a rectified linear unit.
It is used to predict angular domain detail information from blurred and upsampled
EPI. Further, the spatial detail of the EPI is recovered through a non-blind deblurring
operation [52]. The whole densely sampled light field is reconstructed by applying
the proposed "blurring - restoration - deblurring" framework for each EPI in both
the horizontal and vertical directions.

Applying this method directly on an LF with a wide disparity range yields poor
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reconstruction since the operator Dk does not perform well for large blur kernels k.
The results reported in [95] are for a maximum disparity of 5 pixels. In a subsequent
work [94], this narrow disparity limitation has been overcome using a disparity-
assisted rendering technique, wherein it is sufficient that the disparities are roughly
discretized [45]. For each discrete disparity region, appropriate shearing is applied
to the corresponding EPI region so that the disparity range becomes small enough to
be processed by the original "blurring - restoration - deblurring" method. The final
result is obtained by blending together multiple super-resolved EPI regions.

Heber and Pock have proposed a two-step method for disparity estimation by
analyzing all the EPIs [40]. For a given 4D LF, hyperplane orientations are predicted
for the central image using a CNN applied to both horizontal and vertical EPIs.
The next step is to refine the predicted orientation (disparities) using a generalized
total variation regularization procedure [11]. In a follow-up publication, the authors
have improved the previous results by designing a neural network that is directly
applied to 3D subsets of the 4D LF using one angular and two spatial dimensions [41].
This approach allowed the artifacts in the spatial domain caused by the independent
processing of each EPI slice to be significantly suppressed.

Shin at. al. have proposed an end-to-end neural network architecture for disparity
estimation from a 4D light field [75]. The input consists of a stack of horizontal,
vertical and two diagonal views containing the central view. This network exhibits
a multi-stream structure, such that each 1D image stack subset is processed through
three convolution layers to obtain sets of features describing it. The feature sets are
concatenated and processed together by additional convolution layers followed by
RELU. This work has also emphasized the importance of using multiple augmen-
tation techniques in order to avoid overfitting. The method has demonstrated top
performance for the HCI 4D Light Field Benchmark [44].

Extracting intrinsic information from LF data has been attempted in [7]. An
encoder-decoder network has been designed to decompose a non-Lambertian scene
LF into disparity, diffuse and specular components. The encoder part works on
the EPI volume by processing each EPI independently. Using a number of residual
blocks, it gradually reduces the EPI volume in the spatial domain and increases its
feature domain. The encoded features of the paired EPI volumes are then concate-
nated and further processed by multiple decode pathways. The auto-encoder path
reconstructs the original input data, while three other decoders get the corresponding
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disparity, diffuse and specular components. All the decoders are constructed with
residual blocks with transpose convolution layers. Before the last layer, the diffuse
and specular decoders concatenate the features to assist in computing the final radi-
ance as the sum of the diffusion and specular information following the dichromatic
reflection model.

2.4.3 LF reconstruction through sparsification in a continuous Fourier

domain

All the LF representations and sampling conditions discussed so far have specified
stringent requirements for the sampling intervals in order to retain the properties of
the underlying continuous function in its sampled version so that it can subsequently
be reconstructed correctly. Applying these requirements to LF sensing would gener-
ate a high amount of data, which would be difficult to handle. At the same time, this
data is highly redundant. This raises the idea of using sparsification approaches, that
is, to find a suitable domain where the LF signal is sparse and only a small amount
of data (in the form of transform coefficients) is needed for its reconstruction.

Shi et al. have proposed applying the sparsity concept in the continuous Fourier
domain [74]. The authors argue that LF sparsity in a spectral domain mainly holds
true in the continuous Fourier case, but does not necessarily hold in the discrete
Fourier case, mainly due to the required windowing.

A signal x = x[n] of length N is k-sparse in the continuous Fourier domain if it
can be represented as a combination of k <N frequencies at arbitrary and non-integer
locations:

x[n] =
1
N

k
X

l=0

al exp
⇣

2⇡i!l
n
N

⌘

.

The problem of reconstructing a signal from given measurements can be formu-
lated as an estimation of the frequencies {!l }kl=0 and the corresponding coefficients
{al }kl=0. Thus, to recover two-dimensional signal samples {x[u,v],8u,v = 0, . . . ,N � 1}
from a set of measurements xS = {x[u,v],8(u,v) 2 S}, one can assume k-sparsity
in the continuous Fourier domain and solve the following minimization problem

argmin
al ,!ul

,!vl

X
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Figure 2.12 Sampling pattern where every rectangle represents one view from a LF consisting of 17⇥17
views. (a) box and two diagonals pattern consisting of 93 views used for method [74]. (b),
(c) uniformly decimated setup consisting of 5⇥ 5 and 9⇥ 9 views respectively.

In matrix notations a = {al }kl=0 ,! =
¶

(!ul
,!vl

)
©k

l=0
, the problem becomes

argmin
a,!
kxS �A!ak22 .

The problem is solved by alternating minimization. For fixed k frequency loca-
tions!, the corresponding optimal coefficients a are estimated directly using pseudo
inverse, a = A†

!xS . The optimal solution of the frequency locations ! is obtained
by minimizing

!⇤ = argmin
!

�

�

�

xs �A!A†
!xS

�

�

�

2

2
,

using gradient descent. In [74], the gradient is approximated by evaluating an error
function over 8 directions around every frequency position and updating it in the
most descending direction.

The 4D light field reconstruction problem is formulated as finding the values
L(x, y, u,v) at all angular locations (u,v), given a sampling set S. Technically, 2D
slices L̂!x ,!y

(u,v) for fixed spatial frequencies are reconstructed independently.

The sampling set S is composed of a set of 1D discrete sampling lines on the camera
plane, as illustrated in Fig. 2.12. A 1D discrete line on a 2D discrete grid is defined by
the parameters (↵u ,↵v ) and (⌧u ,⌧v ) when GCD(↵u ,↵v ) = 1,0 ↵u ,↵v ,⌧u ,⌧v <N
so that the sampling positions are

{(↵u t +⌧u mod N ,↵v t +⌧v mod N ), t = 0, . . . ,N � 1} .
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To obtain reliable initial estimates for the frequency locations, the authors of [74]
have proposed a voting scheme based on the Fourier projection slice theorem, which
effectively utilizes the available 1D discrete sampling lines.

This method have shown prominent reconstruction quality especially for light
fields generated by non-Lambertian scenes.

2.4.4 Spatial super-resolution methods

So far, light field reconstruction has been addressed in terms of reconstructingmissing
angular views, a problem also referred to as angular super-resolution. A related prob-
lemof increasing the resolution can be formulated in the spatial domain. Spatial super-
resolution is particularly important for plenoptic cameras where the capture of angu-
lar views comes at the expense of reducing their spatial resolution. Still, plenoptic im-
agery exhibits significant redundancy between images, which hasmotivated a number
of studies on LF spatial super-resolution [29], [99], [88], [71], [6]. More specifically,
in [29], the LF spatial super-resolution has been formulated as a low-rank matrix
approximation problem employing a convolutional neural network. By rearranging
the discrete 4D light field data l (s , t , u,v), a 2D matrix is formed from columns of
vectorized sub-aperture images Is ,t (u,v), such that L= [vec(Is ,t ), ...] 2 Rm⇥n . The
acquisition of the low-resolution LF LL from the high-resolution LF LH is modeled
as

LL =#↵ BLH + ⌘,

where #↵ is a downsampling operator by a factor ↵, B is a blurring kernel and ⌘ is
some additive noise. The inverse problem is ill-posed and requires additional regu-
larization. In [29], a dimensionality reduction is considered for the LF data in order
to significantly eliminate redundant information. Using a precalculated optical flow,
a forward warping operator � (LL) = LL

� is applied to the low-resolution LF. The re-
duction is achieved by approximating LL

� ⇡AL by rank-k matrix using singular value
decomposition. TheAL rank-k matrix allows the data to be decomposed into linearly
independent and dependent groups of vectors (columns), such that AL

I 2Rm⇥k repre-
sents the set of linearly independent columns and AL

D 2Rm⇥n�k ⇡WLAL
I represents

the linearly dependent columns withWL coefficients.

Instead of direct estimation of the high-resolution LF LH , its forward warped
version � (LH ) is estimated first. The problem of restoration or prediction of the
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linearly independent columns AH
I of � (LH ) from AL

I is solved by minimizing
argminAH

I
|| f (AH

I )�AL
I ||2 using a 10 layer CNN represented by f . Linear dependent

columns of � (LH ) are obtained using the sameW coefficients found from the low-
resolution LF decomposition,AH

D =WLAH
I . The obtainedA

H
I andAH

D together form
the AH matrix which is the rank-k estimate of � (LH ).

Applying back warping (inverse of the forward warping transform � ) on AH

generates holes in the restored images at the occlusion locations. Occlusion filling is
accomplished by inpainting using the structure tensor from a low-resolution EPI for
guidance [29]. The obtained LH estimate of the unknown LH still contains artifacts
due to imperfect back warping. These are tackled by an iterative back-projection
refinement

LH
k+1 = LH

k +
Ä

LL� "↵
Ä#↵ BLH

k

ää

.

The spatial super-resolution problem has also been addressed in a graph-based
regularization framework [71]. The forward model is formalized by blurring and
sub-sampling

I L = SBI H + ⌘,

where S is a downsampling matrix and B is a matrix implementing the blurring op-
eration. A two-term regularization is applied, given that F k 0

k is a warping transform
from image (view) k to image k 0 and Hk 0

k is a binary matrix marking the correspond-
ing occlusions. The first regularization term is formed as Hk 0

k I Lk 0 ⇡Hk 0
k SBF k 0

k I Hk , i.e.
assuming that any low-resolution image I Lk 0 can be approximated by a high-resolution
image I Hk , excluding occlusions. The second graph-based regularization term en-
forces the LF structure between views. The proposed final minimization problem
is

argmin
I H={I Hk }

X

k

�

�

�

SBI Hk � I Lk
�

�

�

2

2
+
X

k

X

k 0 6=k

�

�

�

Hk 0
k

Ä

SBF k 0
k I Hk � I Lk

ä

�

�

�

2

2
+ I H LI H ,

where L represents the Laplacian matrix of the graph attached to enforce the LF
structure between high-resolution views.

The spatial super-resolution problem is solved using methods developed for im-
age denoising. A similar approach is considered in [6]. The new super-resolution
algorithm is based on the denoising method presented in [5]. The super-resolution
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problem is cast as a minimization problem

argmin
!

1
2

�

�

�

LL�D↵L
H
�

�

�

2

2
+�! k!k0 , subject to LH =  !,

where D↵ is a combined blurring and downsampling operator. The parameter! de-
notes the coefficients in the transform domain defined by the corresponding analysis
and synthesis transforms � and  , where collaborative filtering is employed. The
solution giving a high-resolution LF is found through an iterative procedure:

LH
i =  T⌧

�

�LH
i
�

LH
i+1 = LH

i +�U↵
�

LL�D↵L
H
i
�

,
(2.4)

where T⌧ is an element-wise hard thresholding operator with a threshold value ⌧ =
p

2�!, and U↵ is an upsampling matrix employing bicubic interpolation with an
additional guided filter if necessary. The compound transform  T⌧� represents
the denoising operator, which is formed by utilizing the original BM3D denoising
method [24].

Compressive sensing techniques have been successfully used for light field capture
with the corresponding dictionary learning. A new camera model, employing a
coded attenuation (amplitude) mask placed between the sensor and lenses has been
proposed in [65]. The sensed discrete signal is formed as

y=
X

i
�i li ,

where y represents the compressive measurements, and li represents the LF angular
views formed on the camera plane. Diagonal matrices {�i} are formed by differently
shearing the same coded mask. By concatenating together the variables l= [l1, l2, . . .]
and �= [�1,�2, . . .], a compact notation is given by

y= �l.

This problem is ill-posed since the number of measurements (sensor size in pixels) is
significantly smaller than the actual 4D LF resolution. Therefore, this issue has been
addressed by utilizing sparse coding techniques [65]. An overcomplete dictionary
D is constructed to effectively represent the natural light field l data, giving rise to
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the (small number of non-zero) representation coefficients ↵. This reformulates the
acquisition model as

y= �D↵.

The dictionary is learned from a big set of 4D light field patches {pi} employing the
corresponding minimization problem

min
D ,{↵i }

X

i
kpi �D↵ik2 , subject to 8i ,k↵ik  k ,

where k is the sparsity level enforced on the corresponding coefficient ↵i .
A typical choice for the measurements matrix � is a random matrix generating

incoherent measurements with respect to the dictionary. However, in the case of the
coded mask, it has a strictly diagonal structure. Therefore, inspired by the results
presented in [28], the optimal mask code f = [ f1, f2, . . . , fm] is obtained by solving
the following optimization problem for a given dictionary D ,

min
f
kI� (�D)¸�DkF , subject to 8i = 1, . . .m, 0 fi  1,

X

i
fi/m > ⌧.

Additional constraints on f provide control over the optical light efficiency ⌧ (for-
mulated in terms of mean light transmission) of the camera system.

The constructed dictionary and the corresponding optimal coded mask have been
evaluated for LFs with different challenging 3D scenes, containing non-Lambertian
reflectancies and partial occlusions. It has been demonstrated that the achieved light
field reconstruction quality is higher than it is for conventional plenoptic cameras at
the cost of substantial computational resources.
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3 LIGHT FIELD RECONSTRUCTION

3.1 Problem formulation

As discussed in Chapter 2, a continuous 4D light field carries the information fully
describing 3D visual scenes. Recreation of the continuous light field can provide
people with a highly realistic visual experience.

Applications, such as super multi-view displays and digital holography, require a
dense set of LF samples. The corresponding replica of the true continuous light field
is formed in the subsequent optical system. Such applications can be considered as
optical reconstructors of the continuous LF from a dense, yet discrete set of light rays
(samples). Other applications might require getting rays at a desired (i.e. arbitrary)
location and direction from a given dense set of rays.

Hereafter, the LF reconstruction is addressed in the context of two-plane parametriza-
tion. The considered LF samples are acquired by a rectified array of cameras uni-
formly placed over a fixed plane in space. Assuming a Lambertian scene and sufficient
spatial resolution of the captured views, the frequency analysis of an LF function pre-
sented in Chapter 2 and the results presented in [62] suggest that an arbitrary ray can
be computed using a local interpolation method, given that the disparities between
neighboring samples in the angular domain are less than 1px. Correspondingly, the
densely sampled LF (DSLF) is defined as a two-plane parameterized function, where
the disparity between adjacent views is 1px at most (c.f. Fig. 3.1). This DSLF can
serve as the sought-after intermediary between given LF samples and continuous LF
restoration. The required sampling density of a wide baseline DSLF is not achiev-
able by direct capture for common 3D scenes. Hence, its reconstruction has to be
performed from a coarser sampling. Thus, the light field reconstruction problem,
or equivalently, the view interpolation problem is reformulated as the problem of
obtaining DSLF from a coarse set of views or a coarse set of samples. Hereafter, it
will be referred to as a DSLF reconstruction problem. In this formulation, DSLF
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reconstruction mainly implies LF reconstruction in the angular domain. However,
as shown in Section 5.1, the same idea can be generalized for spatial super-resolution
or reconstruction.

In the simpler case of horizontal parallax, DSLF is three-dimensional data, which
is still computationally expensive to handle. This problem can be split into stages,
where one first looks at the LF 2D slices, referred to as epipolar images (EPI) (Sec-
tion 2.1). Each EPI can be considered independently since the correlated information
in the angular domain is essentially contained within the epipolar planes. In the EPI
slices, an acquired uniform set of rectified views is interpreted as a set of rows located
at the proper positions of the densely sampled grid. This is referred to as densely-
sampled EPI (DSEPI) (c.f. Fig. 3.1). The problem of DSEPI reconstruction can be
considered independently for each particular EPI, so that only coarse sets of rows are
available. In this approach, the DSLF problem is decomposed into solving multiple
independent 2D problems for every DSEPI.

For any desired DSEPI, only several distinct rows are available, while the rest has
to be reconstructed. One can conclude that DSEPI reconstruction is similar to the
problem of inpainting. Inpainting is the process of filling in (rather isolated) holes or
gaps in images, using information from the neighboring pixels and structure. It has
been extensively studied in conventional 2D image processing [39]. In contrast to
conventional inpainting, however, the empty regions in DSEPI are bigger than the
available informative image samples. This motivates us to seek an inpainting solution
in the context of a sparsifying dictionary [73], [12], relying on the hypothesis that
the DSEPI can be conveniently represented with some proper dictionary.

Based on the structural properties of the DSLF, a specific predesigned dictionary
can be considered. Specifically, continuous EPIs have a very distinct structure of
directed lines and stripes. Our hypothesis is that a dictionary composed of directed
and multi-scale atoms should be suitable for the above-defined inpainting task. As
discussed further in this chapter, we adopt the shearlet frames as suitable candidates
for this task. A detailed formulation of the proposed suitable dictionary is presented
in Section 3.3. The proposed reconstruction method represents a modification of
the iterative thresholding algorithm described in Section 3.2. The proposed DSLF
reconstruction uses an iterative procedure, wherein the sparsity of coefficients from
the predesigned dictionary is employed.

Further extensions of the reconstruction method using various acceleration tech-
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(a) (b) (c) (d) (e)

Figure 3.1 An illustration of the problem of a densely sampled LF reconstruction in terms of DSEPI
reconstruction. (a) Coarse set of input views. (b) Corresponding EPIs for different rows scaled
for explicit illustration of the discontinuous sampling in the angular domain. (c) Reconstructed
DSEPIs illustrating the continuous structure of epipolar lines. (d) DSLF formed from the
reconstructed DSEPIs. (e) Two intermediate views.

niques, including efficient inter-EPI processing and colorization are presented in
Chapter 4. Certain applications where the proposed reconstruction method can be
efficiently used are presented in Chapter 5.

3.2 Sparse representation and regularization

The problem of DSLF reconstruction from coarse samples can be viewed from the
perspective of the light field frequency-domain analysis presented in Chapter 2. It
was demonstrated that the required sampling rate for getting a faithful reconstruction
was too high even for the case of Lambertian scenes with no occlusions. To overcome
this limitation, a reconstruction method should use other approaches, for example
based on sparsification. Sparse signal representation is usually defined with respect
to a dictionary or a coordinate system, where the signal of interest is sparse. Finding
the sparse representation usually requires going through an analysis/synthesis proce-
dure, requiring an additional regularization term, which has to be designed with the
specific application in mind. This way, reliable (consistent, stable) reconstruction
from coarser sampling can be achieved. In this section, we briefly overview the ba-
sics of sparse representation and regularization techniques. Building on this theory,
we further utilise the main reconstruction method using the sparse representation
framework presented in [12], [73].

45



3.2.1 Sparse regularization

Various image processing problems, such as denoising, deblurring, inpainting, super-
resolution, acquisition process can be formalized by a system of linear equations,
referred to as a forward model

y =Mx + e , (3.1)

where x is the unknown signal of interest, M is the image-formation transform rep-
resented by a measurement matrix and y is the vector of acquired measurements.
For example, the measurement matrix M for the deblurring problem represents a
convolution matrix and for the inpainting problem, it represents a binary mask. In
many cases, perturbation of the acquired observations y is also considered. It is mod-
eled by adding a noise term e , such that e is a vector of independent and identically
distributed Gaussian random variables with zero mean and standard deviation of �
representing noise model (e ⇠N (0,�2I )).

Obtaining the unknown signal x for the given set of measurements y would be
referred to as the inverse problem of the forward model (Eq. 3.1). The inverse prob-
lem is said to be well-posed if for each given y the problem has a unique solution and
the solution depends continuously on the data y [81]. Otherwise, the problem is
considered to be ill-posed. Typical image processing problems are ill-posed problems.

The inverse problem can be addressed in terms of ordinary least squares (LS)

argmin
x
ky �Mxk22 .

For a full rank square matrix M , the solution is given simply as M�1x achieving
zero in minimization.

In most image processing problems, the matrix M is underdetermined, i.e. the
number of measurements is smaller than the signal size. Typically this implies an
infinite set of x minimizing the l2 norm. Hence, the problem is ill-posed and ad-
ditional assumptions are required. Usually, assumptions are given in the form of
regularization for x to determine the desirable unique solution.

For example, in the case of a full rank matrix M , the solution for the system
of linear equations can be obtained using the Moore-Penrose pseudoinverse M †y =
M ¸(MM ¸)�1y. However, the regularization term, in this case, implicitly implies a
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minimum l2 norm for the desirable solution.

In some problems, it might not be easy or possible to formalize the regularization
term as a simple quantity such as a minimum l2 norm. Therefore, the solution for an
ill-posed problem is formulated in terms of minimizing the cost function, composed
of a fidelity term f and a penalty (regularization) term R weighted by some scalar
�> 0 :

argmin
x

f (x)+�R(x). (3.2)

The fidelity term f (x) ensures the consistency between the solution and the mea-
surements and the penalty term or regularizer R(x) enforces a prior model of the
signal.

If the penalty term is defined as R(x) = 1/2k� xk22 for some suitable matrix �
and the fidelity term as 1/2ky �Mxk22, a generalized solution for the least squares
problem is obtained as

argmin
x

1
2
ky �Mxk22+ �2 k� xk

2
2 =A¸(AA¸+�� ¸� )�1y.

This is known in the literature as Tikhonov regularization or ridge regression in the
case of � = I [81].

For a set of problems, the desirable solution is sought in the form of sparse repre-
sentation in a predefined dictionary. For a fixed dictionary given by a matrix D , the
sparse representation of a signal x refers to the set of coefficients!, which is sparsest.
That is

argmink!k0 , subject to x = D!, (3.3)

where k!k0 = #(!k 6= 0) is l0 pseudo-norm, giving the number of non-zero coeffi-
cients. ThematrixD represents the analysis operator of the corresponding dictionary
D = {�n}n2� , such that (Dx)[n] = h�n , xi. Finding sparse representation is an NP-
Hard problem. Nevertheless, for sufficiently sparse ↵, a solution can be found with
a convex relaxation by replacing the l0 pseudo-norm with the l1 norm:

min
!
k!k1 , subject to x = D!. (3.4)

This approach is referred to as Basis Pursuits (BP) [15].

It has been demonstrated that the problems 3.3 and 3.4 are equivalent in the case

47



of sufficient sparsity defined as

kxk0 < 1
2

✓

1+
1

µ(D)

◆

,

where µ(D) =maxk 6=l
h�k�l ik�kk2k�l k2 is the so-called mutual coherence of the dictionary.

A condition for determining the uniqueness of a sparse solution has been formulated
using the so-called restricted isometry property (RIP), [16].

The design or choice of the dictionary used in the sparse representation (3.3) plays
a crucial role in addressing an inverse problem. The choice is usually motivated by
the set of considered signals. A number of dictionaries have been studied for the
sparse representation of natural images captured by conventional digital cameras.
Dictionaries using discrete cosine transform (DCT) or wavelet transform have been
designed and successfully applied to various problems [64].

An alternative to the fixed dictionary approach is to learn a dictionary from a
set of training data representing the considered class of signals. One of the common
techniques for dictionary learning is referred to as sparse coding [56]. For a given
set of signals Y = {yi}, sparse coding aims at finding (learning) a dictionary D , such
that each signal y 2 Y can be sparsely represented or approximated by a linear com-
bination of dictionary elements, typically formulated as the following optimization
problem

min
D ,{!i }

X

i

Å1
2
kyi �D!ik22+�k!ik0

ã

, subject to k�kk2 = 1, 8k . (3.5)

The normalization condition for all the dictionary elements k�kk2 = 1 is required
to avoid arbitrarily small coefficients ↵i compensated by the elements with high
magnitude.

Typically, the dictionary learning problem of Eq. 3.5 is solved using an alternating
iteration scheme consisting of sparse approximation and dictionary refinement steps.
The sparse approximation step aims to obtain the ↵i coefficients implying a fixed
dictionary D , using greedy strategies or replacing the l0 norm with the l1 norm. The
dictionary refinement step updates the dictionary elements with fixed coefficients ↵i
obtained at the previous step. The explicit form of the final dictionary also depends
on setting additional desirable constraints, such as an upper bound on mutual co-
herence. An alternative method K-SVD for joint updating dictionary elements with
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corresponding coefficients is presented in [2].

For some considered inverse problems, the penalty term in Eq. (3.2) might have
a nontrivial representation and a direct solution minimizing Eq. (3.2) might not be
feasible since it might not be possible to differentiate the penalty term. Nevertheless,
several methods are proposed in the literature to resolve this problem.

For the main inverse problem in Eq. (3.1), the corresponding regularized min-
imization problem (3.2) is considered. The fidelity term is represented as f (x) =
1

2�2 ||y �Mx||22. For a general regularizer R(x), an alternating direction method of
multipliers (ADMM) has been proposed [90]. The solution is obtained through an
iterative minimization procedure

a) xk+1 =argmin
x

1
2�2

||y �Mx||22+ �2 kx � (vk � uk )k22
b ) vk+1 =argmin

v

�
2
||(xk+1+ uk )� v ||22+�R(v)

c) uk+1 =uk + (xk+1� vk+1)

(3.6)

To avoid the explicit formulation of the regularizer R(x), a Plug-and-Play (P&P
ADMM)method is presented in [21]. In thismethod, theminimization stepEq. 3.6 (b)
is replaced with

b ) vk+1 =D(xk+1+ uk ,
∆

�/� ). (3.7)

where D(·;�) is a denoising operator. Furthermore, an adaptive update rule for
the parameter � = �k is presented for robust and accelerated convergence. The
denoising operator can be defined as thresholding in a certain transform domain
D(x,�) =  Tt (�)(�x), where Tt (x) is a thresholding operator [64].

Another method is presented in [12], seeking a sparse representation with respect
to a certain frame, defined by analysis and synthesis transforms � and  , correspond-
ingly. The penalty function is defined for the transform coefficients as R(!) = ||!||p ,
p = 0,1. For the inpainting problem, the frameletmethod [12] aims to find a solution
applying the following frequency-spatial alternate minimization

a) !k = argmin
!

1
2
k�xn �!k22+�k!k1

b ) xk+1 = argmin
x

1
2
k !k � xk22+�C (x),

(3.8)
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where �C (x) is an indicator function for the subset of admissible solutions C =
{x;Mx = y}. It has been shown that the minimization problems 3.8 can be solved
with a simple iterative algorithm

!k = T��(My + (I �M ) !k ).

where T�(!) is a soft thresholding operator representing the proximal mapping,
which corresponds to the penalty term in terms of l1 norm as in Eq. 3.8 (a). The
solution in the signal domain is given by xk =  !k . The same iterative algorithm
can be performed entirely in the signal domain as

xk+1 =  T��(x +M (y � x)) (3.9)

Given ! = �x, it has been shown that the convergence of the algorithm 3.9 is
equivalent to the minimization problem

argmin
!

1
2
kM !� yk22+ c2 k(I �� )!k

2
2+�k!k1 . (3.10)

with c= 1. This minimization problem is referred as a balanced approach [12], [73].
For comparison, the commonly used synthesis approach, which corresponds to
c= 0 in Eq. 3.10:

(Synthesis) argmin
!2Range(�)

ß1
2
ky �M !k22+�k!k1

™

.

A corresponding solution can be obtained using a proximal gradient iterative
algorithm given as

!k+1 = T�(!k +�M (y � !k )), (3.11)

performed entirely in the coefficients domain.
Another formulation known in the literature as the analysis model corresponds

to c ! 1 in Eq. 3.10 :

(Analysis) argmin
x

ß1
2
ky �Mxk22+�k�xk1

™

.

All three approaches are identical for the case of an orthonormal basis �, ��¸ = I .
However, if the transform is defined by a frame, the corresponding synthesis, analysis,
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and balanced approaches cannot be derived from one another.

In order to derive a solution for the balanced approach 3.10, a general minimiza-
tion problem is considered

argmin
x

F1(x)+ F2(x),

where F1 is a semi-continuous convex function and F2 is a differentiable convex func-
tion satisfying the condition �krF2(x)�rF2(y)k2  kx � yk2. In [23], the solu-
tion is presented by a proximal forward-backward splitting algorithm that guarantees
weak convergence of a series {xk} to the minimum, given by

xk+1 = prox�F1(xk � �rF2(xk )),

when 0< � < 2�.

As shown in [13], the proximal forward-backward splitting algorithm can be
directly applied to the problem (3.10), if F1(!) = �k!k1 and
F2(!) =

1
2 kM !� yk22+ c2 k(I �� )!k22. The proximal mapping of the F1 is given

by the soft thresholding operator

prox�F1(!) = T��(!).

The gradient of F2 can be calculated as

rF2(!) = c(I �� )!+�(M !� y).

Taking into account that for the case of inpainting the measurement matrix M is
diagonal and  �= I , for some �:

�k(c(I �� )+�M )(!1�!2)k2  k!1�!2k2 .
Therefore, the iterative algorithm for solving the problem (3.10) can be summa-

rized as follows
a) xk =  !k

b ) ⌘k = �
Å

xk +
1
c (y �Mxk )

ã

c) !k+1 = T�� (!k + �c(⌘k �!k ))

(3.12)
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3.3 Shearlet frame

Among other properties, natural images are characterized by smooth regions delin-
eated by anisotropic edges. For their efficient representation, dictionaries, which
optimally approximate anisotropic features, are required. The developments of such
dictionaries and systems are described in the literature in the context of the so-called
cartoon-like functions. Cartoon-like functions are defined as having second continu-
ous derivatives (C 2) on the unit square, except for a closed C 2 discontinuity curve.
The optimal approximation, in this case, is defined using the decay rate of l2 norm
error of the best N -term approximation. Conventional Fourier or 2D wavelet trans-
forms are not suitable for this task since their separable structure does not efficiently
represent singularities over a discontinuity curve. It has been shown that the best
N -term approximation rate using 2D wavelet transform is O (N�1) [53]. Using an
approach such as adaptive triangulation with N triangles, referred to asWedgelet, an
approximation rate of O (N�2) can be achieved [27].

Obtaining a similar approximation rate but using a non-adaptive system is desir-
able for the efficient representation of discontinuity regions. For this task, steerable
pyramid transform has been proposed in [77]. However, this system does not provide
an optimal approximation rate for anisotropic features.

An optimal approximating rate has been attempted with the Curvelets trans-
form [18] by maintaining the orientation property at various scales and locations.
The Curvelets system achieves a significantly better approximation rate than the 2D
wavelet systems cartoon-like functions discussed above. It has been developed further
in the form of Contourlets, which act as discrete filter-banks of the Curvelets system,
thus providing an efficient implementation [26] .

In all these representation systems, the goal has been to achieve a non-adaptive
representation optimally approximating anisotropic features.

The Shearlets system as an alternative approach has been introduced in [53]. The
directional property, in this case, is achieved using shear transform, in contrast to the
rotation transform used in the methods presented before. This property makes the
shearlet frame particularly interesting for the epipolar-plane image representation
since its structure is formed by a shearing operator rather than rotation. The shearlet
system has an elaborate theoretical background and has demonstrated an optimal
sparse approximation of O (N�2(log(N ))3) for cartoon-like functions [53]. A further
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Figure 3.2 (a) The outlined regions correspond to frequency plane separation for shearlet transform
design. Two cone-adapted regions correspond to a C ,C ̃ set of filters and the central

rectangle region corresponds to a C� low pass filter. (b) Frequency plane tilling obtained by
whole shearlet transform using two scales of decomposition J = 2.

modification in the form of compactly supported shearlet systems has been presented
in [54]. While this system does not form a Parseval frame, it is still applicable for the
task of efficient approximation of cartoon-like functions. The theoretical framework
of the universal shearlet systemhas been studied in [33]. It generalizes various systems
as members of the al pha-parameterized family so that for ↵ = 2 it represents the
wavelet system, for ↵= 1 it is the parabolic shearlet system and for ↵�! 0 the system
forms ridglets [17].

The shearlet transformproposed in this thesis is an adaptation of the non-separable
shearlet transform presented in [61]. It has been specifically modified for efficient
representation of functions with singularities distributed over straight lines rather
than parabolic curves, similarly to the Ridglet transform.

The cone-adapted discrete shearlet system SH is a set of 2D functions formed by
shearing S, parabolic scaling A, and translation transforms applied on the generator
functions: scaling function � and shearlets  , e 2 L2(R2). For c = (c1, c2) 2R2+, the
system is defined as follows

SH(�, , e ; c) = �(�; c1)[ ( ; c)[ e ( e ; c). (3.13)

The role of the three subsets is illustrated in Fig. 3.2 (a). The subset  ( ; c)
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corresponds to the cone-shaped region C , the subset  ̃( ̃; c) corresponds to the
region C ̃, and the subset �(�; c1) - to the central part C�. This division of the
frequency plane is achieved using the following definitions

�(�; c1) = {�m =�(·� c1m);m 2Z2}
 ( ; c) = { j ,k ,m = 23/4 j (SkA2 j ·�Mcm); j � 0, |k| d2 j/2e,m 2Z2}
e ( e ; c) = { e j ,k ,m = 23/4 j e (S¸k

eA2 j ·� eMcm); j � 0, |k| d2 j/2e,m 2Z2}

where A and eA are scaling matrices, Sk is the shearing matrix, Mc = diag(c1, c2) and
eMc = diag(c2, c1) are translation sampling matrices,

A=

0

@

2 j 0

0 2 j/2

1

A , eA=

0

@

2 j/2 0

0 2 j

1

A , Sk =

0

@

1 k

0 1

1

A .

Following the formalization in [61], the factor j/2 has to be integer, otherwise
d j/2e is taken. Usually, a discrete image or function f d is given as input. Tomaintain
the discretization of the continuous transform, it is assumed that a continuous 2D
function f can be represented by the discrete signal f d and the scaling function �
for a sufficiently large J > 0, i.e.

f (x1, x2) =
X

(k1,k2)2Z2
2J f d [k1,k2]�(2

J x1� k1, 2
J x2� k2),

where the 2D scaling function is �(x1, x2) = �1(x1)�1(x2) and 1D scaling �1 and
wavelet  1 functions satisfy the following two-scale equations

�1(x) =
X

k2Z
h[k]
p
2�1(2x � k) and  1(x) =

X

k2Z
g [k]
p
2�1(2x � k).

The Fourier coefficients of the trigonometric polynomial Hj and Gj

H0 ⌘ 1, Hj (⇠ ) =
j�1
Y

i=0
H (2i⇠ ), Gj (⇠ ) =G(2 j�1⇠ )Hj�1(⇠ ), j = 0, . . . , J (3.14)

are denoted by g j and hj .

The counterpart of the 2D scaling function �(x1, x2) is the 2D wavelet function
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 (x1, x2), which has been formed in a non-separable manner as proposed in [61]

 ̂(⇠1,⇠2) = P (⇠1/2,⇠2) ̂1(⇠1)�̂1(⇠2),

where P (⇠1,⇠2) is a trigonometric polynomial representing a 2D fan filter withwedge-
shaped essential support. The choice of this filter leads to significant improvements in
the numerical results compared to the design of the filter as a Kronecker product of 1D
filters, as shown in [61]. Consequently, it can be shown that by appropriate selection
of the sampling grid Mc , the coefficients of the shearlet transform corresponding
to the system elements { j ,0,m}m2Z2 can be calculated by applying digital filter pj ⇤
Ä

gJ� j ⌦ hJ� j/2
ä

on discrete signal f d , where pj are the Fourier coefficients of a scaled
2D fan filter P (2J� j�1⇠1, 2J� j/2⇠2).

It is easy to see that
 j ,k ,m(·) = j ,0,m (Sk2� j/2 ·) .

This motivates the need for the discretization of the shearing operator. However,
this is not straightforward since the shearing operator does not preserve the regular
grid Z2. Nevertheless, in [61] the discretization has been achieved in the following
way. First, an upsampling by the factor of 2 j/2 (denoted by " 2 j/2) is applied. This is
followed by filtering with the corresponding low-pass filter hj/2, and resampling over
a new integer grid by applying the Sk shearing operator. Finally, low-pass filtering
h j/2 followed by downsampling with a factor on 2 j/2 (denoted by # 2 j/2) is applied.
Thus, the discretized shearing operator Sd

k2� j/2 is defined as follows

Sdk2� j/2(r ) =
ÄÄ

r"2 j/2 ⇤1 hj/2
ä

(Sk ·) ⇤1 hj/2
ä

#2 j/2

The coefficients corresponding to the set of elements { j ,k ,m}m2Z in the shearlet
system can be calculated using convolution of the discrete signal with the following
digital filter

 d
j ,k = Sdk2� j/2

Ä

pj ⇤
Ä

gJ� j ⌦ hJ� j/2
ää

.

This discrete shearlet frame is designed for the efficient representation of signals
with parabolic singularities. By replacing the scaling matrix with A= diag(2 j , 2�1),
a modified shearlet system is obtained. It maintains shears along straight lines and
determines the required number of shears on each scale of the frequency plane tilling.
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The corresponding digital filters become

 d
j ,k = Sdk2�( j+1)

Ä

pj ⇤
Ä

gJ� j ⌦ hJ+1

ää

, j = 0, . . . , J � 1, |k| 2 j + 1.

This set of transform filters corresponds to only one cone-shaped region C in
the frequency plane highlighted in Fig. 3.2 (a). The region C ̃ is covered by the

filters  ̃d
j ,k directly obtained as ˆ̃

 d
j ,k(⇠1,⇠2) =  ̂

d
j ,k(⇠2,⇠1). The central region C�

corresponds to one filter �d = hJ ⌦ hJ .

The constructed discrete shearlet system is not orthogonal, therefore the dual
frame elements are required for synthesis transform. Using auxiliary notation

 ̂d = |�̂d |2+
J�1
X

j=0

X

|k|2 j+1

Å

| ̂d
j ,k |2+ | ˆ̃ d

j ,k |2
ã

,

the dual elements are defined as follows

'̂d =
�̂d

 ̂d
, �̂ dj ,k =

 ̂d

 ̂d
, ˆ̃� dj ,k =

ˆ̃
 d

 ̂d
.

Finally, the analysis operator corresponding to the construction shearlet frame is
given by

S( f dJ ) =
n

s j ,k = f dJ ⇤  ̄d
j ,k , s̃ j ,k = f dJ ⇤ ¯̃ d

j ,k , s0 = f dJ ⇤ �̄d
o

(3.15)

and the inverse (synthesis) operator can be calculated using the dual elements

S⇤
Ä{s j ,k , s0}

ä

=
J�1
X

j=0

X

|k|2 j+1

Ä

s j ,k ⇤ � dj ,k + s̃ j ,k ⇤ �̃ dj ,k
ä

+ s0 ⇤�d .

3.4 Epipolar-plane image reconstruction

The proposed inpainting techniques for DSEPI reconstruction utilize the sparse regu-
larization as presented in Section 3.2 and the shearlet frame as presented in Section 3.3.

The input is given by subsampled EPI in angular dimension so that the disparities
are in the range of [dmin,dmax] in pixels. With no loss of generality, a pre-shearing
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Figure 3.3 (a) Subsampled densely sampled epipolar-plane image, assuming that disparities between
consecutive rows are no more than 16px. (b) Subsampled data can be interpreted as every
16-th row if a densely sampled light field is desired. (c) Corresponding densely sampled light
field with disparities don’t exceed 1px. (d) Highlighted shearlet transform atoms used in the
EPI reconstruction algorithm. The selected atoms correspond to the EPI anisotropic structure.
Each disparity layer (k = 0,1, ...4) is represented with one transform atom in each scale
( j = 0,1).

transform can be applied to guarantee positive disparities with the disparity [0,drange]
(drange = dmax�dmin). Such an input subsampled EPI is illustrated in Fig. 3.3 (a) for the
case drange = 16. All rows of the given subsampled EPI are interpreted as every drange-
th row of the corresponding DSEPI, as illustrated in Fig. 3.3 (b). This interpretation
guarantees that in the final reconstructed EPI, the densely sampled condition will be
satisfied.

One can identify continuous epipolar lines formed by the given rows in an EPI
like in Fig. 3.3 (b), however, broken by missing rows. These missing rows are the
regions to be inpainted. This leads to the following formulation of the problem:
reconstruct DSEPI, as illustrated in Fig. 3.3 (c), from the given drange-th rows by
filling in the missing rows (i.e. inpainting empty regions). Hence, the forward model
of subsampled EPI obtained from DSEPI can be expressed in the form

y =Mx,

where x is the desirable DSEPI, y is an EPI where only every drange-th rows are given
and M is a binary masking matrix. The inpainting problem of obtaining x for a
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given y and M is ill-posed and requires additional regularization. In our case, this
regularization is defined by imposing sparsity in the shearlet transform domain.

The disparities are confined within the range of [0,1] px for DSEPI and the corre-
sponding support in the frequency plan will be within a certain region. Thus, not all
elements of the shearlet transform are required. In the regularization transform only
elements corresponding to disparities within the range [0,1] are used, as illustrated
in Fig. 3.3 (d). The analysis of the regularization transform built from the shearlet
transform (Eq. 3.15) is such that for discrete signal x the analysis transform is defined
as

S(x) =
n

x ⇤ d
j ,k , x ⇤�d , j = 0, . . . J � 1,k = 0, . . . , 2 j+1

o

(3.16)

The algorithm for DSEPI reconstruction proposed in [P I], [P IV] employs itera-
tive hard thresholding in the following form

xk+1 = S⇤
ÄT�k (S(xk +↵k (y �Mxk ))

ä

. (3.17)

As depicted in Fig. 3.4, the analysis and the synthesis transforms are implemented via
Fourier-domain multiplication with pre-calculated directional filters corresponding
to the transform elements.

The hard thresholding operator

(T�x) (k) =
8

<

:

x(k), |x(k)|� �
0, |x(k)|< �

is used with a linearly decaying thresholding value �n in the range [�max,�min]. The
algorithm is a simplified version of Eq. 3.12 in Section 3.2, where ↵k = 1/c, � = 1/c
and �k = ��. A high value of the parameter ↵k provides additional acceleration to the
convergence rate. This effect is partially related to the sparsity of the measurement
matrixM . Typically, the number of available samples is significantly smaller than the
number of reconstructed samples. Therefore, significant amplification is required
to increase the influence of the available samples at every thresholding iteration.
However, an unlimited increase of the parameter ↵k would lead to divergence of the
series xk . Using the method proposed in [9], the parameter is made adaptable as
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Figure 3.4 Diagram of the proposed reconstruction method.

follows

↵k =
k�kk22

kMS⇤(�k )k22
, (3.18)

where �k = S�k (y �Mxk) and S�k includes the shearlet transform coefficients only
from the set �k , the support of S(xk ).

The number of shearlet decomposition scales has to be determined in relation to
the disparity range: J = dlog2(drange)e. This choice determines a small enough band-
width for the central low-pass filter, which guarantees that the retained frequencies
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Figure 3.5 DSLF reconstruction method performance for Lego Knights dataset. (a) Ground-truth inter-
mediate view. (b) Same view obtained by reconstructing every EPI. (c) Absolute difference
between the two.

are alias-free. A smaller value of J would directly influence the reconstruction quality.
A small value will not guarantee enough directional elements of the transform, which
leads to poor reconstruction quality, thus the choice of the appropriate number of
scales for the transform with the corresponding number of shears is crucial for accu-
rate reconstruction. A comparison of the reconstruction quality for various scaling
numbers is presented in [P IV].

3.5 View interpolation

While the problem of DSLF reconstruction has been equivalently formulated in
the form of DSEPI reconstruction, the final cumulative result of reconstructing all
DSEPIs can be quantified over the new angular views which have been generated.
This allows comparing themethod in Section 3.4withmethods aimed at interpolating
virtual views from a given set of multi-perspective views, most of them employing
information about the scene geometry in the form of a depthmap [P IV]. An example
of intermediate view interpolation for the dataset Lego Knights from [86] is presented
in Fig. 3.5. The depicted intermediate view is reconstructed by applying an iterative
reconstruction algorithm for every EPI, using only 5 input views.

TheDSLF reconstructionmethod has been developed for uniform sampling along
the angular dimension. However, a non-uniform sampling in the camera plane can
also be considered and can be easily incorporated in the presented reconstruction
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Figure 3.6 Comparison of the DSLF reconstruction performance in terms of PSNR for uniform (a) and
non-uniform (b) sampling. Methods referred to as ST 5 and ST 6 correspond to the used
number of scales J = 5 and J = 6 in the shearlet transform.

procedure. For a given set of non-uniformly spaced cameras, the assumption is again
that they are samples of some densely sampled LF and are placed accordingly. The
case is illustrated in Fig. 3.6. As seen in the figure, the performance of the recon-
struction method is highly dependent on the distance between available samples
(c.f. Fig. 3.6 (b)). It is important to emphasize that the necessary parameter drange
is not determined straightforwardly as in the case of uniform sampling. Instead, it
is recommended to choose it as the maximum disparity range corresponding to the
adjacent samples being furthest from each other. This allows for minimizing the
reconstruction error in coarsely sampled regions.

The proposed reconstruction method is applied directly to EPIs and thus avoids a
direct geometry estimation in the form of depth maps. This has the advantage of pro-
cessing scenes where depth estimation would be ambiguous, which is the case of non-
Lambertian scenes. Consider, for example, a 3D scene containing a semi-transparent
surface. Direct depth estimation is quite demanding using the input captured views.
In contrast, the proposed method demonstrates identical performance in terms of
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Ground truth Shearlet SGBM

Figure 3.7 Semi-transparent DSEPI reconstruction using the proposed method and SGBM [43].

reconstruction error for Lambertian and semi-transparent regions of the scene. This
aspect of the proposed method has been evaluated using a synthetic dataset, where
the ground truth DSLF is available and only a coarse set of samples is used as an
input for the reconstruction. The performance of the proposed method has been
compared with the disparity estimation algorithm SGBM [43]. An illustration of
the reconstruction results for an EPI with the semi-transparent region is given in
Fig. 3.7.
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4 ACCELERATION METHODS

The proposed main reconstruction method, as summarized by Eq. 4.1 is applied
independently on each EPI of a given LF. Since typical LF reconstruction requires
the reconstruction of multiple EPIs, this is a good start for developing parallelized
computing approaches for its implementation. However, it is still a computationally
demanding method. This chapter discusses approaches for its acceleration. Two ap-
proaches have been considered. First, we have aimed at improving the convergence
in the iterative procedure. Second, we have exploited the correlations between adja-
cent EPIs in different domains (i.e. employing correlation in the spatial domain and
between color channels). Finally, we have also proposed a particular way of handling
full-parallax imagery. All the acceleration methods presented in this section have
been published in [P III].

4.1 Overrelaxation

The speed of convergence for the iterative algorithm in Eq. (3.17) can be changed
with the parameter ↵k . Its adaptive calculation, as in Eq. (3.18), is computationally
demanding. This one step in the algorithm costs almost as much as computing as
the rest of the iteration in Eq. (3.17). A preferable solution would be to avoid the
adaptive selection of the parameter ↵. However, fixing ↵ has to be done optimally:
its value has to be high enough to provide fast convergence and at the same time small
enough to avoid divergence. The proposed solution aims at introducing additional
overrelaxation steps to provide stable convergence even for high values of ↵ [P III].

The proposed solution is similar to the double overrelaxation steps presented
in [70]. Consider the current iteration step where xnew is the result obtained by
Eq. (3.17). It can be updated using the result from the previous iteration xold by
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Figure 4.1 (a) Performance comparison of different EPI reconstruction algorithms. (b) Convergence
performance for different values of the parameter ↵ for the algorithm 4.1.

minimizing a quadratic error norm against the ground-truth y

xnew =min
�

�

�

�

y �M (xnew+�(xnew� xold))
�

�

�

2

2
.

The solution for the optimization parameter � in the case of diagonal matrix M
can be obtained as follows

�⇤ = (y � xnew)¸M (xnew� xold)
(xnew� xold)¸M (xnew� xold)

.

The proposed full accelerated algorithm is

pk =  T�k (� (xk +↵(y �Mxk )))

qk = pk +�(pk � xk�1), �=
(y � pk )¸M (pk � xk�1)

(pk � xk�1)¸M (pk � xk�1)

xk+1 = qk + � (qk � xk�2), � =
(y � qk )¸M (qk � xk�2)

(qk � xk�2)¸M (qk � xk�2)
.

(4.1)

The additional steps provide stable convergence which allows the choice of a fixed
and relatively high parameter ↵, which is also common for all processed EPIs. This
might be rendered suboptimal for some EPIs, but it establishes a common procedure
for all EPIs, which significantly simplifies the proposed algorithm.

A comparison between reconstruction methods with differently-controlled con-
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(a) (b)

Figure 4.2 (a) Proposed w window (green) for modeling guidance map. (b) Neighborhood (green) for
forming matting Laplacian matrix entry for reference pixel (orange).

(a) (b) (c)

Figure 4.3 (a) Grayscale DSEPI obtained by luminance channel reconstruction using shearlet transform
used as a guide for colorization. (b) Color information of the DSEPI is available only from
input coarse set of views. (c) Colorization result obtained by solving problem Eq. 4.2.

vergence is presented in Fig. 4.1 (a). As seen in the figure, the algorithm in Eq. (4.1)
has to be favored as it provides fast convergence within a fixed parameter ↵ and a
relatively small number of iterations Fig. 4.1 (b).

4.2 Colorization

Guided colorization refers to the problem of recovering the color of an image when
the color is only available in isolated regions, using a structure (guidance) from a gray-
scale image [58], [57]. In an approach proposed in [57], the local properties of a gray-
scale image have been exploited and used for determining the correct propagation of
the available color information. The colorization problem is closely related to the
alpha matting problem, which assumes a guided foreground/background separation
[57].

As a computationally inexpensive alternative to the proposed DSEPI reconstruc-
tion method, every color channel of the DSEPI can be reconstructed using some
colorization technique as long as a suitable guidance map is available. The hypoth-
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Figure 4.4 The average performance over multiple datasets of the colorization technique (Y+Col.) com-
pared with the reference reconstruction method applied on every color channel independently
(RGB ) and with efficient reconstruction in YUV color space (YUV ).

esis has been formulated as follows [P III]: Let the luminance channel of DSEPI be
reconstructed by the method in Eq. 4.1. Using this reconstructed luminance channel
as guidance map E , apply guided colorization to reconstruct any color component
of the DSEPI x where the color is only available at the locations of the given input
views.

Following the method in [57], the unknown color image x is modeled as a linear
function of the given guidance map E at each pixel within a small spatial window w

x[i]⇡ aE[i]+ b , 8i 2 w.

The solution can be formulated in terms of cost function minimization

min
x,a,b

J (x,a, b ) =
X

j

0

@

X

i2wj

(x[i]� aj E[i]� bj )
2+ "a2j

1

A ,

where " is a regularization coefficient to provide numerical stability.
As shown in [57], the minimization problem above can be reformulated in terms

ofmatting Laplacianmatrix ⇤ such that

min
a,b

J (x,a, b ) = x¸⇤x,
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where the symmetric matrix ⇤ depends only on E and w. The (i , j )�th element of
the matrix ⇤ is defined as

⇤i j =
X

k|(i , j )2wk

 

�i j � 1
|wk |

 

1+
(E[i]�µk )(E[ j ]�µk )

"
|wk | +�k

!!

,

where µk ,�k correspond to the mean and the variance of E within the window wk ;

|wk | denotes the cardinality of the window wk , and �i j =

8

<

:

1, i = j

0, i 6= j
.

Due to the limitation of 1px maximum disparity in DSEPI, the anisotropic struc-
ture in a small window is quite restricted. This property allows us to define a bet-
ter shape of the window w for the DSEPI colorization problem as illustrated in
Fig. 4.2 (a). It is important to mention that the summation in the definition of the
matrix elements ⇤i , j takes all windows wk , which contain the pair i , j . Therefore
for a fixed pixel i , the corresponding pixels j which are involved in the summation
are contained in the window presented in Fig. 4.2 (b).

Thus, taking into account the available color information, the guided colorization
problem can be formulated as a constrained quadratic minimization,

min
x

x¸⇤x, subject to Mx = y, (4.2)

where M represents the diagonal measuring matrix and y represents the available
color information identical to the one in Eq. 4.1. An approximate solution can be
obtained using the conjugate gradient method for the system of linear equations
(⇤+�M )x = �My with significantly high �.

An example of the colorization result is given in Fig. 4.3. A detailed evaluation
of the colorization approach has been performed in [P III]. It has been observed
that the quality of the colorization depends mainly on the accuracy of the guidance
map. Therefore, to provide an overall accelerated reconstruction, it is required to ef-
ficiently distribute the processing time between the reconstruction of the luminance
channel Y by shearlet regularization and the subsequent RGB channel reconstruc-
tion by colorization. As seen in Fig. 4.4, some acceleration in terms of better quality
reconstruction for the same amount of time has been achieved. The comparison has
been performed against the full RGB reconstruction and reconstruction in a YUV
color space, where priority has been given to theY channel which has been processed
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Figure 4.5 Reconstruction flowchart using wavelet transform approximation (lowpass) coefficients as an
initial estimation for original set reconstruction.

for twice as long as the U and V channels, due to its higher significance.

4.3 Decorrelation Transform

Another acceleration can be approached by exploiting the spatial correlation be-
tween neighboring EPIs. Initially, this idea was pursued by distributing the whole
set of EPIs in a processing tree based on the similarity between neighboring EPIs.
In this approach, the reconstruction is applied over a tree such that each leaf takes
the parent reconstruction result as its initial estimate in order to decrease the needed
number of iterations [85]. This idea has been further developed by using wavelet
transform [P III]. An initial decorrelating wavelet transform is applied columnwise,
followed byDSEPI reconstruction using the approximation wavelet coefficients only.
This reconstruction is then used as an initial estimate for the DSEPI reconstruction
using shearlet transform. The flowchart of this method is presented in Fig. 4.5. An
evaluation of the method has shown a significant dependence on the spatial structure
of the input images. For scenes consisting of objects with a simple vertical structure,
the wavelet pre-processing significantly decreases the computation time, while for
scenes with more complex structures, this method brings only marginal improve-
ment in terms of time versus reconstruction quality.
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First Second Third

Figure 4.6 Proposed fast processing order illustrated for 17⇥ 17 array of images. Reconstruction is
divided into three steps (blue, orange, green) to decrease the disparity range in the successive
steps.

4.4 Full parallax processing

The core DSEPI reconstruction algorithms have been developed for the case of 1D
parallax, that is the pinholes of the cameras providing the input multiview images are
considered to be located in a line. The resulting stack of images is three dimensional
and the reconstruction is performed on the corresponding stack of 2D EPIs.

In general, the light field is a four-dimensional function, i.e. full parallax. This
case can be handled in a separable manner. First, the horizontal parallax is considered
and DSEPIs are reconstructed in the corresponding direction. Then, the same recon-
struction procedure is applied for the vertical parallax. This approach can be referred
to as direct processing order. It implies that the same disparity range is considered in
both the horizontal and vertical parallax directions. However, the disparity range is
the factor which determines the number of shearlet decomposition levels and thus
strongly influences the overall reconstruction time. For this reason, smaller disparity
ranges are always preferable if it is possible to accommodate them. A hierarchical
reconstruction (HR) order has been introduced in [P IV] aimed at reducing the com-
putational time by reducing the number of shearlet levels. The HR approach can be
illustrated by an example given in Fig. 4.6. The considered setting contains 5⇥5 input
images of a given LF and the goal is to reconstruct the corresponding DSLF which
contains 17⇥17 images. The reconstruction is carried out in three steps, as presented
in the figure. The first step is the ordinary horizontal-parallax reconstruction step.
During the second step, only selected lines of images along the vertical parallax are
fully reconstructed. In this way, the third step contains 12 horizontal parallax sets
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still to be reconstructed. These are notable as their disparity range is half the size
of the original disparity range, which means a lower number of shearlet levels have
to be used. For some large disparity ranges, the number of steps can be increased
identically in such a way that at each step, the disparity range of the 1D parallax lines
of images to be processed is twice as low as the disparity range in the previous step.
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5 APPLICATIONS

The reconstruction method proposed in this thesis can be efficiently used in various
applications. As well as the direct application of providing dense LF information,
this chapter presents several valuable applications, one of which is super-resolution
in the spatial domain. The original angular reconstruction algorithm is extended for
spatial super-resolution by considering simultaneous super-resolution in the spatial
domain and dense sampling in the angular domain. Another application is obtaining a
holographic stereogram and ourmethod has been successfully applied for the accurate
calculation of fringe patterns. The last application is light field compression. As
shown in the chapter, the intra-view prediction scheme can utilize this reconstruction
method, which improves compression, especially in a low bitrates scenario.

5.1 Spatial super-resolution

A new camera design called a light field (plenoptic) camera is presented in [68]. It
allows a 4D light field to be captured with a single photographic exposure shot. 4D
light field acquisition is achieved using an addiction microlens array between the
main lens and sensor. The idea has been developed further in [63] by introducing
the focused plenoptic camera. The raw data acquired from the plenoptic camera
can be rearranged to form a discrete 4D LF. Theoretically, given certain conditions,
identical LF data could be obtained using pinhole cameras uniformly placed within
a small baseline. However, in practice this is not achievable due to the physical size
of the camera. The LF obtained by the plenoptic camera allows dynamic refocusing
using relatively simple post-processing algorithms [47], [67], something which is not
achievable with a single shot of a conventional camera. One drawback is that the
created refocused images have a smaller spatial resolution than the full sensor size
image. Also, due to the small baseline between the elemental images, the disparities
change within a small range. Therefore, spatial super-resolution of the captured LF ,
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rather than angular super-resolution, is considered in multiple publications [35] [8],
[98] [88], .

For the case of super-resolution by a factor of n of the given LF with the range of
disparities drange the decimation factor of n⇥drange in both the horizontal and vertical
angular dimensions of the unknown high-resolution DSLF should be considered.

Section 3.4 presented a reconstruction method aimed at angular super-resolution.
To generalize this to the case of spatial super-resolution for an LF obtained with a
plenoptic camera, angular and spatial reconstruction (super-resolution) are consid-
ered together. Thus, the following two linked forward models are considered:

y =M spatialxsr, xsr =M angularxds,

where y is a given low-resolution LF formed from xsr the spatial high-resolution LF
using n ⇥ n spatial downsampling represented with a matrix M spatial. In turn, the
final xds spatial high-resolution DSLF is related with xsr through the M angular angular
domain decimation matrix (decimation factor is n⇥ drange).

The proposed reconstruction method for the super-resolution problem is rep-
resented by sequentially solving two inverse problems using the algorithm from
Eq. 3.17 and gradient descent, i.e.

xdsk+1 = S⇤
ÄT�k

Ä

S(xdsk +↵k (x
sr
k �M angularxdsk )

ää

,

xsrk+1 = xsrk +⌧
Ä

Aspatial(y �M spatialxsrk )+ �M
angularxdsk+1

ä (5.1)

where the Aspatial transform is an approximation of the inverse M spatial represented
with an interpolation filter and guided filtering similar to those chosen in Eq. (2.4)
from [6]. The second step in the iterative procedure represents gradient descent for

the minimization problem argminxsr
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Two cases of spatial downsampling are considered to evaluate the proposed al-
gorithm. The downsampling operator is formed from the filtering operator and
decimation by a certain factor. The examined filtering operators are Gaussian fil-
tering and an averaging filter. The considered decimation factors are ⇥2, ⇥3, ⇥4.
Identical assumptions have been analyzed in recent publications [6], [71]. The super-
resolution results for the Stanford Light field dataset [86] are presented in Tables 5.1
and 5.2. To reduce computation time only 512⇥ 512 central parts of the images are
used. Along the angular dimensions, only the 5⇥ 5 central subset is used. The error
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Gaussian filtering
Upsampling LFBM5D Shearlet+GF

⇥2 ⇥3 ⇥4 ⇥2 ⇥3 ⇥4 ⇥2 ⇥3 ⇥4
Amethyst 30.13 29.37 28.36 34.05 31.87 29.15 33.49 32.08 29.88

Bracelet 27.66 26.71 25.35 34.15 30.73 26.24 33.98 30.91 27.23

Chess 32.26 31.43 30.25 37.65 35.43 31.60 37.00 34.75 32.07

Eucalyptus Flowers 23.83 23.26 22.58 26.33 24.63 22.83 26.13 24.74 23.24

Jelly Beans 42.95 42.06 40.69 47.47 46.41 44.12 46.92 46.23 43.34
Lego Bulldozer 29.25 28.42 27.22 34.40 32.38 29.47 34.15 32.33 29.25
Lego Knights 29.79 29.03 27.91 34.51 32.90 30.11 34.56 32.61 29.72
Lego Truck 28.75 28.03 26.98 32.46 30.74 28.01 32.29 30.63 28.41

Tarot Cards and Crystal
Ball (Large Angle)

28.04 27.20 25.94 33.48 30.19 27.18 33.28 30.34 27.41

Tarot Cards and Crystal
Ball (Small Angle)

28.19 27.51 26.34 32.60 30.57 27.21 32.11 30.24 27.71

The Stanford Bunny 37.07 36.23 34.87 41.71 40.88 38.46 41.37 40.47 37.48
Treasure Chest 24.58 23.90 22.96 28.35 25.96 23.84 28.28 26.36 24.12

Average 30.21 29.43 28.29 34.76 32.72 29.85 34.46 32.64 29.99

Table 5.1 Reconstruction results in PSNRs for the case of downsampling using the Gaussian filter [6]. Up-
sampling represents basic interpolation using a low-pass filter designed for the corresponding
decimation factor.

Averaging filter
Upsampling GB+DR Shearlet+GF

⇥2 ⇥3 ⇥4 ⇥2 ⇥3 ⇥4 ⇥2 ⇥3 ⇥4
Amethyst 35.46 31.18 28.95 37.96 33.35 30.56 35.31 31.78 29.75
Bracelet 36.24 29.42 26.06 37.54 34.28 28.57 36.52 30.60 27.05
Chess 38.32 33.54 30.81 41.36 36.16 32.73 38.72 34.43 31.76
Eucalyptus Flowers 27.43 24.21 22.84 31.07 26.38 24.09 27.49 24.45 23.11
Jelly Beans 49.84 45.13 41.53 48.58 46.85 44.04 46.68 46.38 43.74
Lego Bulldozer 35.40 30.75 27.95 33.90 32.68 30.52 35.54 31.89 29.12
Lego Knights 34.93 30.88 28.53 38.06 33.83 30.90 35.24 32.14 29.70
Lego Truck 32.87 29.59 27.42 36.38 31.57 29.02 32.90 30.17 28.18
The Stanford Bunny 43.06 38.92 35.84 44.75 41.16 38.19 41.43 40.33 37.72
Treasure Chest 29.59 25.35 23.38 34.73 27.93 25.37 30.05 25.94 23.96

Average 36.31 31.90 29.33 38.43 34.42 31.40 35.99 32.81 30.41

Table 5.2 Reconstruction results in the case of downsampling using averaging of n⇥ n block of pixels.

is calculated in terms of average PSNR(dB) using 17 px cropping from the borders in
order to remove border artifacts. As can be seen in the tables, the shearlet-based spa-
tial super-resolution is comparable with the two state of the art methods, while being
with lower computational complexity. Visual examples of reconstructed images are
given in Fig. 5.1.
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Upsampling Ground truth LFBM5D Shearlet+GF

Upsampling Ground truth GB-DR Shearlet+GF

Figure 5.1 Examples of reconstructions for ⇥4 super-resolution using LFBM5D [6], GB-DR [71], and
proposed Shearlet+GF

.

5.2 Holographic stereogram

Our proposed view reconstruction method can be used in various applications re-
quiring a dense set of views. Calculating a holographic stereogram is one example of
such an application, which is considered in [P II]. Each ray of the LF is represented
as a windowed plane wave with its corresponding amplitude. Thus, the whole LF
forms a superposition of plane waves. For convenience, the two planes of the LF
parameterization are located on the camera plane and the hologram plane. Thus, all
the rays intersecting a point on the hologram plane form a so-called hogel. A fringe
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Figure 5.2 Illustration of the efficiency of the method proposed in [4] (STBP-WR).

pattern corresponding to a hogel on the holographic stereogram is calculated using
a superposition of the plane waves that correspond to the rays in the hogel. The
resolution of each hogel is directly related to the angular resolution of the given LF.
Thus, high angular resolution provides an accurate calculation of the fringe pattern
corresponding to each hogel. All the fringe patterns together form a full holographic
stereogram. The experimental results described in [P II] used synthetic data so that
the required ground-truth LF data is available. The results reported in the publication
show the value of using DSLF for the holographic stereogram calculation and the effi-
ciency of the proposed shearlet-based algorithm for obtaining DSLF. Reconstruction
is employed on the 7⇥ 7 LF so that the upsampled DSLF has 49⇥ 49 angular reso-
lution. The reconstructed DSLF is further converted to a holographic stereogram
using bilinear resampling in order to obtain continuous spatial frequencies. The
proposed method for the calculation of a holographic stereogram performed better
than the depth-based approach. More details about these experiments can be found
in [P II].

5.3 Light field compression

In [3], [4]Waqas et al. successfully used DSLF reconstruction for a general LF com-
pression task. Typically, the LF compression problem is interpreted as compression
of corresponding sub-aperture images. A significant improvement in compression
can be achieved by using an enhanced inter-view prediction scheme. Nevertheless,
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providing such an inter-view prediction scheme is not an easy task. An alternative
approach is proposed in [3], [4]. If the input LF has first been uniformly decimated
in the angular domain to form a set of key views, this significantly decreases the
number of images that need to be compressed. The key views are converted into a
pseudo video sequence and compressed (encoded) using high-efficiency video coding
(HEVC). On the decoding side, the full LF is reconstructed using only the decoded
key views. The optimal parameters for decimation and encoding have been consid-
ered in [3]. As an anchor method, the direct encoding of the full set of images from
the LF as a pseudo video sequence is considered. The obtained results demonstrate
the efficiency of the proposed compression scheme in terms of lower bit-rates than
for the anchor method. Since the reconstruction method based on the shearlet trans-
form relies only on key views, in a low bit-rate scenario, the bit budget allows the
achievement of high quality key views and, as a consequence, high quality for the
reconstructed DSLF. On the other hand, the anchor achieves efficient compression
at high bit-rates high quality by efficiently encoding the residual information. This
property is illustrated in Fig. 5.2 by comparing different compression methods for
two full parallax light field datasets. More results can be found in [4].

76



6 DISCUSSION AND CONCLUSIONS

The general approach for intermediate view interpolation from multi-view imagery
consists of two steps: depth estimation using the available views and the subsequent
view synthesis. Inaccuracies in the depth estimation result in significant artifacts
in the final synthesized views which leads to poor reconstruction quality. Alterna-
tive approaches cast this problem within the light field framework. By considering
two-plane LF parameterization, the intermediate view synthesis problem can be re-
formulated as reconstructing the continuous 4D function (light field) which carries
all the visual information about the 3D scene. In early research, the light field recon-
struction problem was addressed from a classical sampling perspective, i.e. analysing
the LF spectrum and suggesting sampling and reconstruction under specified limita-
tions for the 3D scene. This thesis has proposed a novel method for reconstructing
a light field from a given set of views. Our approach addresses the problem using
modern signal processing techniques, namely frame decomposition and sparsifica-
tion in a suitable transform domain. At first, the general light field reconstruction
problem is formalized as a reconstruction of a densely sampled light field from a
given insufficient number of samples (coarse set of samples) along the angular dimen-
sion. Further, the inverse problem of the densely sampled light field reconstruction
is addressed by considering a global optimization of a minimization problem with
a regularization term formed as the sparsity in a certain transform domain. Based
on previous studies about the spectral properties of light fields, we have proposed
selecting the shearlet transform as a convenient transform. The resulting optimiza-
tion problem is solved with an iterative algorithm initially presented in Publication
I, and further developed in Publication IV. The presented reconstruction scheme
allows us to avoid any direct depth estimation and the only required information is
the disparity range of the whole visible scene. The method has demonstrated state
of the art performance, especially for scenes containing semi-transparent objects.

To address the problem of speeding up the proposed method, several acceleration
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techniques have been proposed in Publication III. We have demonstrated that a multi-
channel light field can be reconstructed using a colorization technique that can be
efficiently used to avoid calculating the computationally demanding overcomplete
transform. Additionally, acceleration is achieved by considering a decorrelation
transform to provide an adequate initial estimate for the iterative reconstruction
method. For an efficient reconstruction of a full parallax light field, a hierarchical
order of 1D reconstructions is proposed.

Obtaining the densely sampled light field allows the consideration of several ap-
plications where dense visual information of the scene is required. As presented
in Publication II, calculating holographic stereograms is one such application. The
presented results show the efficiency of the densely sampled light field reconstruc-
tion for calculating holographic stereograms, something which cannot be acquired
otherwise. The proposed reconstruction method can also be applied for LF spatial
super-resolution, as reported in this thesis.

The shearlet approach to LF reconstruction is based on rigorous mathematical
formalism, which couples modern signal sparsification theory with ray optics based
light propagation modelling. In recent years, machine learning has emerged as a
powerful tool to solve problems related with image classification and reconstruction.
Methods for light field reconstruction based on convolutional neural networks have
claimed state of the art performance. The method proposed in the thesis compares
favorably against those more recent methods, especially for wide camera baselines
and corresponding high disparities [32], [31]. In fact, due to its accurate modeling
of directional properties of the plenoptic function, the method is well suited for
machine learning based extensions. In [32], it has been extended by a deep CNN to
predict the residuals of the shearlet coefficients in shearlet domain, thus improving
its performance for moderate disparity ranges and increasing the processing speed
2.4 times. In [31], the iterative regularization procedure has been replaced by a self-
supervised learned regularizer, trained directly on sparsely sampled light field data
with small disparity ranges ( 8 pixels). This has led to an improved performance
for datasets with large disparity ranges (16 - 32 pixels) and 9 times speedup over the
original approach.
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ABSTRACT 

In this paper we propose a method for reconstructing a densely 

sampled light field from a given sparse set of perspective views 

from rectified cameras without an explicit estimation of the scene 

depth. The desired intermediate views are synthesized by 

inpainting of epipolar-plane images, utilizing their sparsity in the 

shearlet domain. For the purpose of shearlet-domain 

representation, compactly supported shearlets have been 

constructed using different directional filters for different scales in 

an attempt to provide better directional selectivity at lower scales. 

The reconstruction procedure with shearlet-domain sparsity 

condition is implemented through an iterative thresholding 

algorithm. The performance of the method is quantified by tests on 

synthetic and real visual data and compared favorably against 

depth-image based rendering. 

Index Terms— Light field, sparse reconstruction, shearlet, 

image based rendering 

1. INTRODUCTION

Modern image based rendering (IBR) methods are based on two, 

fundamentally different, approaches. First approach is based on 

estimating the scene geometry, e.g. in the form of depth map(s), 

from a given set of images (views) [1], [2], [3] and synthesizing 

the desired views using the estimated depth maps and the given 

images [4], [5]. Second approach is based on the light field (LF) 

concept as introduced by Levoy and Hanrahan [6]. This concept 

considers each pixel of the given views as a sample of a 

multidimensional LF function, therefore the view synthesis 

problem transforms to the problem of continuous LF 

reconstruction and subsequent interpolation at the desired points, 

performed with no use of explicit depth estimation. In [7], different 

kernels for interpolation with the usage of available geometrical 

information are considered. However, this interpolation technique 

requires a substantial number of samples (images), as discussed in 

[8] where Lin and Shum derive precise bounds of the LF sampling.

In order to synthesize novel views without ghosting artefacts

based only on linear interpolation one needs to sample the LF such 

that the disparity between nearby views is less than one pixel. 

Hereafter, we refer to this kind of sampled LF as densely sampled. 

Densely sampled LF provides sufficient information about scene’s 

visual content for all practical image-based applications such as 

refocused image generation [9], depth estimation [10], [11], novel 

view generation for free viewpoint television [12] and holographic 

stereogram [13].  

In order to capture a densely sampled LF, the required distance 

between nearby camera positions can be estimated based on the 

lower bound of the depth of the scene and the camera resolution. 

Furthermore, camera resolution should provide enough samples to 

properly capture highest spatial texture frequency in a scene [14].  

In [15], it has been shown that seismic data from limited 

number of measurements can be efficiently reconstructed by using 

an inpainting technique based on shearlet-domain representation. 

We employ this idea and present a method for reconstruction of a 

densely sampled LF from a given sparse set of views, which 

requires no explicit depth information. The proposed method is 

based on a sparse representation in shearlet domain of every 

decimated epipolar-plane image (EPI) slice of the densely sampled 

LF. Available data (captured views) can be interpreted as known 

rows in the EPI’s. By applying inpainting technique on every EPI, 

we can reconstruct all unknown samples of the densely sampled 

LF. The proposed method enables one to capture the scene with a 

smaller number of cameras and still be able to reconstruct the 

densely sampled LF.  

2. EPIPOLAR-PLANE IMAGES

Epipolar-plane image was first introduced by Bolles et al. in [16]. 

In comparison with regular photo images, an EPI has a specific and 

distinct structure, see Fig. 1(b). Any captured point of the scene is 

revealed in one of the EPIs as a line whose slope relates to 

disparity and directly depends on the distance of the point from the 

capturing plane (depth). The intensity over the line is related with 

the intensity of emanated light from that scene point. Within the 

pinhole camera model assumption, the disparity is defined as 

Δ𝑑 =
𝑓

𝑧
Δ𝑡, where 𝑓 is the focal distance in pixel size, 𝑧 is the depth 

of the point, and Δ𝑡 is the distance between nearby camera 

positions (see [14] for more details). The corresponding line slope 

in the EPI is 𝑓/𝑧.  

The Lambertian reflectance model (any point in the scene 

emanates light in every direction with the same intensity) drives 

the distinct structure of EPI formed by lines with constant intensity 

distribution. Chai et al. presented a spectral analysis of the EPI 

slices of a LF depending on the scene depth and LF sampling rates 

in different dimensions [14]. It is interesting to point out that the 

spectrum of the EPI has a bow-tie type shape. Densely sampled LF 

guaranties that the spectrum of each EPI is always contained in a 

region similar to the one highlighted in Fig. 1(d). As shown in [14], 

the visual information of each depth slice is contained in a line 

passing through DC component in the frequency domain 

representation of the EPI. In order to obtain space of functions 

where EPI data will be presented sparsely, we need to provide an 

analysis tool for identification and separation of the lines in the 

frequency domain corresponding to different depth slices. While in 

spatial domain analysis atoms should be similar to lines with 

different slopes, their spectrum should have bow-tie type shape, as 

shown with different colors in Fig. 1(d). 



3. SPARSE REPRESENTATION IN SHEARLET DOMAIN 

 

Shearlet frames, as developed in [17], [18], [19], are a perfect 

tool for the aforementioned sparse representation of the EPI. The 

elements of shearlet frames are translation-invariant functions 

whose spectrum covers a region similar to the one presented in Fig 

1(f). Shearlet frame is described by number of scales and number 

of shears (directions) in each scale. An example is the Fast Finite 

Shearlet Transform (FFST) presented in [17]. FFST consists of a 

set of atoms that build a tight frame. Those atoms give almost 

perfect behavior in the frequency domain. However, in the spatial 

domain non-compact support of the atoms leads to ringing type 

artifacts. As a result, the approximation quality around the edges, 

where EPI does not comply with the band limited function 

condition, is drastically reduced. Another example of basis 

elements are the so-called compactly supported shearlets, as 

presented in [18]. Compactly supported shearlets are constructed in 

spatial domain using scaling and shearing operators. The compact 

support of the atoms was achieved by slightly changing the 

behavior in the frequency domain in comparison to atoms of the 

FFST. 

In order to provide good directional properties at lower scales in 

frequency domain we propose to use different directional filters for 

different scales in the process of constructing a frame of compactly 

supported shearlet. Our construction follows the method proposed 

in [18], [19]. Fig. 1(e, f) presents examples of several constructed 

frame elements for different scales and shears.  

 

4. RECONSTRUCTION ALGORITHM 

 

We can interpret the set of captured views as given 

measurements of the unknown densely sampled EPI, as illustrated 

in Fig. 2(a). The problem tackled in this paper is to find 

(reconstruct) all missing data in the EPI. In order to simplify the 

notations, in this paper we assume rectangular size of EPI (in most 

case the horizontal resolution of the camera is higher than number 

of cameras, however, the corresponding EPI can be partially 

processed using overlapping rectangle windows with the size of the 

number of cameras). 

Let 𝑓 ∈ ℝ𝑁×𝑁 be the unknown complete EPI matrix, where 

each row represents corresponding image row and 𝑔 ∈ ℝ𝑁×𝑁 be 

incomplete EPI where only rows with available views are 

presented, while everywhere else is 0. Further, 𝑓 and 𝑔 are used in 

their column-wise reshaped ℝ𝑁2
 vector version with keeping same 

notations for 𝑓 and 𝑔. Let the mask matrix (measuring matrix) 

𝐻 ∈ ℝ𝑁2×𝑁2
 be 𝐻(𝑖, 𝑖) = 1 if 𝑔(𝑖) ≠ 0 and 0 otherwise. Analysis 

and synthesis matrix of the shearlet frame will be denoted as 

𝑆 ∈ ℝ𝑀×𝑁2
 and 𝑆∗ ∈ ℝ𝑁2×𝑀, respectively, where 𝑀 = 𝜂𝑁2 and 𝜂 

is the number of all shears in all scales of the shearlet. 

   
(a) (b) (c) 

 

    

    

(d) (e) (f) 

Figure 1. (a) Example of scene image.(b) Example of densly sampled light field EPI corresponding to row highlighted in yellow in (a). (c) 

EPI of disparity map. (d) Frequnecy domain characteristics of EPI with desirable frequency domain truncation, presented in 3 scales and 

central low pass filter with disparity values of corresponding shears. (e, f) Example of several constructed sheralet atoms in spatial and 

frequency domains. 

 



Reconstruction of missing rows of 𝑔 can be formulated as an 

inpainting problem, with prior condition to have sparse solution in 

the shearlet domain, i.e. 

 

 min
𝑓∈ℝ𝑁2

‖𝑆𝑓‖0 ,  subject to   𝑔 = 𝐻𝑓 (1) 

 

It was shown in [20] that the problem (1) can be efficiently 

solved through the following iterative thresholding algorithm  

 

 𝑓𝑛+1 = 𝑆∗ (𝐻𝜆𝑛
(𝑆(𝑓𝑛 + 𝛼(𝑔 − 𝐻𝑓𝑛)))) (2) 

 

where 𝐻𝜆(𝑥) = {
𝑥, |𝑥| ≥ 𝜆
0, |𝑥| < 𝜆

, is a hard thresholding operator and 𝛼 

is a chosen relaxation parameter. The thresholding parameter 𝜆𝑛 

decreases with the iteration number. Initial value of 𝑓0 can be 

chosen as 0 everywhere. After sufficient iterations, 𝑓𝑛 reaches a 

satisfying solution for the problem (1). More details can be found 

in [20], [21], [22], [23]. 

 

5. EXPERIMENTAL RESULTS 

 

We will illustrate the proposed method on synthetic data as well as 

on a real-world dataset captured by cameras. 

 

5.1. Synthetic Data 

 

To construct synthetic data we used Blender (open source 

shareware, www.blender.org). It enables simulating a desired 

parallel positioned camera capturing system. Our generated 

synthetic data consists of 511 images with 511 × 511 resolution. 

Captured views provide horizontal parallax with disparity values in 

the range of [0, 1] pixels between views. One of the EPIs generated 

from the rendered images is shown in Fig. 1(b) with the 

corresponding frequency domain characteristic in Fig 1(d) and the 

corresponding ground truth disparity map in Fig 1(c). As an input 

data for the reconstruction algorithm we use every 32nd view, thus 

17 views. An example of the input data for the proposed algorithm 

is shown in Fig 2(a). In that case the input dataset consist of 

images with disparity values in the range [0, 32] pixels between 

two consecutive images. Shearlet frame is constructed using 6 

scales and a central low pass filter. In each scale from low to high 

we have [2, 3, 5, 9, 17, 33] shears respectively. Each set of shears 

for fixed scale uniformly covers the [0,1] range of disparities. 

Example of a similar separation (fewer scales) is illustrated in Fig 

1(d). Shearlet is a translation-invariant frame thus its synthesis and 

analysis transforms are easy to implement using convolution 

operator. Convolution implemented through Fourier transform 

implicitly assumes circular replication of the signal. This increases 

the undesirable border effects and decreases the algorithm 

performance around image borders. In this paper, a Kaiser window 

is used to reduce these border effects. In Fig. 2(a) example of 

sparse EPI (input data) is presented, Fig. 2(b) shows the 

corresponding reconstructed result and Fig. 2(c) shows the residual 

calculated only over the region within the yellow rectangle. In the 

presented case, the mean-square-error (MSE) is 8 and the mean-

absolute-error (MAE) is 25. Both are calculated with respect to the 

ground truth data. This example shows that by using the proposed 

method, a densely sampled LF can be reconstructed by using only 

a small number of captured views. 

 

5.2. Real Data 

 

As a real captured dataset we use the “Couch” dataset used in [3]. 

It consists of 101 images with 2679x4020 resolution as well as 51 

estimated disparity maps for the central views obtained by the 

algorithm proposed in [3] using the whole set of images. Given 

disparity estimation shows that maximal disparity between 

consecutive images is about 11px. We applied the presented 

algorithm to the grayscale images. 15 views were reconstructed 

using the odd number indexed views from the dataset. An example 

of a reconstructed EPI is presented in Fig. 3(a), where input 

(selected) rows for the reconstruction algorithm are highlighted in 

yellow and rows in green represent views used for assessing the 

algorithm performance. Same input data is used for depth image 

based rendering algorithm based on 3D warping and blending 

implemented as described in [5]. The reconstruction quality of the 

two algorithms is presented in Fig. 3(b, c). As seen in the figure, 

both approaches result in reconstructed images with good PSNR 

with respect to reference captured images whereas the proposed 

algorithm has in average a lower maximum absolute error.  

 

   
(a) (b) (c) 

Figure 2. (a) Example of the input data for the proposed algorithm, where the original data was decimated by factor 32. (b) Reconstructed 

EPI, yellow square representing the region which was used for reconstruction quality estimation. (c) Absolute difference between the ground 

truth and reconstructed EPI. 

 

http://www.blender.org/


6. CONCLUSION

In this paper we presented a method for reconstructing densely 

sampled LF from a given sparse set of views by processing the 

corresponding EPI images in shearlet domain. We have shown, by 

using synthetic and real data examples, that the proposed method is 

very effective in reconstructing densely sampled LFs out of small 

number of given views. The strength of the proposed method lies 

in its ability to reconstruct the complete dataset (whole LF) at ones 

in comparison with classical IBR techniques where each view has 

to be reconstructed individually. The proposed method establishes 

a new approach for LF interpolation. 

(a) (b) 

(c) 

Figure 3. (a) Reconstructed EPI for the real dataset. Rows which are highlighted with yellow color represent odd indexed views from 

original data set which were used as an input data for the algorithm and green color represents even indexed views from original dataset 

which are used for algorithm quality estimation. (b) Evaluation of intermediate views reconstruction in PSNR(top) and MAE (bottom) for 

regular depth image based rendering (DIBR) algorithm and prosposed algorithm. (c) Ground truth image from dataset(left), reconstruction 

results for highlighted part of the image and absolute differences between the ground truth and reconstructed images for DIBR (bottom) and 

proposed algorithm (top). 
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ABSTRACT

Holographic stereograms (HSs) constitute one of the most
widely used types of computer-generated holograms. The
scene information required to calculate the HSs can be ac-
quired by conventional digital cameras. It is, however, usu-
ally required that the scene should be captured from dense set
of view points. Therefore, relieving this requirement is criti-
cal in the sense of easing the capture process. In this paper,
in the capture stage of holographic stereograms, we employ
our previously presented light field reconstruction algorithm
[1], where we utilize sparse representation of light fields in
the shearlet domain and reconstruct dense light fields from
their highly under-sampled versions. The simulation results
demonstrate that we can relieve the dense view sampling re-
quirement of HSs, e.g. by as high as 8× 8 sub-sampling fac-
tor, and still keep the perceived image quality of holographic
reconstructions at satisfactory levels. This enables, for ex-
ample, replacing the scanning camera setups with the more
convenient multi-camera arrangements.

Index Terms— Holographic stereogram, light field,
sparse reconstruction, shearlet

1. INTRODUCTION

An end-to-end holographic capture and display is usually re-
garded as the ultimate way of 3D scene replication. As it
is well-known, however, holographic capture relies on the
wave interference principle which requires illumination of the
scene with a coherent light source. This in turn makes the
recording of real-life scenes difficult for various practical rea-
sons. The endeavor towards solving this problem goes back
to 1966 when the first computer-generated hologram was pro-
posed by Brown et al. [2]. Computer-generated holography
(CGH), in a sense, simulates the optical recording process
carried out in holographic capture. In other words, the in-
terference of reference and object waves is calculated numer-
ically. Therefore, it enables obtaining holographic informa-
tion from a synthetically generated scene or a real-life scene
which is illuminated by (incoherent) white light.

Unlike other model-based approaches (which require
scene depth information), such as Fresnel hologram [3] and
phase-added stereogram [4], holographic stereogram (HS)

[5] is an image-based CGH technique which relies only on
a set of captured images of the scene. Due to this relieved
scene capture requirement as well as their efficient way of
calculation, HSs have found various applications, especially,
with the recently developed holographic print techniques
[6]. The set of captured images required for HSs are usu-
ally described using the light field (LF) formalism [7]. The
sampling requirements of the LF, which is to be used in HS
calculation, is determined based on the human visual system
(HVS) as well as the properties of the scene. These require-
ments mostly result in densely sampled LFs which then set
challenging constraints on the practical capture setups. As
a consequence of these constraints, the scene is usually cap-
tured by a scanning camera which should be moved by an
accurate camera positioning system with step sizes in mil-
limeter or sub-millimeter ranges [8]. Relieving the sampling
requirements of LF is crucial for HSs, not just to ease the
tedious work to be accomplished by such capture systems
but also to enable new capture setups. For example, relaxing
the camera movement step size to centimeter ranges could
make a multi-camera setup useful for capturing, which then
removes the static scene assumption of the scanning camera
systems and enables dynamic scene capture.

Cao et al. [9] and Rivenson et al. [10] have used the
recently emerged compressive sensing techniques to recon-
struct 3D scenes from sub-sampled versions of Fresnel holo-
grams and HSs, respectively. In these approaches, the relation
between the scene and the hologram plane is modeled via su-
perposition of 2D-to-2D propagations defined between a set
of parallel planes representing the scene and the hologram
plane. Thus, independent treatment of different sections of
the scene leaves the applicability of such methods question-
able for scenes with occlusions. As the HSs actually rely on
the captured LF, we aim to solve the sparse capturing problem
within the context of LF reconstruction from its sub-sampled
versions. By this way, we surpass the above-mentioned mod-
eling problem, which then makes our approach applicable to
scenes with occlusions. The novel view synthesis approaches
are directly applicable to the problem considered in this paper.
Indeed, in [11, 12, 13], depth-image based rendering tech-
niques have been used to reduce the number of captured im-
ages required for CGH. The performance of such approaches
is dictated by the quality of the depth estimation which is



very much scene dependent. Our LF reconstruction algo-
rithm, which has been previously presented in [1], relies on
an image based rendering technique. Thus, it does not re-
quire explicit depth information. Furthermore, it is particu-
larly useful for the problem we consider here with its compe-
tence in LF reconstruction, i.e. its ability of acceptable quality
dense LF reconstructions from highly sub-sampled LFs. The
sub-sampling rates we consider in this paper are significantly
higher (which results in sparser set of cameras), for example,
than those reported in the recently presented LF reconstruc-
tion technique [14].

2. HOLOGRAHIC STEREOGRAMS

A holographic stereogram contains the sampled LF informa-
tion on a certain plane (hologram plane). The LF required to
calculate HS can be described using the hologram plane and
the capture plane which defines camera locations. Thus, the
required LF information is obtained from cameras capturing
perspective views as illustrated in Fig. 1. The light rays cross-
ing these two planes can be equivalently parametrized using
the hologram plane and two angular coordinates which cor-
respond to positions on the camera plane. Please note that in
Fig. 1 and in the following derivations we consider the 2D
cross-section of the 3D space for simplicity, the extension to
3D case is straightforward.
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Fig. 1. Parametrization of light field capture for holographic
stereograms.

Let us denote the hologram, capture and camera sen-
sor planes by x, s and u, respectively. We define the LF
parametrized by the x and s planes as L1(x, s), similarly
another LF is defined using the s and u planes as L2(s, u).
Denoting the distance between the camera and hologram
planes as d, and the distance between the sensor and the cen-
ter of projection of the camera as l, the relation between L1

and L2 is given by

L1(x, s) = L2(s, ux), (1)

where ux = s + l(s − x)/d. The hologram, capture and
sensor planes are discretized by the sampling steps ∆x, ∆s,

∆u, which represent the holographic element (hogel) size,
distance between adjacent cameras and the pixel size of the
camera sensor, respectively. If the magnification equation
given by ∆x = ∆ud/l is satisfied and ∆s is chosen to pro-
vide integer pixels of disparityD for adjacent views, i.e. D =
∆sl/d ∈ Z, for those points on the hologram plane, then
there is a one-to-one correspondence between the discrete LFs
L1[m, i] and L2[i, k]. Thus, the LF L1[m, i] can be directly
read from the captured images.

HSs encode the LF information in the form of holographic
fringes. The object field can be expressed as a superposition
of windowed plane waves emitted from different hogels to
different directions, and the amplitudes of the plane waves are
specified by the corresponding LF (intensity) samples. Thus,

OHS(x) =
∑
m

rect

(
x−m∆x

∆x

)
×
∑
i

√
L1[m, i] exp(j2πfmix x), (2)

where fmix are the spatial frequencies of the plane waves on
the hologram plane. They are determined by the propagation
directions of the corresponding rays as fmix = (1/λ) sin θmix ,
where λ is the wavelength of the monochromatic light and
θmix represent the incidence angles of the rays along the
x−axis. The inner sum in Eq. 2 produces the spatial pattern
to be written inside each hogel and it can be found via apply-
ing an inverse Fourier transform operation to the reordered
images according to Eq. 1. The interference pattern of a ref-
erence wave and the object wave found by Eq. 2 creates the
intensity fringe patterns of the HS which then reconstruct the
object wave when illuminated with the same reference wave.
In this paper, we consider the complex object wave as the HS
to avoid the reconstruction noise that would be introduced by
the conjugate object wave so as to evaluate our approach in a
more reliable way, as will be demonstrated in Sec. 4.

The diffractive properties of HSs are mainly determined
by the hogel size. The hogel size of the HS is usually cho-
sen based on the properties of HVS and an average intended
observation distance. Assuming that HVS is a diffraction-
limited imaging system, the minimum distance between two
points at distance d that can be resolved by the HVS is given
by the Rayleigh criterion as [15]

∆HV S
x =

1.22λd

T
, (3)

where T is the pupil size of the human eye (which is typ-
ically in 2mm-8mm). Thus, having a hogel size smaller
than or equal to this minimum resolvable distance will en-
sure maximized perceived image resolution. On the other
hand the pupil size sets an upper limit for the angular resolu-
tion of HS which needs to be satisfied for smooth experience
of view-dependent image properties such as motion parallax
[16]. These two criteria usually impose a dense LF sampling



for the capture setup which complicates the capture process.
In the following section, we propose a method to relieve the
sampling requirements regarding the capture setup.

3. LIGHT FIELD RECONSTRUCTION

One widely used way of LF analysis is to utilize the epipolar-
plane image (EPI) representation. An epipolar-plane image
can be formed by taking the slices of the LF, i.e. for a 4D
LF L(s, t;u, v) it is obtained as E(s, u) or E(t, v), depend-
ing on the direction for which the analysis will be carried
out. The problem of densely sampled LF reconstruction can
be formulated as reconstruction of each densely sampled EPI
slice from only a sparse (decimated) set of samples as illus-
trated in Fig. 2(a) and Fig. 2(b). Here, we refer to the LF
sampling case as the densely sampled LF, when the disparity
range of the scene between adjacent views is within −1 : 1
pixels with respect to the disparity of points on the focused
scene plane. It has been shown that the continuous LF func-
tion can be obtained from such a densely sampled LF using
linear interpolation [17].

(a) (b) (c)

s

u

s

u

Ωu

Ωs

Fig. 2. Reconstruction of the densely sampled EPI. (a) Deci-
mated EPI. (b) Corresponding reconstruction result. (c) Tiling
of the frequency domain of EPI by the shearlet atoms.

The LF reconstruction problem can be efficiently solved
using regularization in the shearlet domain, since the LFs ex-
hibit sparse representations in this domain [1]. Fig. 2(c) illus-
trates how the frequency domain of EPI is tiled by the shear-
let atoms. The shearlet atoms are distributed such that each
disparity value in EPI is revealed as direction in tiling. The
reconstruction of unknown samples in EPI can be modeled
as estimation of a given that b = Ha, where a and b are
the vectorized versions of the densely sampled and decimated
EPI, respectively, H is the masking matrix representing the
known samples positions. Reconstruction is obtained by iter-
ative hard thresholding procedure with decreasing threshold
[1]. That is,

an+1 = S∗ {T λn
{S [an + α(b−Han)]}} ,

where S,S∗ are the shearlet analysis and synthesis transform
matrices, respectively, α is acceleration coefficient and T λn

is the hard thresholding operator with threshold λn. After
sufficient number of iteration, an is obtained as the solution
with the corresponding sparse representation of San.

In this paper, we consider full parallax viewing of HSs.
Therefore, the full parallax LF reconstruction is achieved by
consecutively reconstructing each horizontal parallax set and
then repeating the same procedure for each vertical parallax
set. For a more detailed discussion of the LF reconstruction
algorithm, we refer the reader to [1].

4. SIMULATION RESULTS

We consider the simulation setup illustrated in Fig. 3, where
we use the 3D modeling software Blender [18] for designing
the scene and rendering the perspective images. The holo-
graphic stereogram is intended to be viewed by an observer
at distance d = 200mm. The pupil size of the observer is
assumed to be 2mm. The hologram parameters are then set
(according to Sec. 2) as: pixel size Xx = 2µm, hogel size
∆x = 64µm and total number of pixels N = 8092.

x

z

8 mm

12 mm

8 mm 8 mm

d = 200 mm

Δx = 64 µm

3 mm

Δs = 1 mm

s

hologram
plane

camera
plane

Fig. 3. The simulated scene.

The camera plane is also chosen to be d = 200mm away
from the hologram plane. We first implement the dense LF
sampling case for which the LF samples required for HS cal-
culation can be simply obtained from the captured LF data by
linear interpolation, as pointed out in Sec. 3. For the scene
shown in Fig. 3, it is required that the camera spacing should
be at most 1mm to be able to capture the dense LF. Therefore,
we put 49×49 cameras at s, t ∈ {−24∆s,−23∆s, ..., 24∆s}
with spacing of ∆s = 1mm on the camera plane. In the
second setup, we employ the sparse set of 7 × 7 cameras at
s, t ∈ {−24∆s,−16∆s, ..., 24∆s} to demonstrate how our
LF reconstruction algorithm relieves the LF capture stage of
HSs. Given this sparse set of cameras we estimate all 49× 49
dense set of views using two different approaches: one is our
shearlet-based LF reconstruction method discussed in Sec.
3 and the other one is depth-based light field reconstruction
which utilizes ground truth depth maps (provided by Blender)
for each sparse viewpoints. In the depth-based approach, fol-
lowing the procedure in [13], we separate the depth in three
dominant layers (corresponding to depths of three dice) that
are consequently used in the rendering of the dense light field.
Then, we calculate three holographic stereograms by using
both the original and the estimated dense sets of views for
the above-mentioned two approaches. In all HS calculations,



the scene is assumed to be illuminated by a monochromatic
light with wavelength of 534nm and correspondingly only
the green channels of the images are utilized. The HSs are
calculated hogel by hogel using IFFT, as suggested by Eq. 2,
where the discrete set of spatial frequencies are obtained by
resampling the continuous set of spatial frequencies via bi-
linear interpolation.

We compare the qualities of obtained HSs by simulat-
ing the viewing process. In particular, we employ wave field
modeling and find the image perceived by the observer using
the Fresnel diffraction model as

I(u, v) = |Fl {T (s, t)Fd {OHS(x, y)}} |2, (4)

where Fz is the Fresnel propagation operation by distance z,
and T (s, t) represents the lens transfer function of the human
eye [15]. The human eye is modeled as a camera with a thin
lens having a circular aperture of diameter 2mm. The dis-
tance between the pupil and retina, l, is assumed to be 25mm
and the eye is focused on the hologram plane. The pixel size
on the retina is set to ∆xl/d = 8µm, i.e. it corresponds to
one hogel size according to lens magnification. In order to re-
duce the speckle noise in the reconstructed images, we do the
calculation given by Eq. 4 in a multiplexed manner. The HSs
are expressed as a sum of their sub-sampled versions (sub-
sampling is done over hogels), where the sub-sampling factor
is 6× 6. The corresponding 36 reconstructed images are then
(incoherently) summed up to find the final reconstructed im-
age. By this way, we eliminate the interference between a
given hogel and the hogels within its 11× 11 neighborhood.

In Fig. 4, we show reconstructed images from three HSs,
corresponding to different LFs, at different observer positions
on the camera plane. The HS reconstructions corresponding
to original dense set of images, estimated sets of images via
the depth-based reconstruction, and estimated sets of images
via our LF reconstruction algorithm are given in columns (b),
(c), and (d), respectively. At each observation point shown
in different rows, we take the green channels of ideal images
rendered in Blender as reference (shown in column (a)) and
calculate PSNRs for the image regions within the bounding
boxes of dice. From column (b) to column (d), the corre-
sponding PSNRs are found as 22.83dB, 22.63dB, 22.55dB
for the top row; 22.90dB, 22.89dB, 22.87dB for the middle
row; and 23.13dB, 22.37dB, 23.12dB for the bottom row.

Regarding the comparison between the reconstructed and
corresponding ideal images, the significant parts of degrada-
tions are caused by the common factors that are the errors
introduced in HS generation (e.g. due to plane wave assump-
tion) and the speckle noise inherent to subsequent holographic
reconstruction process. Otherwise we can provide acceptable
quality reconstructed (perceived) images which are similar to
those obtained from the original dense set of views, and in
doing this we relieve the view sampling requirement by a fac-
tor of 8 × 8 compared to the dense LF capture case. Fur-
thermore, our LF reconstruction and the depth-based method

also result in similar reconstructed images from HSs. This
makes our method more preferable, since it does not require
depth estimation which is usually susceptible to artifacts such
as misregistration. There are significant implications of these
achievements. For example, it would be possible to capture
the required LF information for the setup considered in this
section by using a 7 × 7 array of cameras which is placed at
800mm away from the hologram plane, where each camera
has 50mm focal length and 4K×4K sensor with pixel size of
∼ 4.3µm. The distance between the adjacent cameras of this
multi-camera setup would be 8mm × (800/200) = 32mm
which is a feasible value for camera spacing (it should have
been 1mm × (800/200) = 4mm for direct capture of dense
LF).

Fig. 4. HS reconstructions for views given in (a). HS is cal-
culated from: (b) original dense set of images, (c) estimated
dense set of images via depth-based approach (ground truth
depth is utilized), (d) estimated dense set of images via our
light field reconstruction algorithm. The observer is at: top
row: (6∆s, 12∆s), middle row: (−12∆s, 8∆s), bottom row:
(−10∆s,−10∆s).

5. CONCLUSIONS

We have presented a way to relieve the light field sampling re-
quired by the holographic stereograms. In particular, we have
utilized the sparse representation of light fields in the shearlet
domain. The ability of acceptable quality dense light field re-
construction from its highly under-sampled versions (e.g. by
a factor of 8 × 8) have led us to capture a much sparser sets
of multi-view images than that is originally required for holo-
graphic stereogram calculation. As an important implication
of this, we have demonstrated that the usually employed scan-
ning camera setups can be replaced with the more convenient
multi-camera arrangements.
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Abstract—We consider the problem of reconstructing densely
sampled light field (DSLF) from sparse camera views. In our
previous work, the DSLF has been reconstructed by processing
epipolar-plane images (EPI) employing sparse regularization in
shearlet transform domain. With the aim to avoid redundant
processing and reduce the overall reconstruction time, in this
article we propose algorithm modifications in three directions.
First, we modify the basic algorithm by offering a faster and more
stable iterative procedure. Second, we elaborate on the proper
use of color redundancy by studying the effect of reconstruction
of an average intensity channel and its use as a guiding mode for
colorizing the three color channels. Third, we explore similarities
between EPIs by their grouping and joint processing or by
effective decorrelation to get an initial estimate for the basic
iterative procedure. We are specifically interested in GPU-based
computations allowing an efficient implementation of the shearlet
transform. We quantify our three main approaches to accelerated
processing over a wide collection of horizontal- as well as full-
parallax datasets.

Index Terms—Light field reconstruction, Graphics processing
units, Densely sampled light field

I. INTRODUCTION

3D visual scenes are completely represented by the light
field they emanate. Given that the light field is a con-

tinuous function, its capture and consequent reconstruction
is an important task, especially for visualization applications,
which require multiple perspective views (e.g. super multiview
displays [1]) or dense parallax (e.g. digitally printed holograms
[2]). Many other light field image processing applications,
such as depth estimation, compression, synthetic aperture
imaging would benefit from accurately reconstructed light
field [3]. A typical way of capturing light fields from real
world scenes is to use a set of identical parallel cameras
which are uniformly positioned on a plane. In order to support
continuous parallax, such capturing setup requires that the
cameras are densely positioned [4]. To overcome the demand
for synchronously controlled high amount of cameras, the
approach is to use a coarse set of cameras and to devise
a consecutive light field reconstruction method, which can
deliver densely sampled views from the coarse set of captured
ones.

The approaches for reconstructing dense intermediate views
from a given sparse set of views can be categorized into
two categories. First, those are methods aimed at extracting
geometry information about the scene in the of form of high
quality depth maps collocated with the given input images,
which can be used for depth-based view rendering [5] or
unstructured lumigraph rendering [6]. Such methods utilize
correspondences between images, found by block matching

[7], and employ some global optimization of cost functions
usually formed by data and smoothness terms [8], [9]. Apart
from having problems with occlusions, when using sparse
views, these methods result in over-smoothed depth estimates,
and for finding finest details aligned with object boundaries
they still need relatively densely positioned cameras [10].
Second category includes methods operating directly on the
light field and aimed at employing some sparsity priors for this
data. For example, the work [11] exploits sparse representation
of full parallax 4D light field in continuous Fourier domain
using a small number of 1D viewpoint trajectories.

For both categories, reconstructing a dense set of images
is a computationally demanding problem. Global optimization
methods aimed at obtaining multiple high quality depth maps
do not scale well with the number of images and their
resolution. The method in [10] targeted processing of 50 views
with overall of 21-megapixels and accounted of about 50 mins
of processing time. The runtime of the method in [11] ranged
from 2 to 3 hours using a cluster of machines.

Previously, we have proposed a method for light field
reconstruction which utilizes sparsification in shearlet trans-
form domain [12], [13]. The method reconstructs DSLF from
an undersampled light field captured by a small number of
wide-baseline cameras. It demonstrated superior performance
while compared with Motion Picture Experts Group’s depth
estimation reference software (DERS) [14] and view synthesis
reference software (VSRS) [15], and with the state of the
art in depth-from-stereo scene geometry reconstruction [16].
The method handles both horizontal and full-parallax capture
settings and is highly successful when reconstructing non-
Lambertian scenes formed by semi-transparent objects [13]. In
this article, we further develop the method by proposing com-
putational acceleration approaches based on inherent similar-
ities in the assumed data representation and further algorithm
tuning. Our aim is to decrease the necessary computational
time while keeping or even increasing the reconstruction
quality for a large set of test data.

The article is structured as follows: the light field parameter-
ization and a summary of light field reconstruction algorithm
from [13] are presented in Section II. Different acceleration
approaches are proposed in Section III. Computing and eval-
uation setup, algorithm implementation, experimental results
and discussions are presented in Section IV.

II. RECONSTRUCTION OF DENSELY SAMPLED LIGHT
FIELD

4D light field is parameterized by the so-called two-plane
parameterization L u s t (Fig. 1), where s t and u cor-
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Fig. 1. Light field two-plane parameterization and corresponding discrete coarsely and densely sampled light field parameterizations.

respond to the camera plane and the image plane respectively
[17]. This parameterization allows to conveniently describe
and denote both the set of images (views) captured by a
multi-camera setup and the required dense set of images fully
representing the 3D scene of interest. For the sake of simpler
notations and easier illustrations, hereafter we consider the
case of horizontal parallax and explain the generalisations
to full parallax when needed. Fixing the camera motion to
horizontal direction only implies that the parameter s s
corresponding to the vertical parallax can be omitted.

L u t L u s t

We aim at reconstructing continuous light field L u s t
from sampled views of 3D scenes. For such scenes and
corresponding light fields, we define the densely sampled light
field (DSLF), denoted by L i j k , as the light field having
a maximal disparity between adjacent views less than pixel.
The k-th captured image I i j L i j k corresponds to
an image of the L continuous light field sampled at t k t .
The necessary parameter t for capturing DSLF can be
calculated based on camera intrinsic parameters and specifying
the minimum depth of the scene from the camera (capturing)
plane. The continuous light field can be reconstructed from
DSLF by linear interpolation [4]. Therefore, DSLF is a con-
venient representation and is in the core of many LF-based
algorithms, such as refocusing, free view-point rendering and
smooth-parallax visualization [3]. However, a direct capture
of views providing one-pixel disparity is impractical.

In our previous work we have presented a method for DSLF
reconstruction from coarsely sampled views [12]. A coarsely
sampled light field is assumed to be a decimated version of
DSLF, where the decimation factor is denoted by d

L i j k L i j d k

Subsequently, the maximal disparity between adjacent coarsely
sampled views I i j L i j k is no more than d . In
our previous work we presented an iterative algorithm which
reconstructs L from L for d . The algorithm works
in EPI domain. More specifically, DSLF L is reconstructed
by reconstructing every densely sampled epipolar-plane image
(DSEPI) defined as

E k j L i j k

from the given decimated samples E such that E k j
E d k j . An example of coarsely-sampled and densely-

sampled light fields is given in Fig. 1. Note how rows with step
size d form E out of E . The specific value of d
is related with image resolution and has been selected for prac-
tical reasons. The method can be applied for higher disparity
ranges too, however this would impose processing images with
higher resolution, which in turn would significantly increase
the required amount of memory [13]. Therefore, in this article
we consider the limit case of d .

Below, we summarize the algorithm for DSEPI reconstruc-
tion [13]. To simplify the notations, we denote the unknown
DSEPI matrix by f . The decimated EPI
has the same dimension and contains sensed values at each
d -th row while the other rows are set to . The relation
between the two EPIs is formalized by setting a binary
measurement matrix M which has zero values
elsewhere than M kd j . Then, M f , where
is element-wise matrix multiplication. The direct and inverse
shearlet transforms are denoted by S
and S , respectively, where is the
number of all shears in all scales of the shearlet transform.
More details about the shearlet transform construction can be
found in [13]. The reconstruction of unknown rows of the
matrix is formulated under the prior condition for having
sparse solution in the shearlet domain, i.e.

S f subject to M f

which can be efficiently solved through the following iterative
thresholding algorithm [13]:

f S T S f M f (1)

where the acceleration parameter is chosen as follows

M S
S M f f

(2)

and T f k f k x k
x k is a hard thresholding

operator. The initial value can be set to f S S , where
S and S are direct and inverse transform using only low-pass
element in the shearlet transform. The thresholding parameter

is set to decrease with the iteration number n. In our case
we apply a linear decrease from to , for L iterations
such as n L.

It is important to mention that one has to set a few
parameters while running the algorithm. These are the number
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of iterations L which directly influences the computational
time; the initial estimation f which can reduce the necessary
number of iterations; and the threshold range .

The generalization to full parallax is straightforward by
successively implementing the basic algorithm along the hor-
izontal and vertical camera axes. A more computationally-
efficient alternative, referred to as hierarchical reconstruction
[13], implements the reconstructions in a specific order, aimed
at reducing the maximum disparity between input views after
each iteration, thus reducing the required number of shearlet
transform scales and the related processing time.

III. ACCELERATED PROCESSING

The method in Section II is applicable for any EPI. A
preferable solution would use the same set of parameters
for every EPI and run the reconstructions independently. One
can select optimal thresholding parameters for the reconstruc-
tion algorithm as and fix a common number
of iterations N for all EPIs. In this case, the computation
time linearly depends on the number of EPIs and the fixed
number of iterations. By distributing the required computations
equally between multiple GPUs, one can achieve the fastest
computational time for this independent processing. Further
acceleration can be achieved by speeding up the iterative
algorithm itself and by utilizing similarities between EPIs.

A. Faster convergence by double overrelaxation
In this section we propose a modification of the main iter-

ative algorithm aimed at its faster convergence. As presented
in (2), the convergence is controlled by the parameter ,
which was originally designed to provide stability for varying
content for the price of increased computations [13]. As a
computationally less expensive alternative, here we propose
another update mechanism, based on the so-called double
overrelaxation (DORE), similar to the one presented in [18].
Assume the light field EPI matrices are reordered in column
vector form and assume the parameter is fixed. The
thresholding operation

f S T S f M f (3)

is followed by a two-step overrelaxation

f f f f
f H f f

f f H f f
(4)

f f f f
f H f f

f f H f f
(5)

where H R is a diagonal matrix containing the ele-
ments of the measuring matrix M along its main diagonal. For
additional stability we clamp the values of . The
role of the double over-relaxation is to tackle potential insta-
bilities by keeping the next iteration anchored to the previous
iterations. Eq. (4) and (5) provide closed-form solutions for

(a) (b)

Fig. 2. (a) Proposed window (green) for modelling guidance with respect to
reference pixel (orange). (b) Neighbourhood (green) for forming Laplacian
matrix entry with respect to reference pixel (orange).

the respective line search problems argmin H f

f f and argmin H f f f .

This leads to finding an optimal linear combination between
consecutive solutions such that the error is minimized over the
given samples defined by the matrix H.

B. Color spaces and guided colorization
A trivial approach is to convert the RGB color channels into

YUV colour space and process EPIs there, while expecting
significantly less energy in the U and V colour channels.
Specifically, we apply reversible color transform (RCT [19])
without any quantization of values, i.e.

Y = (R + 2*G + B)/4
U = B - G
V = R - G

Usually, the spatial information in U and V channels is
highly redundant for natural images. Therefore, in the case
of processing in YUV colour space with given N number
of iterations, we reconstruct Y channel with N iterations
and U V channels with N iterations. Compared with the
reconstruction in RGB colour space, the overall number of
iterations is reduced from N to N .

Furthermore, we investigate the possibility of applying the
fully reconstructed Y-channel EPI as a guide in reconstructing
R, G and B color channels from their decimated EPI versions.
This type of problem can be solved by methods previously
developed for image colorization [20], [21]. It has been also
shown that colorization can be considered as a particular
case of the more general problem of alpha matting [22].
Specifically, we adopt the so called closed-form alpha matting
algorithm proposed in [23] and modify it for the purpose of
reconstructing color EPIs.

Following the notations in Section II, we denote the targeted
EPI color channel and its decimated version by f and
respectively. Let us denote also the reconstructed Y-channel
EPI by E . Then, the targeted color channel pixels f are
modelled as a linear function of the known (i.e. guiding) image
pixels E , within a small window

f aE b i
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For natural images, typically, the small window has been
assumed to be a square window of pixels around the
reference pixel. For the case of EPI, we propose to use
a different window to leverage the directional information
presented in EPI. We show the proposed shape in Fig. 2(a).

The cost function minimization problem can be formulated
as follows

J f a b f a E b a

where the regularisation term a is added for numerical sta-
bility. In [23], it has bee shown that an equivalent minimization
problem can be formulated using matting Laplacian matrix ,
which removes the need to identify a and b

J f J f a b J f f f

where the entries of the matrix R are calculated as
follows

i j E E

In the above equation, denotes the Kronecker delta, and ,
, denote the cardinality, the mean and the variance of the

window respectively. For the entry L i j , the summation
is done over all windows which contain pixels with indices
i and j. For a reference pixel at position i and for our choice
of window shape, the pixel positions j are shown in Fig. 2(b).
Given the true colors at the decimated EPI , the problem is
reformulated as

f f H f

where H is the diagonally-arranged measurement matrix M .
The so-formulated problem is solved using the conjugated
gradient method.

C. Group Processing of Similar EPIs
Previously, we have presented an attempt to accelerate the

basic algorithm utilizing similarities between EPIs [24]. The
method suggested constructing a tree, which defines the order
of processing depending on similarity between EPIs. In the
constructed tree, each node corresponds to an EPI. The tree is
constructed by comparing EPIs for their similarity in terms of
l norm and consecutively connecting the most similar pairs of
EPIs. Iterating over all EPIs, one obtains a connected graph.
Then, the processing is performed from top to bottom, and
the EPI being processed uses the reconstructed EPI at its
parent node as an initial estimate. Our hypothesis was that
the reconstruction over the graph would allow for adaptively
choosing the number of iterations for each EPI depending on
the similarity to its initial estimate. This approach heavily
depends on the threshold defining similarity between EPIs
and setting the same reconstruction parameters for different
datasets is problematic. Therefore, in this article we adopt
a more systematic approach toward exploring the EPI sim-
ilarities, which would allow an easier tuning of algorithm

Fig. 3. Reconstruction flowchart using wavelet transform approximation
coefficient as an initial estimation.

parameters. First, we consider grouping of similar EPIs, done
by comparing l distances between EPIs against a predefined
threshold t . Having the EPIs organized in groups, we fully
reconstruct the average EPI over each group and use it as a
guidance map to reconstruct the other EPIs in the group by
the approach proposed in Subsection III-B.

D. Initialization by Wavelet Transform
The redundancy between EPIs can be regarded as redun-

dancy in the vertical direction in the given multi-perspective
images. Instead of local grouping of similar EPIs as in
Subsection III-C, we consider the alternative of decorrelating
the vertical image lines by a fixed transform, e.g. a wavelet
transform. Namely, a wavelet transform is performed on
E along the i axis which is equivalent to performing
1D wavelet transform vertically on every input image I i
along i axis. By performing L level of 1D wavelet transform
between EPIs E i p, we expect to split them into EPIs
with small-magnitude detail coefficients and E i p
EPIs with higher-magnitude approximation coefficients. The
approximation coefficients gather most of the information of
the original set of EPIs. The reconstruction is then applied
directly on EPIs formed by wavelet transform approxima-
tion coefficients. The obtained set of densely sampled EPIs
E i p contain a good amount of directional struc-
tures (more global ones), however, they still require further
processing to obtain desirable quality of reconstruction (add
details from the original set of EPIs). Therefore, the inverse
wavelet transform can be applied on the reconstructed EPIs
of the approximation coefficients with an appropriate padding
with zeros corresponding to detail coefficients. The obtained
set of EPIs I i p is used as an initial estimate for
reconstruction of the original input E EPIs by performing
additional processing by the modified basic algorithm. The
processing times for the two steps can be set independently.
The flowchart of the approach is shown in Fig. 3.

IV. EXPERIMENTAL EVALUATION

A. Algorithm Implementation
We have implemented the core reconstruction algorithms,

on a GPU using CUDA Toolkit [25]. Since the shearlet trans-
form is a translation invariant transform, it can be efficiently
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computed using the Fast Fourier Transform (FFT). In our case,
we used the cuFFT library to get an FFT implementation on
the GPU [26]. For generating our experimental results we have
used a system consisting of four Nvidia GeForce GTX Titan
X GPUs. The computational time for reconstructing an EPI
mainly depends on the number of overall iterations that have
to be performed. In order to achieve fastest computation for
a given set of input EPIs with a corresponding number of
iterations, the set has been distributed between GPUs such that
the overall number of iterations that has to be performed are
approximately equal for each GPUs. On the level of one GPU,
the whole iterative processing is performed independently
from other GPUs. Depending on the size of the processed
EPI, we get different occupation of GPU kernels at a time.
We consider EPIs with the size of processed with
the shearlet transform at scales using algorithm presented
in Sections II, III-A. In both cases, 100 EPIs are processed.
The computational times are presented in Fig. 4. Note that
reconstructing in the case of with S transform,
only one process per GPU is sufficient for both algorithms,
while DORE is significantly faster.

B. Evaluation
In our comparative tests, we have used datasets presented in

[27], [28] for horizontal parallax and in [29] for full parallax
datasets. In overall, 22 horizontal-parallax datasets and two
full-parallax datasets of various depth and spatial content have
been used. In all experiments, the input data is formed by
every second view of the test dataset. The other views form
the reference. The algorithm performance has been evaluated
by comparing the difference between the reconstructed and
the reference views in terms of PSNR (dB). J scale
levels have been considered for the shearlet transform (S )
which corresponds to an intermediate view reconstruction,
where the maximum disparity between adjacent views is in
the range of pixels. The exact disparity ranges of each
scene as obtained from the ground truth disparity maps are
shown in Fig. 5. In order to shift the available (existing)
disparity ranges to d d , for each input dataset we
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Fig. 5. Illustration of the disparity ranges between adjacent
views for input dataset used in this paper (obtained from ground true disparity
maps).
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Fig. 6. Comparison of average performance between basic algorithm with
adaptive selection of the parameter and DORE with fixed for the
horizontal-parallax datasets.

perform first a horizontal shearing by d on all EPIs. After
reconstructing d d intermediate views, a shearing
by d d d is applied to return the imagery to the
original disparity range. In general, we evaluate algorithms
presented in Section III for different number of iterations
in order to compare trend of convergence speed of different
algorithms in average for all datasets.

In our first comparative test, we present the average re-
construction quality for the algorithm modification based on
DORE with and the original adaptive algorithm. The
comparison is done for iterations
per EPI. The results for the horizontal parallax datasets are
shown in Fig. 6, while the reconstruction results for the full-
parallax datasets are shown in Fig. 7. The DORE algorithm
provides faster convergence for all datasets and results in
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tion of RGB for the horizontal-parallax datasets.

better quality enjoying also faster processing. In all subsequent
experiments, we use the DORE algorithm with ,
referring to it as the reference algorithm.

Next, we aim at quantifying the performance of the col-
orization algorithm. For the horizontal-parallax datasets, we
present the trend in reconstruction quality for different number
of iterations, see Fig. 8. The reference algorithm reconstructs
the three color channels, R, G, and B in an equal number of
iterations, while in YUV, priority is given to the Y channel,
which is processed twice longer than the U and V channels.
In the case of colorization, an average intensity channel is
formed as Y R G B and fully reconstructed in
varying number of iterations, then each of the color channels
is reconstructed by colorization using the reconstructed Y
channel as a guidance. As can be seen in the figure, the
prioritized processing brings some improvement over the ref-
erence algorithm and the algorithm based on colorization is
significantly faster as it processes a single channel only. All
three algorithms saturate in performance, which means that
after some number of iterations, no quality improvement is
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Fig. 9. Comparison between reference algorithm (RGB), and colorization of
RGB for the full-parallax datasets.

achieved. The colorization algorithm saturates at lower level,
which indicates that the structural differences in the three color
channels have not been fully reconstructed in the averaged
intensity channel. The reached values after 100 iterations for
each of the three algorithms are the following: RGB dB,
YUV dB, Col RGB dB. These results suggest
that the colorization algorithm is preferable in case of limited
computation time, since it converges faster, while for the case
of better computing resources, the best quality is achieved by
the YUV color space processing.

Fig. 9 presents the results for the full-parallax datasets.
For the Bunn dataset, the colorization shows a significant
improvement both in terms of time and quality, while for the
Truck dataset, the results are in agreement with the average
result over the horizontal-parallax datasets.

Fig. 8 presents the average results over the whole group
of test scenes. The result in terms of rate of convergence
vary substantially for the individual test scenes. In order
to further analyse the algorithm based on colorization, we
look at the saturation points for the reference algorithm and
the colorization algorithm for each individual dataset. The
two algorithms are run for increasing number of iterations
and saturation points are estimated at the iteration where
further improvement is negligible. Denote by E k T k k

the quality level (e.g. PSNR), and the corresponding
time in seconds for the running iteration k . We define
k E k and define the saturation point as
k . The idea is illustrated
in Fig. 10 for the Teddy dataset, where the saturation points
are given by the circles around the corresponding iterations.

Having found two saturation points per dataset, one for
the reference and one for the colorization algorithm, one can
compare them in terms of quality variation (ISNR) and time
acceleration ratio. In other words, we compare the best achiev-
able quality per dataset for the two algorithms versus the time
acceleration ratio it brings. Fig. 11 presents this comparison
over the horizontal-parallax datasets. In the figure, each dot
represents one dataset, the x axis represents the relative time
acceleration achieved by the colorization algorithm versus the
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reference one, and the axis represents the improvement in
the signal-to-noise ratio ISNR (dB). As seen in the figure, there
are a few sets, where the acceleration in time comes together
with improved quality, while for the majority of datasets, the
acceleration is achieved for the price of reduced quality.

Another way to illustrate the performance of the colorization
algorithm is to show the ISNR in comparison to the reference
algorithm for the same time, using interpolation between
iteration points. Fig. 12 gathers the performance for each
individual dataset, along with the mean and median values. For
short processing times, colorization is to be preferred as most
of the sequences show positive ISNR values. As the processing
time gets longer, the values cluster around the zero ISNR line
(as shown also by the mean and median curves), while there
are a few sequences still enjoying better performance with the
colorization method and other sequences showing worsening
results. Apparently, among the former group these are datasets
with relatively simpler color and depth distributions.

To simplify the next experiments, we limit the compar-
ison of algorithms exploring the inter-EPI similarities and
decorrelation to comparing the results for the Y channel only,
assuming that the RGB color channels can be efficiently
reconstructed by the Y channel.
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Fig. 12. ISNR of colorization versus reference algorithm for individual
sequences.
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Fig. 13. Comparison of the reconstruction trends depending on number of
iterations used for obtaining initial estimation in method utilizing wavelet
transform. In the legend of the figure presented corresponding number of
iterations used for processing initial estimations.

For the wavelet transform based acceleration approach,
presented in Section III-D, we perform L levels of the
CDF transform. Here, the issue is to find the best propor-
tion between the processing time allocated for obtaining the
initial estimate and the processing time allocated for refining
the EPI reconstruction based on this initial estimate. In order
to illustrate the trend in convergence, we perform experiments
where the initial estimate is obtained by reconstructing the
coarse wavelet coefficients with iterations. The
obtained initial estimate is then refined for the same number
of iterations, as the direct (reference) algorithm. Fig. 13 depicts
the trends. Naturally, the time needed for obtaining the initial
estimates, shift the initial curve points to the right, e.g. the
curve corresponding to 75 iterations allocated for getting the
initial estimate is the rightmost in the figure. Then, the curves
corresponding to wavelet-based initialization get better and
saturate faster, with the case of 50 iterations for the initial
estimate showing the best performance.

The algorithm based on grouping similar EPIs and process-
ing them together as presented in Section III-C does not show
consistent results for all datasets. This is to be attributed to the
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grouping based on similarity between EPIs for different datasets for fixed
thresholding value.

strong dependence on the threshold value, which determines
which EPIs are sufficiently similar. In general, increasing the
threshold value leads to increasing the size of formed groups
and therefore decreases the computation time. However, the
effect on quality is very much content-dependent. Results
for several datasets with different threshold values are pre-
sented in Fig. 14. For the dataset Laundr , one can get
significant acceleration, while e.g. for the dataset Moebius,
the reconstruction quality is always inferior compared with
the reference algorithm. Selecting one of the well-performing
thresholds, i.e. the value of , one can get the performance
for each individual dataset, as shown in Fig. 15.

Some examples of synthesized views are presented in
Fig. 16, 17 with the corresponding quality in terms of
PSNR. The DORE-based algorithm provides consistently bet-

ter convergence compared to the original method [13]. The
colorization-based algorithm achieves good reconstruction re-
sults when the Y channel manages to get the important
structure of the scene (edge information) existing in R, G and
B channels. For the particular scene Laundr , the algorithm
based on wavelet transform provides better convergence com-
pared to the reference RGB algorithm.

V. CONCLUSIONS

In this article, we have addressed the problem of accelerat-
ing the DSLF reconstruction algorithm, which originally uses
sparse camera views and works on each EPI independently
by employing regularized iterative reconstruction in shearlet
transform domain. In order to speed up the algorithm, we
proposed modifications in three categories. First, we aimed
at improving the algorithm itself by using double relaxation
in the iterative procedure. Second, we explored the similarities
between color channels within the same EPI in the flavor of
colorization based approaches. Third, we aimed at avoiding
redundant processing and reducing the overall reconstruction
time through exploiting similarities between EPIs. Further-
more, our implementation employed GPUs allowing for an
efficient parallelized computation of the iterative procedure
and the underlying shearlet transform.

We have generated experimental results on a wide set of
test sequences and analyzed the performance of the considered
approaches. The new reconstruction method based on double
overrelaxation shows better convergence speed in comparison
with the original algorithm. We favor the use of colorization
as the approach catches well the color dependences in natural
images. The benefit of using similarities between EPIs is very
much content dependent. The wavelet based approach shows a
marginal improvement in terms of convergence rate, which is
still worth employing. As of the algorithm based on grouping
of similar EPIs and group processing, it provides acceleration
only for scenes where significant amount of EPIs are similar.

The modifications employ structured similarities within EPI
and between EPIs were integrated within the DSLF recon-
struction algorithm. However, they are perfectly applicable
also in other LF image processing algorithms, where DSLF
reconstruction is not the main goal. Such potential applications
include LF depth estimation, compression, segmentation, and
matting.
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Light Field Reconstruction
Using Shearlet Transform

Suren Vagharshakyan, Robert Bregovic, Member, IEEE, and Atanas Gotchev, Member, IEEE

Abstract—In this article we develop an image based rendering technique based on light field reconstruction from a limited set of

perspective views acquired by cameras. Our approach utilizes sparse representation of epipolar-plane images (EPI) in shearlet

transform domain. The shearlet transform has been specifically modified to handle the straight lines characteristic for EPI. The devised

iterative regularization algorithm based on adaptive thresholding provides high-quality reconstruction results for relatively big disparities

between neighboring views. The generated densely sampled light field of a given 3D scene is thus suitable for all applications which

require light field reconstruction. The proposed algorithm compares favorably against state of the art depth image based rendering

techniques and shows superior performance specifically in reconstructing scenes containing semi-transparent objects.

Index Terms—Image-based rendering, light field reconstruction, shearlets, frames, view synthesis.

✦

1 INTRODUCTION

S YNTHESIS of intermediate views from a given set of
captured views of a 3D visual scene is usually referred

to as image-based rendering (IBR) [1]. The scene is typically
captured by a limited number of cameras which form a
rather coarse set of multiview images. However, denser set
of images (i.e. intermediate views) is required in immersive
visual applications such as free viewpoint television (FVT)
and virtual reality (VR) aimed at creating the perception of
continuous parallax.

Modern view synthesis methods are based on two,
fundamentally different, approaches. The first approach is
based on the estimation of the scene depth and synthe-
sis of novel views based on the estimated depth and the
given images, where the depth information works as corre-
spondence map for view reprojection. A number of depth
estimation methods have been developed specifically for
stereo images [2], and for multiview images as well [3],
[4], [5], [6], [7], [8], [9]. In all cases, the quality of depth
estimation is very much content (scene) dependent. This is a
substantial problem since small deviations in the estimated
depth map might introduce visually annoying artifacts in
the rendered (synthesized) views. The second approach is
based on the concept of plenoptic function and its light
field (LF) approximation [10], [11]. The scene capture and
intermediate view synthesis problem can be formulated as
sampling and consecutive reconstruction (interpolation) of
the underlying plenoptic function. LF based methods do not
use the depth information as an auxiliary mapping. Instead,
they consider each pixel of the given views as a sample of a
multidimensional LF function, thus the unknown views are
function values that can be determined after its reconstruc-
tion from samples. In [12], different interpolation kernels
utilizing available geometrical information are discussed.
As shown there, established interpolation algorithms such
as linear interpolation require a substantial number of sam-
ples (images) in order to obtain synthesized views with
good quality.

The required bounds for sampling the LF of a scene
have been defined in [13]. In order to generate novel views

without ghosting effects by using linear interpolation, one
needs to sample the LF such that the disparity between
neighboring views is less than one pixel [13]. Hereafter,
we will refer to such sampling as dense sampling and to
the correspondingly sampled LF as densely sampled LF. In
order to capture a densely sampled LF, the required distance
between neighboring camera positions can be estimated
based on the minimal scene depth (zmin) and the camera
resolution. Furthermore, camera resolution should provide
enough samples to properly capture highest spatial texture
frequency in the scene [14].

Densely sampled LF is an attractive representation of
scene visual content, particularly for applications, such
as refocused image generation [15], dense depth estima-
tion [16], object segmentation [17], novel view generation for
FVT [18], and holographic stereography [19]. However, in
many practical cases one is not able to sample a real-world
scene with sufficient number of cameras to directly obtain
a densely sampled LF. Therefore, the required number of
views has to be generated from the given sparse set of
images by using IBR.

An approach for LF reconstruction from undersampled
LFs has been presented in [20]. It combines a band-limited
filtering with wide-aperture reconstruction which is essen-
tially a directional edge-preserving filtering. The problem
of upsampling camera arrays has been cast as a direc-
tional super-resolution in 4D space with no use of depth
information [21]. The generation of the desired perspective
views is performed through patch matching and the effect of
sampling patterns has been studied. In [22], convolutional
neural networks have been utilized to predict depth from LF
data. The method learns an end-to-end mapping between
the LF and a representation of the corresponding 4D depth
field in terms of 2D hyperplane orientations. The obtained
prediction is then further refined in a post processing step
by applying a higher-order regularization. In [23], view
synthesis technique has been presented based on learning-
based approach using two convolutional neural networks
for disparity and color estimation. Four corner views from
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the light fields are used to synthesise an intermediate view.
This method has been aimed at increasing angular resolu-
tion of the light field captured by Lytro Illum camera.

The work [14] has discussed the effective use of the
depth limits (zmin, zmax) in order to reconstruct desired
views from a limited number of given views using appropri-
ate interpolation filters. Use has been made of the so-called
epipolar-plane image (EPI) and its Fourier domain proper-
ties [24]. Further benefits in terms of improved rendering
quality has been achieved by using depth layering [4], [14].
More recently, another approach to LF reconstruction has
been proposed [25]. It considers the LF sampled by a small
number of 1D viewpoint trajectories and employs sparsity
in continuous Fourier domain in order to reconstruct the
remaining full-parallax views.

The problem of reconstructing a piecewise-smooth func-
tion using its given incomplete measurements has been
addressed in the context of natural images through sparse
approximation provided by some appropriately constructed
transforms [26], [27], [28]. The general aim has been to
design frames or other over-complete image representations
and to study their performance by the asymptotic decay
speed of the approximation error obtained using only N
largest coefficients of the decomposition. Within this con-
text, wavelets have been found less efficient for representing
images and other systems have been designed with better
approximation properties. The sought transforms have tar-
geted good directional sensitivity in order to tackle singular-
ities in images, which are usually distributed over smooth
curves being borders between smooth image regions. Ex-
amples include adaptive triangle based approximation [29],
tight curvelet frames [27], contourlets [30], and shearlets
[31]. Among the designed transforms, shearlets have been
shown to be optimally sparse and getting very close to the
ideal adaptive image decomposition [31], [32].

In this article, we advance the concepts of LF sparsifica-
tion and depth layering with the aim to develop an effective
reconstruction of the LF represented by EPIs. The recon-
struction seeks to utilize an appropriate transform providing
sparse representation of the EPI. We assume that a good
sparse transform should incorporate scene representation
with depth layers, which are expected to be sparse. Based
on the observation that the anisotropic property of the
EPI is caused by a shear transform, we favor the shearlet
transform as the sought sparsifying transform and develop
an inpainting technique working on EPI, in a fashion similar
to how shearlets have been applied for seismic data recon-
struction [33].

Preliminary results of novel view synthesis by using
shearlet transform have been presented in [34]. In this paper,
we extend the ideas presented in [34] by including the un-
derlying analysis, describing in detail the construction of the
used shearlet transform and the corresponding view syn-
thesis algorithm for the cases of horizontal and full parallax
and evaluating the efficiency of the proposed algorithm on
various datasets. Furthermore, we present experiments for
the cases of non-equidistant camera positions and recon-
struction of scenes containing semi-transparent objects.

The outline of this paper is as follows. The LF and EPI
concepts are presented in Section 2. The same section dis-
cusses the shearlet transform, its properties and construction

for the given case. The reconstruction algorithm is presented
in Section 3. The algorithm evaluation for different datasets
and a comparison with the state of the art is presented in
Section 4. Finally, the work is concluded in Section 5.

2 LIGHT FIELD FORMALIZATION AND REPRESEN-

TATION

2.1 Light Field Representation

The propagation of light in space in terms of rays is
fully described by the 7D continuous plenoptic function
R(θ1, θ2, ω, ϑ, Vx, Vy, Vz), where (Vx, Vy, Vz) is a location in
the 3D space, (θ1, θ2) are propagation angles, ω is wave-
length, and ϑ is time [10]. In more practical considerations,
the plenoptic function is simplified to its 4D version, termed
as 4D LF or simply LF. It quantifies the intensity of static and
monochromatic light rays propagating in half space. In this
representation, the LF ray positions are indexed either by
their Cartesian coordinates on two parallel planes, the so-
called two-plane parameterization L(u, v, s, t), or by their
one plane and direction coordinates L(u, v, θ1, θ2) [35].

Consider a pinhole camera, with image plane (u, v) and
focal length f , moving along the (s, t) plane. This is an im-
portant practical consideration, which associates the param-
eterizing planes with LF acquisition and multiview imagery
and relates LF sampling with discrete camera positions and
a discrete camera sensor. The case is illustrated in Fig. 1 (a)
where the z axis represents the scene depth and the plane
axes s and u are considered perpendicular to the figure
and omitted for simplicity. Constraining the vertical camera
motion by fixing s = s0 and moving the camera along
the t-axis, leads to so-called horizontal parallax only (HPO)
multiview acquisition. Images captured by successive cam-
era positions t1, t2, . . . can be stacked together which is
equivalent to placing the t-axis perpendicular to the (u, v)
plane. The corresponding LF L(u, v, s0, t) is illustrated in
Fig. 1 (b).

2.2 EPI Representation and Sampling Requirements

The LF data organization as in Fig. 1 (b) leads to the
concept of EPIs pioneered by Bolles et al. in [24]. Assume an
ideal horizontal camera motion (or, equivalently, perfectly
rectified perspective images). Gathering image rows for
fixed u = u0 along all image positions forms an LF slice
E(v, t) = L(u0, v, s0, t). Such LF slice is referred to as
EPI and is given in Fig. 1 (c). In the EPI, relative motion
between the camera and object points manifests as lines with
depth depending slopes. Thus, EPIs can be regarded as an
implicit representation of the scene geometry. In comparison
with regular photo images, an EPI has a very well defined
structure. Any visible scene point appears in one of the
EPIs as a line whose slope depends on the distance of the
point from the capture position and the measured intensity
over the line reflects the intensity of emanated light from
that scene point. The Lambertian reflectance model (any
point in the scene emanates light in different direction with
same intensity) leads to an EPI with even more definitive
structure – each line in the EPI has a constant intensity
proportional to the intensity of the point. For a scene point
at depth z0 measured from the capture plane (s0, t), the
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Fig. 1. Epipolar-plane image (EPI) formation and its frequency domain properties. (a) Capturing setup and EPI formation, a scene point is observed
by two pinhole cameras positioned at t1, t2 at image coordinates v1 and v2 respectively; (b) Stack of captured images; an epipolar plane is
highlighted for fixed vertical image coordinate u; (c) Example of EPI; red line represents a scene point in different cameras; (d) Frequency support
of a densely sampled EPI; green area represents the baseband bounded by min and max depth; yellow line corresponds to a depth layer, the
slope determines the depth value; (e) Frequency domain structure of an EPI being insufficiently sampled over t-axis, the overlapping regions
represent aliasing; (f) Desirable frequency domain separation based on depth layering; (g) Frequency domain separation based on dyadic scaling;
(h) Composite directional and scaling based frequency domain separation for EPI sparse representation.

disparity in the image plane (u0, v) between two cameras
positioned at t1 and t2 is [14]

∆v = v2 − v1 =
f

z0
(t2 − t1) =

f

z0
∆t,

where f is the camera focal length. This is illustrated by
the red lines in Fig. 1 (a), which show a point projected on
cameras at t1 and t2. The same point appears as the red line
in Fig. 1 (c).

By assuming a horizontal sampling interval ∆v satis-
fying the Nyquist sampling criterion for scene’s highest
texture frequency, one can relate the required camera motion
step (sampling interval) with the scene depth. For given
zmin the sampling interval ∆t should be such that

∆t ≤ zmin
f

∆v (1)

in order to ensure maximum 1 pixel (px) disparity between
nearby views [13], [14]. Fig. 1 (d) shows the frequency
domain support of a densely sampled EPI, which is of
bow-tie shape. The baseband (in green) is limited by the
minimum and maximum depth and its replicas are caused
by the sampling intervals ∆v and ∆t. In Fourier domain,
the frequency support of a depth layer (i.e. all scene points
at a certain depth z0, which in EPI appear as lines with
same slope) is confined to a line. An example is given by the

yellow line in Fig. 1 (d). By selecting equality for ∆t in (1),
which is denoted in Fig. 1 as ∆td, we effectively place the
zmin line at 45 degrees in the frequency domain plane. This
maximizes the baseband support, which helps in designing
linear reconstruction filters.

2.3 Motivation

Our problem in hand is to reconstruct densely sampled EPIs
(and thus the whole LF) from their decimated and aliased
versions produced by a coarser camera grid determined by
a higher interval ∆t. The problem is illustrated in Fig. 1 (e).
The figure shows a case, where a densely sampled EPI
has been decimated by a factor of 4, which means that
every 4th row has been retained while the others have
been zeroed. As seen in the figure, aliased replicas (gray)
and the baseband (green) overlap, hence a band-limited
reconstruction is infeasible with a classical filtering method.
Therefore, the work [14] has specified requirements for the
LF sampling density for given zmin and zmax in order to
allow a band-limited reconstruction. Reconstruction of more
complex scenes (e.g. piecewise-planar or tilted-plane) would
require additional information about scene depth and depth
layering [4], [14]. For real scenes it is natural to assume that
objects are distributed at a finite, rather small number of
depths. In our approach, we aim at implicitly determining
those sparse depth layers by analyzing the given aliased
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Fig. 2. (a) Frequency plane tilting by shearlet transform. Cψ ,C
ψ̃

are

cone-like regions and Cφ is low-frequency region. (b) Desirable fre-
quency domain tilting by proposed reconstruction algorithm. Gray color
region includes transform elements used for reconstruction; other trans-
form elements are not associated with valid shear values (disparities) in
EPI. (c) Ψ̂d corresponding to constructed shearlet transform for J = 2.
(d) Frequency domain support of shearlet transform elements used in
reconstruction algorithm corresponding to gray color region in (b). Green
contour regions in (d) represent significant parts of transform elements
support in frequency domain.

EPIs in frequency domain using depth guided filters. This
is equivalent to applying a proper frequency plane tiling.
The case in Fig. 1 (e) is further analyzed in Fig. 1 (f), which
highlights a frequency plane tiling by 4 depth layers, with
1px disparity range in each layer. If those depth layers are
given, they are sufficient to guide the interpolation of EPIs
without aliasing artifacts. Furthermore, by an additional
dyadic separation of the frequency plane, i.e. a multireso-
lution analysis, one can process each region differently and
utilize a more efficient analysis tool. Fig. 1 (g) illustrates
a wavelet based separation of the frequency plane for the
same aliased EPI. It is easy to notice that the L1 region
does not contain any aliasing. Therefore by applying a low-
pass filter corresponding to the L1 region on the aliased
EPI will reconstruct the desirable densely sampled EPIs
frequencies in that region. In other words, the procedure of
low-pass filtering followed by decimation can be interpreted
as increasing the pixel size, which directly decreases the
disparity between the given rows. In this manner, fewer
depth layering directions will have to be distinguished from
each other in order to efficiently reconstruct the full EPI.
Based on the above discussion, the desirable frequency
plane tiling with elemental filters for the case of densely
sampled EPI reconstruction from its 4th row subsampled
version is given in Fig. 1 (h). The construction of such set of
filters is closely related to the construction of shearlet frames
as presented in the next section.

2.4 Shearlet Transform

The shearlet system is our main tool for EPI sparsifi-
cation. We establish the following general notations. We
deal with two-dimensional functions f(x) ∈ L2(R2), x =
(x1, x2). The corresponding Fourier transform is denoted

by f̂(ξ), ξ = (ξ1, ξ2). The discretized version of f(x) is
denoted by fd(m),m ∈ Z

2,m = (m1,m2). In frequency
domain, discrete sequences generate trigonometric polyno-
mials, which, for brevity, are also denoted by the ˆ sign. The
conjugate of a function f is denoted by f̄ . While processing
EPIs, the spatial axes (x1, x2) correspond to (v, t) param-
eters of the plenoptic function, and the frequency domain
variables (ξ1, ξ2) correspond to the frequency axes (Ωv,Ωt).

We are specifically interested in the so-called cone-
adapted shearlet system, which can generate the directed
multi-scale frequency bands as conceptualized in Fig. 1 (h)
[28], [36]. Consider two cone-like regions Cψ , Cψ̃ comple-
mented by a low-pass region Cφ as highlighted in Fig. 2 (a).
For their effective tiling, one needs shearlet system elements
(atoms) generated by a scaling function φ ∈ L2(R2) and two
shearlets ψ, ψ̃ ∈ L2(R2).

The shearlet system is generated by the translation of the
scaling function and translation, shearing and scaling of the
shearlet transform

SH(c;φ, ψ, ψ̃) =











φm = φ(· − c1m),m ∈ Z
2,

ψj,k,m = 2(j+⌊j/2⌋)/2jψ(SkA2j · −Mcm),

ψ̃j,k,m = 2
j+⌊j/2⌋

2 jψ̃(STk Ã2j · −M̃cm),

where Sk =

(

1 k
0 1

)

is a shear matrix, Mc =

(

c1 0
0 c2

)

,

M̃c =

(

c2 0
0 c1

)

, c = (c1, c2) are sampling densities of the

translation grid andA2j and Ã2j are scaling matrices, which
for the case of EPI take the form

A2j =

(

2j 0
0 2−1

)

, Ã2j =

(

2−1 0
0 2j

)

.

This particular form of the scaling matrices supports
the desirable number of shears in each scale and provides
scaling only by one axis, therefore it is well suited for
representing the EPI singularities distributed over straight
lines. It can be considered as a special case of a more general
shearlet transform called universal shearlet [28], [36].

The transform maps f ∈ L2(R2) to the sequence of
coefficients

f → 〈f, τ〉, τ ∈ SH(c;φ, ψ, ψ̃).

The properties of the shearlet transform highly depend
on the design of the generator functions φ, ψ, ψ̃. A specific
design of compactly supported scaling function and shear-
lets is discussed in Appendix A.

In order to handle discrete data by the continuous shear-
let transform, we assume that the given samples fdJ (n), n ∈
Z
2 correspond to samples of the continuous function, for

some sufficiently large J ∈ N

f(x) =
∑

n∈Z2

fdJ (n)2
Jφ(2Jx− n).
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The particular choice of J depends on the given input
data and will be discussed in Section 3.1.

For the efficient implementation of the transform, one
needs its representation in the form of digital filters ψdj,k,m
corresponding to ψj,k,m. The discretization is not trivial and
technical details are provided in Appendix B.

As the frame elements are not orthogonal, one needs also
the dual frame elements. They can be constructed based on
the shift invariance properties of the shearlet frame. First,
we set

Ψ̂d = |φ̂d|2 +
∑

j=0,...,J−1

∑

|k|≤2j+1

(|ψ̂dj,k|2 + | ˆ̃ψdj,k|2).

Then, the dual shearlet filters are defined in Fourier
domain, as follows:

ϕ̂d =
φ̂d

Ψ̂d
, γ̂dj,k =

ψ̂dj,k

Ψ̂d
, ˆ̃γdj,k =

ˆ̃ψdj,k

Ψ̂d
.

The constructed frame guarantees stable reconstruction,

if A ≤ Ψ̂d ≤ B is satisfied for some finite bounds 0 <
A,B <∞ [37]. An illustration of the obtained Ψ̂d for J = 2
is presented in Fig. 2 (c). In this case, the upper and lower

bounds are numerically found to be 0.03 < Ψ̂d < 1.03.
Since we are going to use shearlet transform for process-

ing EPIs, we are interested only in shear operation with a
positive sign, i.e. 0 ≤ k ≤ 2j + 1. The corresponding frame
elements cover the frequency plane region highlighted by
gray in Fig. 2 (d). The resulting direct transform S for dis-
crete values fdJ and j = 0, ..., J− 1, k = 0, ..., 2j+1,m ∈ Z

2

is

S(fdJ ) =
{

sj,k(m) = (fdJ ∗ ψ̄dj,k)(m), s0(m) = (fdJ ∗ φ̄d)(m)
}

.

The corresponding inverse transform is then

S∗ ({sj,k, s0}) =
∑

j=0,...,J−1
k=0,...,2j+1

(sj,k ∗ γdj,k)(m) + (s0 ∗ φd)(m).

The frequency-domain support of the elements selected
from the frame in Fig. 2 (c) is shown in Fig. 2 (d).

3 RECONSTRUCTION ALGORITHM

In this section we present the developed LF reconstruction
algorithm, which utilizes EPI sparse representation in shear-
let domain. We first present the main features for the case
of horizontal parallax only and then discuss the specifics of
the full parallax implementation.

3.1 Horizontal Parallax

Usually, a setup of uniformly distributed, parallel posi-
tioned and rectified cameras is used for capturing a 3D
scene. The horizontal parallax between views limits the
motion associated with the depth of the objects in horizontal
axis only. This allows us to perform intermediate view
generation over EPI independently. In order to formulate the
reconstruction algorithm in discrete domain we assume that
the starting coarse set of views are downsampled version
of the unknown densely sampled LF we try to reconstruct.
The uniformly distributed cameras imply the possibility of

1

1

17

33

49

49

0 ≤ di ≤ 16

t

t

t

v

v

v

d1

d1 d2

d2

d3

d3

(a)

(b)

(c)

Fig. 3. The given 4 views with maximal disparity 16px between consecu-
tive views are interpreted as every 16th view in the target densely sam-
pled LF. (a) EPI for coarsely sampled LF over t-axis; (b) corresponding
partially defined densely sampled EPI; (c) ground truth densely sampled
EPI. Three different points from given input images forming traces are
highlighted in the coarsely (a) and densely (c) sampled EPIs. Only in (c)
they are revealed as a straight lines.

estimating a common upper bound dmax for disparities
between nearby views. Thus, the given coarse set of views
are regarded as taken at each dmax = ⌈dmax⌉-th view of a
densely sampled LF. Thus, in every densely sampled EPI,
all unknown rows should be reconstructed assuming given
every dmax-th row. An example is presented in Fig.3 (a),
where EPI representation of four views with 16px disparity
is given. Therefore, the targeted densely sampled EPI is to
be constructed in such a way that the available data will
appear in rows with 16px distance (Fig.3 (b)). Fig.3 (c) shows
the same rows with respect to the fully reconstructed EPI,
where successive rows appear at disparity less than or equal
to 1px. EPI lines are not distinguishable in Fig.3 (a). The
lines start to form when the views are properly arranged, as
in Fig.3 (b), and they get fully reconstructed in the densely
sampled EPI. A set of non-equidistant cameras implying
non-uniform down-sampling of densely sampled LF can be
handled likewise, as far as the given views are arranged
properly with respect to the global dmax.

Without loss of generality we assume that the densely

sampled EPI is a square image denoted by y∗ ∈ R
N2

, where
N = (K − 1)dmax + 1 and K is the number of available

views. The samples y ∈ R
N2

of y∗ are obtained by

y(i, j) = H(i, j)y∗(i, j), (2)

where H ∈ R
N2

is a measuring matrix, such that
H(kdmax, ·) = 1, k = 1, . . . ,K and 0 elsewhere. The
measurements y form an incomplete EPI where only rows
from the available images are presented, while everywhere
else EPI values are 0. Eq. (2) can be rewritten in the form
y = Hy∗ by lexicographically reordering the variables
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Fig. 4. Diagram of the EPI reconstruction algorithm.

y, y∗ ∈ R
N2

, H ∈ R
N2×N2

. The shearlet analysis and

synthesis transforms are defined as S : RN
2 → R

N2×η, S∗ :

R
N2×η → R

N2

, where η is the number of all translation
invariant transform elements.

The reconstruction of y∗ given the sampling matrix
H and the measurements y can be cast as an inpainting
problem, with constraint to have solution which is sparse in
the shearlet transform domain, i.e.

x∗ = argmin
x∈RN2

‖S(x)‖1, subject to y = Hx. (3)

We make use of the iterative procedure within the mor-
phological component analysis approach, which has been
originally proposed for decomposing images into piecewise-
smooth and texture parts [38], [39]. In particular, we aim
at reconstructing the EPI y∗ by performing regularization
in the shearlet transform domain. Solution is sought in the
form of the following iterative thresholding algorithm

xn+1 = S∗ (Tλn(S(xn + αn(y −Hxn)))) , (4)

where (Tλx)(k) =

{

x(k), |x(k)| ≥ λ
0, |x(n)| < λ

is a hard threshold-

ing operator applied on transform domain coefficients and
αn is an acceleration parameter. The thresholding level λn
decreases with the iteration number linearly in the range
[λmax, λmin]. After sufficient number of iterations, xn → x∗

reaches a satisfying solution of the problem (3). The diagram
of the reconstruction method is given in Fig. 4.

The rate of convergence is controlled by the parameter
αn. For αn = 1 the convergence is slow and can be accel-

P
S

N
R

(d
B

)

Iterations (n)

αn = 20
αn = 15
αn = 10
αn = 5
αn−adaptive

1 2 3 4 5 6 7 8 9 10

25

30

35

40

Fig. 5. Example of reconstruction performance dependence on choice
of acceleration coefficients αn. For constant value for all iterations
αn = α, increasing α brings accelerating convergence. After some
value, reconstruction starts to diverge (α = 20).

erated by selecting αn > 1. However, selecting alpha too
high can cause instability. The case is illustrated in Fig. 5
where the convergence speed benefits from fixing a higher
value αn = α up to some value where the algorithm starts
to diverge. Best values for fixed α are different for different
EPIs. This motivates us to apply an iteration-adaptive se-
lection of the parameter αn, which can be applied to all
EPIs. We devise the adaptation procedure in the way as
proposed in [40]. Let us define Γn as the support of S(xn).
The adaptive selection of the acceleration parameter is

αn =
‖βn‖22

‖HS∗(βn)‖22
,

where βn = SΓn(y−Hxn) and SΓn is the shearlet transform
decomposition only for coefficients from Γn. The conver-
gence rate for the adaptive selection of the acceleration
parameter is illustrated in Fig. 5. As can be seen in the figure,
the adaptation provides high convergence speed and stable
reconstruction.

The initial estimate f0 can be chosen either 0 everywhere
or as the result of a low-pass filtering of the input y using
the central separable filter φd only.

As discussed previously we are not obliged to use all
general shearlet transform atoms. We favor the use of atoms
which are associated with valid directions in EPI, i.e. only
those having support in frequency domain enclosed in the
region highlighted in Fig. 1 (d). An example of such subset is
presented in Fig. 1 (h). The scales of the shearlet transform
are constructed in dyadic manner, therefore we can select
the number of scales as follows

J = ⌈log2 dmax⌉. (5)

For every scale we select 2j+1 +1 shears (j = 0, . . . , J −
1) to cover the region presented in Fig. 1 (g) associated with
sk = k

2j+1 , k = 0, . . . , 2j+1 shears (i.e. disparities). The role
of J is two-side. Selecting higher J will guarantee better
refinement however for the price of more computations.
Related with this, dmax has to be specified rather correctly in
order to avoid unnecessary computations. Choosing lower
value for J than the one suggested by (5) will drastically
decrease the reconstruction quality because of the lack of
shearing atoms.

The parameter dmax itself has to be fixed at the stage of
sampling (multiview acquisition) or can be estimated from
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Fig. 6. Array of 17× 17 views considered for reconstruction using 5× 5
views highlighted with black color. (a) Direct reconstruction method. (b)
Hierarchic order of reconstruction (HR).

an already captured imagery by some fast sparse feature-
based or coarse-to-fine disparity estimation methods. In our
implementation, we have used the method developed in
[41], which was modified for the case of multi-view images.

3.2 Full Parallax

The method for reconstruction of HPO LFs can be general-
ized for the case of full parallax in a straightforward manner
by directly reconstructing the vertical parallax views after
all horizontal parallax views have been reconstructed. We
illustrate this direct approach by Fig. 6 (a). The figure
represents an array of 17 × 17 full parallax views to be
reconstructed out of 5 × 5 views marked in black. The
views marked in blue are the views reconstructed first (in
the horizontal parallax reconstruction step) and the views
marked in green represent the views reconstructed in the
second (vertical parallax) reconstruction step.

The direct full parallax reconstruction is computationally
demanding. Therefore, as a second approach we propose
performing the reconstruction in a specific order that, from
iteration to iteration, gradually reduces the maximum dis-
parity between input views. This, in turn, reduces the num-
ber of scales in the shearlet transform and thereby speeds
up the algorithm. We refer to this algorithm as hierarchical
reconstruction (HR). We illustrate it by means of the same
example, where we aim at reconstructing 17× 17 views out
of 5 × 5 given views. Let us assume that the maximum
disparity is 12. We perform the reconstruction in 3 steps,
as illustrated in Fig. 6 (b).

1) Views in rows 1, 5, 9, 13, 17 are reconstructed first
using (4) and shearlet transform with four num-
ber of scales (ST (4)), since the assumed maximal
disparity is 12, hence, ⌈log2(12)⌉ = 4. This step
reconstructs views marked in blue in Fig. 6(b).

2) Views in columns 1, 3, 5, . . . , 17 are reconstructed,
again using ST (4) since the disparity is the same
as in Step 1. This step reconstructs views marked in
green in Fig. 6(b).

3) Missing views in rows 2, 3, 4, 6, 7, 8, . . . , 18 are re-
constructed. Since there are more vertical views
available than in the initial set, the disparity in this

reconstruction step has been reduced to 6. There-
fore, one can use ST (3).

For other cases where more intermediate views have to
be reconstructed, one can further alternate between recon-
structing horizontal and vertical views. At each step, the
disparity reduces by two, thus gradually decreasing the
required number of scales of shearlet transform.

4 EVALUATION

In this section we provide details about the implementation
of the proposed algorithm and evaluate its performance
using wide range of datasets. As evident from Section 2.4 the
direct and inverse shearlet transforms involve a good num-
ber of digital filtering operations applied at each iteration of
the reconstruction algorithm. We opt for implementing them
by circular convolution in Fourier domain as presented in
the diagram in Fig. 4. In this implementation, one should
consider reasonable padding with zeros for the input signal
such that the border artifacts are tackled. Increasing the
padding region increase the size of the convolved signals
with an effect on computation time. We have used GPU
implementation of the proposed reconstruction algorithm
and the experiments presented in this paper were executed
on a GeForce GTX Titan X. The computation time mainly
depends on the time for computing 2D FFT for large-size
arrays. The reconstruction of an LF might vary from few
minutes to a couple of hours depending on the number
of scales, the desirable number of iterations and the given
resolution of images in the dataset.

We quantify the reconstruction performance for different
test sets using leave N out tests. The experimental setup
considers downsampled versions of a number of given
multiview test sets, where every (N + 1)-th view is kept
and the others are dropped. The downsampled versions
are used as input to the algorithm, which is supposed to
reconstruct all dropped views.The reconstruction quality is
assessed by calculating the PSNR between the original and
the reconstructed views. Along with figures and tables in the
article, we present supplementary videos at the journal web
site, illustrating the performance of the proposed method.

4.1 Evaluation of Sparsifying Transforms

First, we demonstrate the performance of the reconstruction
algorithm with respect to different sparsifying transforms
[36], [42]. We compare Haar wavelets, the compactly sup-
ported shearlets as constructed in [36] and the fast finite
shearlet transform [42]. The ground truth densely sampled
EPI (Fig. 7(d)) has been obtained using properly generated
views of a synthetic scene. Every 16-th row has been used
as input for the reconstruction algorithm as in Fig. 7 (a),
and interpreted in similar fashion as presented in Fig. 3.
The obtained reconstruction results using the algorithm in
Section 3.1 are presented in Fig. 7. The reconstruction using
Haar wavelet transform is not properly revealing straight
lines and the performance is poor. Directional sensitive
transforms are showing better reconstruction performance,
while the proposed shearlet transform outperforms the
others. The proposed transform combines two properties,
compact support in horizontal direction in spatial domain
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(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) Input for reconstructing densely sampled EPI where only
every 16-th row is available. (d) Densely sampled ground truth EPI.
Reconstruction results using different transform are shown as follows
(b) Haar 18.83dB, (c) Shearlab [36] 29.27dB, (e) FFST [42] 37.27dB, (f)
Proposed modified shearlet 40.75dB.

and tight distribution of transform elements near the low-
pass region of the Fourier plane which affect the reconstruc-
tion performance. The shearlet transform as developed in
Section 2.4 can handle the reconstruction of EPIs from highly
decimated versions. The proposed construction provides an
optimal size of atoms compared to the other methods and
at same time preserves the desirable Fourier plane tiling.

4.2 Multiview Datasets

We compare our approach against established depth based
approaches. These include the reference methods and soft-
ware used by the MPEG community for the development
of new multiview video compression methods, namely
DERS (depth estimation reference software) [46] and VSRS
(view synthesis reference software) [47], and a state of the
art method for disparity estimation employing semi-global
stereo matching (SGBM) [6]. DERS is applied for every three
consecutive views in order to estimate the disparity map
collocated with the middle view. Using a stack of given
images with corresponding estimated disparity maps, the
desired intermediate views are generated using VSRS. In
the case of SGBM, we obtain disparity maps for every pair
of consecutive views in the given stack and warp the views
by linear interpolation to obtain the intermediate views.

We have used a number of publicly available multiview
datasets, as presented in Table 1. The table summarizes
also some specifications of the sequences such as spatial
resolution, number of views of the provided dataset, pro-
cessing color space. For some of the datasets (Couch, Teddy,
Cones) we also applied shearing on input views by dmin
in order to compensate the minimum disparity dmin such
that the maximum disparity in the sheared datasets can
be considered as drange = dmax − dmin. In all test cases,
our algorithm is applied independently on every EPI to
reconstruct the missing intermediate views. The adaptive
acceleration parameter, as described in Section 3.1, has been
applied. Typically, 100 iterations is used with λ thresholding

TABLE 1
Multiview Data Sets Details

Dataset Resolution
Number
of views

Leave
N out

drange

Couch [3] 2768×4020 51 1 12(RGB)

Pantomime1 [43] 640× 480 73 7 24(Y),16(UV)

Pantomime2 [43] 640× 480 77 3 28(Y),16(UV)

Teddy [44] 450× 375 9 1 20(RGB)

Cones [44] 450× 375 9 1 20(RGB)

Truck [45] 384× 512 17× 17 1, 3 6,12(RGB)

Bunny [45] 512× 512 17× 17 1, 3 6,12(RGB)

value linearly decreasing in the range of [5, 0.02] per EPI in
each dataset to obtain the presented results.

Fig. 8 presents the comparative results for two
Pantomime and Coach sequences. As seen in the figures,
for the Pantomime sequences we used shearlet transform
with 5 and 6 number of scales, denoted as ST (5) and
ST (6), with ST (6), in average, outperforming other com-
peting algorithms. In the case of the Couch sequence, the
performance of all algorithms is similar. For this particular
test sequence, we also compare the results with the method
presented in [3], referred to as Disney in Fig. 8(c). It should
be pointed out that in [3] the disparity maps are estimated
using the full set of images, not only the downsampled one.
Thus, the depth maps are expected to be of higher quality
than the one that can be achieved if only the downsampled
views are given. Surprisingly enough, the results of the
method by Disney and SGBM are identical, while the latter
is more general in the sense that it requires only stereo
pairs from the decimated views as an input. This motivates
us to further use SGBM as depth-based reference method.
The comparison reveals that our algorithm reconstructs
views with competitive quality without the need of any
disparity / depth estimation. It is interesting to observe that
in some sequences, there are views that were problematic
for all algorithms, e.g. view 20 in Pantomime2. For this
particular case, the cause is that the input data contains
hardly pronounced EPI structures, which are insufficient for
generating the particular view.

For the datasets Teddy and Cones containing originally
9 views we consider every second view as input, or 5 views
in overall. The obtained disparity range is estimated to be
20px for both datasets. As seen in Fig. 9, the proposed
method with shearlet transform using 5 number of scales
(ST (5)) is in par with SGBM. However, when using 6
number of scales (ST (6)), which corresponds to 64 depth
layers, the proposed method consistently performs better
than the methods using SGBM or DERS. These results show
that using higher number of scales is beneficial in the case
of complex scenes. For the Teddy dataset, we also compare
the proposed method with the one presented in [4] which is
an IBR method utilizing depth layering. For the purpose of
comparison, we average the performance of the proposed
method over all four reconstructed views. The average
reported in [4] shows 33.25dB, while our method gives
35.29dB in the case where dmin has not been compensated
and the reconstruction has been applied assuming dmin = 0.

Reconstruction results for the multiview datasets are
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DERS+VSRS, SGBM. Average PSNR of all reconstructed views pre-
sented in legend of the figures.

illustrated in Fig. 15.

4.3 Semi-Transparent Objects

Next, we demonstrate the superiority of our algorithm for
the case of scenes with semi-transparent objects. These con-
stitute a particular case of non-Lambertian scenes containing
semitransparent materials that are positioned at different
depths. For such scenes, textures of different depth layers
are fused in the captured views. Reconstruction methods
based on depth estimation (such as [6]) fail on such scenes
since a point in the scene (or in a particular view) on a
semitransparent object cannot be associated with a unique
depth value and therefore a reliable depth map cannot be
estimated. On the contrary, the proposed reconstruction
method is based on regularization in a linear space of
functions, thus one can expect a good reconstruction quality
for a scene consisting of depths layers not only occluding
each other, but also being fused in the captured views, as in
the case of semitransparent materials.

For the evaluation of the proposed method for scenes
containing semitransparent objects we created two synthetic
scenes made in Blender [48]. The corresponding two densely
sampled LFs, both with dmax = 32px, have been generated:
the first scene is purely Lambertian and contains no semi-
transparent objects, while the second scene is the same as
the first one with the addition of a semi-transparent plane

in front. One view from each scene, as rendered in blender,
is shown in Fig. 10(a). This figure also shows the perfor-
mance of the proposed method versus SGBM. For the first
scene, the differences between the reconstructed views are
negligible, while for the second scene, the proposed method
generates better results. The same trend can also be noticed
in the EPI images. An example is given in Fig. 10(b). As seen,
the proposed method preserves better the semitransparent
property of overlapping EPI lines.

4.4 Required Number of Scales

In (5) we gave the relation between the number of scales J
and the maximal disparity dmax. In this section we analyze
the behavior of the reconstruction algorithm for varying
decimation factors and varying number of transform scales.
The evaluation has been done for the same synthetic scenes
as in Section 4.3. Fig. 11 summarizes the obtained results.
It is important to mention that the performance of the
reconstruction shows a direct correlation between the dec-
imation factor and the number of scales of the shearlet
transform. The relation confirms the importance of selecting
J ≥ ⌈log2 dmax⌉ number of scales. Choosing higher number
of scales improves the reconstruction results, in some cases
only marginally. The same trend can be observed for the
scene with semi-transparent object (Fig. 11 (b)). However, in
this case the proposed method returns significantly better
performance for high decimation factor.

4.5 Nonuniform Sampling

All so-far experimental settings assumed equidistant camera
and uniformly downsampled number of views. However,
as commented earlier, the proposed method is not limited to
such sampling strategy. Indeed, it can process nonuniformly
sampled LFs by properly interpreting the corresponding EPI
slices as being on sampling positions of a densely sampled
LF with the maximum disparity between all adjacent views
being less than or equal to dmax. While uniform sampling
has to be favoured because it provides the least number of
capturing positions for a given fixed dmax, the non-uniform
sampling case might arise in some capture settings and
therefore is worth discussing it.

Again the scene with the semi-transparent front object as
in Fig. 10 has been used. Two different experimental setups
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(ST (5)) and (SGBM ). (b) Example of EPI of the scene and corresponding reconstructions.
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Fig. 11. Evaluation of the proposed method (ST) with different numbers of scaling and reference method using depth estimation [6] (SGBM).
Average reconstruction quality of the methods for different decimation levels for the synthetic Lambertian scene (a) and semi-transparent object (b).

are studied and summarized in Fig. 12. In the first setup,
the scene has been sampled at 5 equidistant positions (see
Fig. 12(a)), which leads to dmax = 32. In the second experi-
ment, namely a nonuniform sampling, we used 8 views po-
sitioned at camera positions (1, 31, 47, 60, 80, 97, 101, 129).
The distances between adjacent views are different, with
dmax ≤ 32. In order to reconstruct such input datasets
one has to replace the uniform positions of input rows in
the masking matrix H in (2) by the provided nonuniform
sampling positions. Following the same approach as in
Section 3 we reconstruct all intermediate views. As shown in
Fig. 12(a) the reconstruction quality decreases depending on
the distance between the reconstructed view and available
input views.

In the second setup, the scene has been sampled at 3
equidistant points (see Fig. 12(b)) which leads to dmax = 64.
Reconstruction using ST (5) performs poor due to insuffi-
cient number of scales in the shearlet transform. We need to
use ST (6) instead. In overall, the experiments show that the
method can handle non-uniform setups well.

4.6 Full Parallax

The last tests deal with full parallax imagery. The proposed
method is compared with two state of the art methods.
The first one is the learning-based view synthesis method
(LBVS) proposed in [23]. The second one is the LF recon-
struction method presented in [25], which utilizes sparsity
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Fig. 12. Comparison of densely sampled LF reconstruction using the proposed method (ST (5), ST (6)) with SGBM for scene with semi-transparent
object in case of uniform and nonuniform sampling. Vertical red lines are representing sampling positions of the input dataset from densely sampled
LFs.

(a) (b) (c)

Fig. 13. Sampling pattern where every rectangle represents one view
from the LF consisting of 17 × 17 views. (a) box and two diagonals
pattern consisting of 93 views used for method [25]. (b), (c) uniformly
decimated setup consisting of 5× 5 and 9× 9 views respectively.

of full parallax LF in continuous Fourier domain. The
method is claimed useful for the reconstruction of both
Lambertian and non-Lambertian scenes. It requires a set
of views obtained from a set of 1D viewpoint trajectories
[25]. We compared reconstruction results for the dataset
Bunny and Truck [45] consisting of 17 × 17 views, which
are representing Lambertian scenes, thus suitable for the
proposed method and the method in [25]. In addition we
used dataset of a synthetic scene for evaluating both meth-
ods in the case of non-Lambertian reflection generated by
a semi-transparent plane. Two experiments with different
number of input views have been considered for every
dataset, one with 25 views and one with 81 views out of 289
for processing with the proposed method. In the case of 25
input views the direct processing and the HR processing as
presented in Section 3.2 have been employed. The method
in [25] uses 93 views as input. The view patterns used as
inputs for different methods are illustrated in Fig. 13. The
average PSNR for reconstructed views is presented in Ta-
ble 2. In the table, computation times per one view for all
experiments are presented. For the proposed method these
are based on the GPU setting described in the beginning of
Section 4. As seen in the table, the proposed HR approach
decreases the computation time by about 15% compared to
the direct computation for the price of a rather small loss
of average reconstruction quality. For the method SFFT [25]
and LBVS [23], the computations have been employed on
CPU using parallelization with 36 cores. Reconstruction

TABLE 2
Full parallax LF reconstruction quality is presented by average PSNR in

dB and speed is given in seconds per view (in parentheses)

Datasets Truck Bunny Helicopter

SFFT [25] 35.45 (87.2) 38.56 (87.2) 40.87 (87.2)
LBVS 9× 9 [23] 37.65 (8) 38.16 (10) 38.39 (10)
LBVS 5× 5 [23] 35.31 (8) 36.45 (10) 36.12 (10)
ST 9× 9 40.93 (5) 41.29 (5.3) 46.43 (5.3)
ST 5× 5 40.69 (9.2) 39.97 (10) 44.24 (10)
ST (HR) 5× 5 40.46 (7.6) 39.57 (8.6) 44.03 (8.6)

using SFFT takes considerably longer time, e.g. the dataset
Bunny was processed overall for about 7 hours to obtain all
intermediate 17 × 17 views. The method presented in [23]
considers processing every 4 adjacent views from the in-
put datasets to synthesis intermediate views. An available
implementation of the method with already trained neural
networks was used in order to obtain results for the datasets
with 9 × 9 and 5 × 5 views. Examples of reconstructed
views with difference maps with respect to ground truth are
shown in Fig. 16. While the method from [25] shows capa-
bility of reconstructing intermediate views of the scene with
semi-transparent objects, our proposed approach seems to
perform better also for this case.

One of the applications of full parallax LF is to construct
digitally refocused images in post-processing. Fig. 14 shows
digitally refocused images corresponding to the central
view for differently sampled LFs. As expected, the lack of
available views results in strong artifacts in the synthesized
refocused image Fig. 14 (a) where only 5 × 5 subset of
views is used, while for the up-sampled (reconstructed) LF
consisting of 49 × 49 views, small disparity between the
reconstructed views causes smooth blurring in the refocused
image areas. Fig. 14 (c) presents the result of similar refocus-
ing for the original dataset Fig. 14 (b).

5 CONCLUSIONS

We have presented a method for reconstructing densely
sampled LF from a small number of rectified multiview
images taken with a wide baseline. The reconstructed LF
bears the property that the disparity between adjacent views
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(a) (b) (c)

Fig. 14. Example of refocused images generated from differently sampled dataset Truck [45] using linear interpolation for shearing operation.
(a) Refocused image generated for central view using 5 × 5 views from original dataset, every 4-th view has been chosen. (b) Refocused image
generated using all 17× 17 views. (c) Refocused image generated from reconstructed LF (49× 49 views) based on decimated LF (5× 5 views).

is 1px at most while the input views can be with quite
high disparity. The method utilizes a sparse representation
of the underlying EPIs in shearlet domain and employs an
iterative regularized reconstruction. We have constructed
a shearlet frame specifically for the case of EPIs and pro-
posed an adaptive tuning for the parameter controlling the
convergence in the iterative procedure. Experiments with
various datasets compare our method favorably against the
MPEG’s DERS+VSRS, the state of the art SGBM and the
state of the art in IBR for full parallax reconstruction. The
method is particularly successful when dealing with non-
Lambertian scenes consisting of semi-transparent objects.
The method reconstructs all LF views and therefore can be
used in applications which require densely sampled views
such as refocusing, wide field of view LF displays and
digital holographic printing.

As the regularization constraints are limited within the
viewing frustum, the frame elements are also spatially
concentrated there. Therefore, the LF reconstruction offers
only some limited extrapolation due to the elements found
near the frustum border. The extrapolation problem can
be further addressed by analyzing the parameters of the
frame elements near the borders in terms of their scale
and directional indexes and generating similar elements by
proper translation. This is a topic of future research.

Although the implementation of the algorithm reported
in this paper is limited to scenes with Lambertian properties
or non-Lambertian scenes generated by semi-transparent
objects, it is possible to extend the algorithm such that it
will be able to reconstruct reflective non-Lambertian scenes
as well. This will, primarily, requires modification of the
bases used in reconstruction since different parts of the
frequency domain have to be covered, in comparison to the
Lambertian case. Also, the regularization procedure has to
be tuned to better handle the case of conflicting directions,
which might arise from reflective non-Lambertian scenes.
This extension is a topic of future research.

APPENDIX A

CONSTRUCTION OF COMPACTLY SUPPORTED

SHEARLET SYSTEM

The construction of compactly supported shearlet frame
elements starts with defining a 1-D multi-resolution analysis

with scaling and wavelet functions φ1, ψ1 ∈ L2(R)

φ1(x1) =
∑

n1∈Z

h(n1)
√
2φ1(2x1 − n1)

ψ1(x1) =
∑

n1∈Z

g(n1)
√
2φ1(2x1 − n1),

where h(n1) and g(n1) are appropriately-designed half-
band filters. The 2-D generator scaling function φ is con-
structed in a separable manner as

φ(x1, x2) = φ1(x1)φ1(x2). (6)

However, constructing the shearlet generator ψ(x1, x2) in
a separable manner is not efficient as it would generate an
over-redundant frame with poor directional selectivity [49].
A better approach is to utilize a non-separable directional
filter [32]. Then, the non separable shearlet generator is
defined in Fourier domain as

ψ̂(ξ1, ξ2) = P (ξ1/2, ξ2)ψ̂1(ξ1)φ̂1(ξ2),

where the trigonometric polynomial P represents a 2D
directional fan filter [30] which is used to approximate the
2D non-separable filter with essential support in frequency
domain bounded within the region shown in Fig. 17 (a).

APPENDIX B

DISCRETE IMPLEMENTATION

Assume the continuous function f(x), x ∈ R
2 to be recon-

structed, is represented by its samples fdJ (n), n ∈ Z
2 at the

finest (sufficiently large) scale J ∈ N, i.e.

f(x) =
∑

n∈Z2

fdJ (n)2
Jφ(2Jx− n),

where φ(x) is defined as in (6).
The shearlet system consists of the functions

ψj,k,m, |k| ≤ 2j+1, j = 0, . . . , J − 1,

where

ψj,k,m(x) = 2j/2ψ
(

SkA2jx−Mcjm
)

, (7)
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Fig. 15. Examples of the reconstructed views for several different multiview datasets, particularly view number 34 is presented for dataset Couch, 18
for Pantomime1, 51 for Pantomime2 and 4 for Teddy and Cones. In the first column are presented ground truth of corresponding reconstructed
view. In the following columns are presented proposed and SGBM based reconstruction results together with scaled difference maps. Zoomed in
regions from different reconstructed images are presented in the last column.

and cj = (cj1, c
j
2) are sampling constants for translation.

Easy to notice

ψj,k,m(x) = ψj,0,m
(

S k

2j+1
x
)

. (8)

Following the same methodology as in [36], it can be
shown that the digital filter corresponding to ψj,0,m has the
form

ψdj,0(m) = (pj ∗ (gJ−j ⊗ hJ+1)) (m), (9)

where ⊗ denote tensor product such that
(gJ−j ⊗ hJ+1) (m) = gJ−j(m1)hJ+1(m2), {pj(n)}n∈Z

are the Fourier coefficients of the trigonometric polynomial
P (2J−j−1ξ1, 2

J+1ξ2), {hj(n)}n∈Z and {gj(n)}n∈Z are
the Fourier coefficients of the respective trigonometric
polynomials

ĥj(ξ) =
∏

k=0,...,j−1

ĥ(2kξ),

ĝj(ξ) = ĝ(2j−1ξ)ĥj−1(ξ)

and ĥ0 ≡ 1. Fig. 17 (b) illustrates the frequency responses of
the digital filters hj , gj for j = 1, . . . , 4.

The shear transform Sk2−j , j ∈ N, k ∈ Z does not
preserve the regular grid Z

2, therefore its digitalization is
not trivial. The solution of the problem presented in [49],
is to refine the Z

2 grid along the x1-axis by a factor 2j. In
that case, the grid 2−jZ × Z is invariant under the Sk2−j

transform. Thus, for an arbitrary r ∈ l2(Z2), the shear
transform Sk2−j can be implemented as a digital filter

Sdk2−j (r) =
(

(2jr↑2j ∗1 τj)(Sk·) ∗1 τ̄j
)

↓2j
, (10)

where τj represents a digital low-pass filter with normalized
cutoff frequency at 2−j , ∗1 is 1D convolution along x1 axis
and ↑ 2j, ↓ 2j are upsampling and downsampling operators
corresponding to 2j factor.

Using (7), (9), (10) the discrete filter ψdj,k corresponding
to ψj,k,m takes the form

ψdj,k = (Sdk2−(j+1) (pj ∗ gJ−j ⊗ hJ+1))(m).

The digital filter φd corresponding to the scaling function φ,
is constructed in a separable manner φd = (hJ ⊗ hJ)(m).
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Fig. 16. Reconstruction results for full parallax datasets. Obtained results are presented with difference maps for the methods SSFT [25], LBVS [23]
and the proposed method using direct and hierarchic processing order.
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