Skip to main content

Learning Variables Structure Using Evolutionary Algorithms to Improve Predictive Performance

  • Conference paper
  • First Online:
Book cover Optimization and Learning (OLA 2020)

Abstract

Several previous works have shown how using prior knowledge within machine learning models helps to overcome the curse of dimensionality issue in high dimensional settings. However, most of these works are based on simple linear models (or variations) or do make the assumption of knowing a pre-defined variable grouping structure in advance, something that will not always be possible. This paper presents a hybrid genetic algorithm and machine learning approach which aims to learn variables grouping structure during the model estimation process, thus taking advantage of the benefits introduced by models based on problem-specific information but with no requirement of having a priory any information about variables structure. This approach has been tested on four synthetic datasets and its performance has been compared against two well-known reference models (LASSO and Group-LASSO). The results of the analysis showed how that the proposed approach, called GAGL, considerably outperformed LASSO and performed as well as Group-LASSO in high dimensional settings, with the added benefit of learning the variables grouping structure from data instead of requiring this information a priory before estimating the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Antoniadis, A., Fan, J.: Regularization of wavelet approximations. J. Am. Stat. Assoc. 96(455), 939–967 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  3. Breheny, P., Huang, J.: Penalized methods for bi-level variable selection. Stat. Interface 2, 369–380 (2009)

    Article  MathSciNet  Google Scholar 

  4. Dorronsoro, B., Ruiz, P., Danoy, G., Pigné, Y., Bouvry, P.: Evolutionary Algorithms for Mobile Ad hoc Networks. Wiley, Hoboken (2014)

    Book  Google Scholar 

  5. Esteva, A., et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29 (2019)

    Article  Google Scholar 

  6. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  Google Scholar 

  7. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI 1995 , vol. 2, pp. 1137–1143 (1995)

    Google Scholar 

  8. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  9. Luque-Baena, R., Urda, D., Claros, M.G., Franco, L., Jerez, J.: Robust gene signatures from microarray data using genetic algorithms enriched with biological pathway keywords. J. Biomed. Inf. 49, 32–44 (2014)

    Article  Google Scholar 

  10. Meier, L., Van De Geer, S., Bühlmann, P.: The group lasso for logistic regression. J. Roy. Stat. Soc. Series B (Stat. Methodol.) 70(1), 53–71 (2008)

    Article  MathSciNet  Google Scholar 

  11. Noorian, F., de Silva, A.M., Leong, P.H.W.: gramEvol: Grammatical evolution in R. J. Stat. Softw. 71(1), 1–26 (2016). https://doi.org/10.18637/jss.v071.i01

    Article  Google Scholar 

  12. Simon, N., Friedman, J., Hastie, T., Tibshirani, R.: A sparse-group lasso. J. Comput. Graph. Stat. 22(2), 231–245 (2013)

    Article  MathSciNet  Google Scholar 

  13. Spears, W.M., De Jong, K.A., Bäck, T., Fogel, D.B., de Garis, H.: An overview of evolutionary computation. In: Brazdil, P.B. (ed.) ECML 1993. LNCS, vol. 667, pp. 442–459. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56602-3_163

    Chapter  Google Scholar 

  14. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc. Series B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Urda, D., et al.: BLASSO: integration of biological knowledge into a regularized linear model. BMC Syst. Biol. 12(5), 361–372 (2018)

    Google Scholar 

  16. Urda, D., Jerez, J.M., Turias, I.J.: Data dimension and structure effects in predictive performance of deep neural networks. In: New Trends in Intelligent Software Methodologies, Tools and Techniques, pp. 361–372 (2018)

    Google Scholar 

  17. Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. Roy. Stat. Soc. Series B (Stat. Methodol.) 68(1), 49–67 (2006)

    Article  MathSciNet  Google Scholar 

  18. Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge support through grants RTI2018-098160-B-I00 and RTI2018-100754-B-I00 from the Spanish Ministerio de Ciencia, Innovación y Universidades, which include ERDF funds, and from project 202C1800003 (UIC Airbus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damián Nimo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nimo, D., Dorronsoro, B., Turias, I.J., Urda, D. (2020). Learning Variables Structure Using Evolutionary Algorithms to Improve Predictive Performance. In: Dorronsoro, B., Ruiz, P., de la Torre, J., Urda, D., Talbi, EG. (eds) Optimization and Learning. OLA 2020. Communications in Computer and Information Science, vol 1173. Springer, Cham. https://doi.org/10.1007/978-3-030-41913-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41913-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41912-7

  • Online ISBN: 978-3-030-41913-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics