Skip to main content

Automatic Structural Search for Multi-task Learning VALPs

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2020)

Abstract

The neural network research field is still producing novel and improved models which continuously outperform their predecessors. However, a large portion of the best-performing architectures are still fully hand-engineered by experts. Recently, methods that automatize the search for optimal structures have started to reach the level of state-of-the-art hand-crafted structures. Nevertheless, replacing the expert knowledge requires high efficiency from the search algorithm, and flexibility on the part of the model concept. This work proposes a set of model structure-modifying operators designed specifically for the VALP, a recently introduced multi-network model for heterogeneous multi-task problems. These modifiers are employed in a greedy multi-objective search algorithm which employs a non dominance-based acceptance criterion in order to test the viability of a structure-exploring method built on the operators. The results obtained from the experiments carried out in this work indicate that the modifiers can indeed form part of intelligent searches over the space of VALP structures, which encourages more research in this direction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, T., Goodfellow, I., Shlens, J.: Net2net: accelerating learning via knowledge transfer (2015). arXiv preprint arXiv:1511.05641

  2. Elsken, T., Metzen, J.-H., Hutter, F.: Simple and efficient architecture search for convolutional neural networks (2017). arXiv preprint arXiv:1711.04528

  3. Fernando, C., et al.: Convolution by evolution: differentiable pattern producing networks. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 109–116. ACM (2016)

    Google Scholar 

  4. Fonseca, C.M., Paquete, L., López-Ibáñez, M.: An improved dimension-sweep algorithm for the hypervolume indicator. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1157–1163. IEEE (2006)

    Google Scholar 

  5. Garciarena, U., Mendiburu, A., Santana, R.: Towards automatic construction of multi-network models for heterogeneous multi-task learning (2019). arXiv preprint arXiv:1903.09171

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  7. Howard, A.G., et al.: Efficient convolutional neural networks for mobile vision applications (2017). arXiv preprint arXiv:1704.04861

  8. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes (2013). arXiv preprint arXiv:1312.6114

  9. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)

    Article  Google Scholar 

  10. Liang, J., Meyerson, E., Miikkulainen, R.: Evolutionary architecture search for deep multitask networks. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 466–473. ACM, New York (2018)

    Google Scholar 

  11. Miikkulainen, R., et al.: Evolving deep neural networks (2017). arXiv preprint arXiv:1703.00548

  12. Rawal, A., Miikkulainen, R.: Evolving deep LSTM-based memory networks using an information maximization objective. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, pp. 501–508. ACM (2016)

    Google Scholar 

  13. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  15. Stanley, K.O.: Compositional pattern producing networks: a novel abstraction of development. Genet. Program. Evol. Mach. 8(2), 131–162 (2007)

    Article  Google Scholar 

  16. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  17. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  18. Wei, T., Wang, C., Rui, Y., Chen, C.W.: Network morphism. In: International Conference on Machine Learning, pp. 564–572 (2016)

    Google Scholar 

  19. Wu, Z., Rajendran, S., van As, T., Zimmermann, J., Badrinarayanan, V., Rabinovich, A.: EyeNet: A Multi-Task Network for Off-Axis Eye Gaze Estimation and User Understanding (2019). arXiv preprint arXiv:1908.09060

  20. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms, August 2017. arXiv: cs.LG/1708.07747

Download references

Acknowledgments

This work has been supported by the TIN2016-78365-R (Spanish Ministry of Economy, Industry and Competitiveness) and the IT-1244-19 (Basque Government) programs http://www.mineco.gob.es/portal/site/mineco. Unai Garciarena also holds a predoctoral grant (ref. PIF16/238) by the University of the Basque Country.

We also gratefully acknowledge the support of NVIDIA Corporation with the donation of a Titan X Pascal GPU used to accelerate the process of training the models used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Unai Garciarena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garciarena, U., Mendiburu, A., Santana, R. (2020). Automatic Structural Search for Multi-task Learning VALPs. In: Dorronsoro, B., Ruiz, P., de la Torre, J., Urda, D., Talbi, EG. (eds) Optimization and Learning. OLA 2020. Communications in Computer and Information Science, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-030-41913-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41913-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41912-7

  • Online ISBN: 978-3-030-41913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics