Skip to main content

A Simple yet Efficient MCSes Enumeration with SAT Oracles

  • Conference paper
  • First Online:
  • 1260 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12033))

Abstract

The enumeration of the maximal satisfiable subsets (MSSes) or the minimal correction subsets (MCSes) of conjunctive normal form (CNF) formulas is a cornerstone task in various AI domains. This paper presents an algorithm that enumerates all MCSes with SAT oracles. Our algorithm is simple because it follows a plain algorithm without any techniques that decrease the number of calls to a SAT oracle. The experimental results show that our proposed method is more efficient than state-of-the-art MCS enumerators on average to deal with Partial-MaxSAT instances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We always consider set-inclusion minimality in this paper unless stated otherwise.

  2. 2.

    It is available from https://www.cs.helsinki.fi/group/coreo/lbx-cache/.

  3. 3.

    It is available from http://www.cril.fr/enumcs/. We also obtained the 1090 benchmarks from the same site.

  4. 4.

    We replaced 0 with 0.5 during the plotting because the logarithm is defined only for positive numbers. Thus, point (0.5, 0.5) represents an instance for which both methods failed to find an MCS.

References

  1. Alviano, M.: Model enumeration in propositional circumscription via unsatisfiable core analysis. TPLP 17(5–6), 708–725 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Argelich, J.: Max-sat formalisms with hard and soft constraints. AI Commun. 24(1), 101–103 (2011)

    Article  MathSciNet  Google Scholar 

  3. Audemard, G., Lagniez, J.-M., Simon, L.: Improving glucose for incremental SAT solving with assumptions: application to MUS extraction. In: Järvisalo, M., Van Gelder, A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 309–317. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39071-5_23

    Chapter  MATH  Google Scholar 

  4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, Pasadena, California, USA, 11–17 July 2009, pp. 399–404 (2009)

    Google Scholar 

  5. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model rotation. In: Bjesse, P., Slobodová, A. (eds.) International Conference on Formal Methods in Computer-Aided Design, FMCAD 2011, Austin, TX, USA, 30 October–02 November 2011, pp. 37–40. FMCAD Inc. (2011)

    Google Scholar 

  6. Berre, D.L., Parrain, A.: The sat4j library, release 2.2. JSAT 7(2–3), 59–64 (2010)

    Google Scholar 

  7. Birnbaum, E., Lozinskii, E.L.: Consistent subsets of inconsistent systems: structure and behaviour. J. Exp. Theor. Artif. Intell. 15(1), 25–46 (2003)

    Article  Google Scholar 

  8. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24605-3_37

    Chapter  Google Scholar 

  9. Fu, Z., Malik, S.: On solving the partial MAX-SAT problem. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_25

    Chapter  Google Scholar 

  10. Grégoire, É., Izza, Y., Lagniez, J.: Boosting MCSes enumeration. In: Lang, J. (ed.) [12], pp. 1309–1315

    Google Scholar 

  11. Koshimura, M., Nabeshima, H., Fujita, H., Hasegawa, R.: Minimal model generation with respect to an atom set. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) Proceedings of the 7th International Workshop on First-Order Theorem Proving, FTP 2009, Oslo, Norway, 6–7 July 2009. CEUR Workshop Proceedings, vol. 556 (2009). CEUR-WS.org

  12. Lang, J. (ed.): Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden (2018). ijcai.org

  13. Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing minimal correction subsets. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, IJCAI 2013, Beijing, China, 3–9 August 2013, pp. 615–622. IJCAI/AAAI (2013)

    Google Scholar 

  14. Marques-Silva, J., Janota, M., Ignatiev, A., Morgado, A.: Efficient model based diagnosis with maximum satisfiability. In: Yang, Q., Wooldridge, M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 1966–1972. AAAI Press (2015)

    Google Scholar 

  15. Morgado, A., Liffiton, M., Marques-Silva, J.: MaxSAT-based MCS enumeration. In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 86–101. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39611-3_13

    Chapter  Google Scholar 

  16. Narodytska, N., Bjørner, N., Marinescu, M.V., Sagiv, M.: Core-guided minimal correction set and core enumeration. In: Lang, J. (ed.) [12], pp. 1353–1361

    Google Scholar 

  17. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Improving MCS enumeration via caching. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp. 184–194. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3_12

    Chapter  Google Scholar 

  18. Previti, A., Mencía, C., Järvisalo, M., Marques-Silva, J.: Premise set caching for enumerating minimal correction subsets. In: McIlraith, S.A., Weinberger, K.Q. (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th Innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, 2–7 February 2018, pp. 6633–6640. AAAI Press (2018)

    Google Scholar 

  19. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers JP17K00307 and JP19H04175.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miyuki Koshimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koshimura, M., Satoh, K. (2020). A Simple yet Efficient MCSes Enumeration with SAT Oracles. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12033. Springer, Cham. https://doi.org/10.1007/978-3-030-41964-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41964-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41963-9

  • Online ISBN: 978-3-030-41964-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics