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Abstract. Word embeddings are a useful tool for extracting knowledge
from the free-form text contained in electronic health records, but it has
become commonplace to train such word embeddings on data that do not
accurately reflect how language is used in a healthcare context. We use
prediction of medical codes as an example application to compare the ac-
curacy of word embeddings trained on health corpora to those trained on
more general collections of text. It is shown that both an increase in em-
bedding dimensionality and an increase in the volume of health-related
training data improves prediction accuracy. We also present a compari-
son to the traditional bag-of-words feature representation, demonstrating
that in many cases, this conceptually simple method for representing text
results in superior accuracy to that of word embeddings.
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1 Introduction

Recent years have seen significant growth in the use of machine learning tech-
niques to better understand health care and improve quality of service —primarily
due to the increase in the availability of large quantities of electronic health
records (EHRs). Secondary analysis of EHRs has the potential to improve a
variety of healthcare aspects, including patient care, medical outcomes, surgi-
cal outcomes, risk management, clinical decision support and medical diagnoses.
However, the free-form text content of EHRs poses many challenges not typically
addressed by conventional natural language processing (NLP). Due to the com-
plexity and variations presented in the data, and the legal and ethical aspects
associated with the use of this data, the analysis of EHRs has not seen benefits
as significant as those enjoyed by more common application domains.

Word embeddings are often used for solving problems that involve extract-
ing high-level knowledge from free-form text data. These word embeddings are
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typically trained on corpora composed of general language, such as archives of
English Wikipedia, that are unlikely to be representative of the way language
is used in EHRs and other related healthcare data sources. Using embeddings
trained on general text for tasks that involve specialised language results in a
domain shift, which will typically cause suboptimal performance [21]. Ideally,
if we want to classify documents derived from EHRs then we should train the
embeddings on a large collection of free-form text extracted from EHRs. For
various legal and ethical reasons, this is not possible: the collections of health
records available for research purposes are not large enough to train high quality
word embeddings.

The contributions of this work are two-fold: (i) we demonstrate that train-
ing word embeddings on health-related corpora provides an increase in accuracy
compared to embeddings trained on general text—particularly when the dime-
sionality of the embeddings is increased; (ii) it is shown that the bag of words
representation is often as effective, if not more so, than dense word embeddings
when applied to medical code prediction.

2 Related Work

Many NLP tasks, health-related or otherwise, use word embeddings to repre-
sent text data, due to their ability to encode semantic similarity between words.
Word embeddings represent a single word or sub-word as a vector based on the
context in which it appears. Examples of use of word embeddings for health
applications include: learning medical concepts such as diagnosis codes, medica-
tion codes, procedure codes [6], early detection of heart failure [5], and medical
event detection [13]. Many previous techniques have used the word2vec [19, 20]
or GloVe [22] packages for training embeddings. One issue with the methods em-
ployed by word2vec and GloVe is that they cannot produce embeddings for words
that were not seen during training. In contrast, fastText [2, 16, 17] makes use of
character level n-grams, which enables one to generate accurate embeddings for
words that do not appear in the training vocabulary. The use of character-level
n-grams is of particular importance in the medical domain, where a significant
number of compound words are used [25, 4, 28].

Generally applications of NLP in health use general text to train word embed-
dings. In cases where the health-related text is used to train word embeddings,
most published models only use between 200 and 400 dimensions [1, 18]. Recent
studies show that the use of large corpora from more than one source can im-
prove the performance of embeddings [3, 27]. Chen et al., (2019) [4] and Zhang
et al., (2019) [28] provide embeddings on health-related texts, with word embed-
dings of 700- and 200- dimensional embeddings respectively. Zhang et al., (2019)
[28] make use of the sub-word information during the training of word embed-
dings. We also make use of sub-word information during the training of word
embeddings; however, in contrast to Zhang et al., (2019) [28], we present high
dimensional word embeddings. Also, our word embeddings make use of large
corpora of health-related text from multiple sources. We present comparisons of
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F-measures using these recently published word embeddings for the prediction
of medical codes to our word embeddings.

Purushotham et al., (2017) [23] use Medical Information Mart for Intensive
Care (MIMIC) III to present benchmark models on clinical prediction tasks
such as mortality prediction, forecasting length of stay, and ICD-9 code group
prediction. MIMIC III is one of the largest publicly available medical databases,
containing both structured data and free-form text records [15, 9, 7]. We make
use of the free-form text hospital discharge reports contained in MIMIC III,
along with the corresponding ICD-9 diagnosis codes.

3 Representing Text

The bag of words (BOW) approach is a simple method for representing text
that does not consider the order that words occur in a document. A document
is represented as a sparse vector where each element stores either the number of
occurrences of a word, or a binary value indicating that the word is present in
the document. BOW is considered to be a relatively simple yet effective method
[8, 17].

Embedding words in vector spaces that encode semantics has become popular
in recent years. In general, for many NLP tasks, continuous word representations
trained on large unlabelled datasets have been shown to improve performance
relative to other representations [2, 16, 17]. Figure 1 provides a pictorial example
of how these vector spaces may be organised. The use of word embeddings is
motivated by the distributional hypothesis [12], which states that there is a
higher chance that words with similar meaning will occur in similar contexts.
By examining a large corpus, it is possible to learn embeddings that capture the
semantic similarity between words, as inferred by the contexts they are seen in.
Word embeddings provide a means for effective representation learning without
the complexity of deep neural networks, and can be trained efficiently on large
datasets [19].

FastText [2] is one popular system for learning word embeddings. It supports
both the skip-gram with negative sampling (SGNS) and continuous bag of words
(CBOW) methods for training word embeddings. In contrast to word2vec, where
distinct word embeddings are learnt directly from words, fastText represents
each word as a bag of character n-grams, and word embeddings are obtained by
summing these character n-gram representations. More information on fastText
is provided by Bojanowski et al., (2016) [2]. For example, the tri-grams for the
word “apple” are “app”, “ppl”, and “ple”. The resulting word embedding vector
for “apple” will be the sum of the vectors of each of these three tri-grams. This
modelling choice enables fastText to produce vectors even for novel words that
were not present in the training data, as long as at least some of the n-grams
have been seen before. It has been shown that fastText can achieve accuracies
similar to deep learning classifiers, while being a lot more efficient to train [17].

The classification problems encountered in natural language processing typi-
cally involve predicting labels for entire documents, rather than individual words.
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Fig. 1: Visual representation of word embeddings, where each word is mapped
to a vector. For simplicity only a 2-D representation is used for embeddings.

As such, one must define a representation for documents that can be easily con-
structed using the embeddings learned for words. In this work, we obtain doc-
ument embeddings by computing the vector sum of the embeddings for each
word in the document. This vector sum is then normalised to have length one,
to ensure that documents of different lengths have representations of similar
magnitudes.

4 Data

MIMIC III is used in this study both for classification experiments and for train-
ing word embeddings. The most recent version of this dataset, MIMIC III, is one
of the most comprehensive publicly available medical databases [7, 9, 15]. It con-
tains de-identified health records of 49,785 adult patient admissions (age > 15)
and 7,870 neonatal admissions to critical care units. The data was collected at
the Beth Israel Deaconess Medical Center between 2001 and 2012. It includes
information such as demographics, laboratory test results, procedures, medica-
tions, and physician notes. For this research, we are interested in the discharge
summaries of patients admitted to the hospital.

The TREC precision medicine/clinical decision support track 2017 (TREC
2017) [24] provides a considerable corpus of health-related free-form text. This
includes 26.8 million published abstracts of medical literature listed on PubMed
Central, 241,006 clinical trials documents, and 70,025 abstracts from recent pro-
ceedings focused on cancer therapy from AACR (American Association for Can-
cer Research) and ASCO (American Society of Clinical Oncology). The dataset
from the TREC 2017 competition is used here for training word embeddings.

Medical codes, such as the International Classification of Diseases (ICD-9)
codes, are widely used to describe diagnoses of patients [14]. Most hospitals
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Table 1: Percentage of occurrence of ICD-9 code groupings in unique hospital ad-
missions in MIMIC III. The total number of hospital admissions with a recorded
discharge summary is 52,710. E and V codes are referring to external causes of
injury and supplemental classification.

ICD-9 % ICD-9 % ICD-9 %

Circulatory (circ) 78.40 Digestive (diges) 38.80 Muscular (musc) 17.99
E and V (e+v) 69.09 Blood (bld) 33.56 Prenatal (pren) 17.07
Endocrine (endo) 66.51 Symptoms (symp) 31.36 Neoplasms (neop) 16.37
Respiratory (resp) 46.63 Mental (ment) 29.66 Skin (skin) 12.02
Injury (inj) 41.42 Nervous (nerv) 29.10 Congenital (cong) 5.41
Genitourinary (gen) 40.29 Infectious (inf) 26.96 Pregnancy (preg) 0.31

manually assign the correct codes to patient records based on doctors’ clini-
cal diagnosis notes. Hence, the use of machine learning techniques to predict
ICD codes from free-form medical text and thus automating the medical coding
process has become an important research avenue.

MIMIC III contains ICD-9 annotations to indicate the diagnoses and dis-
eases of admitted patients. There are 6,984 distinct ICD-9 codes reported in
MIMIC III, among the more than 50,000 patient admission records found in this
database. These can be grouped into 18 categories, as shown in Table 1 along
with the frequencies of these groups. Records typically have more than one code
assigned. This work focuses on the application of labelling discharge summaries,
as these are the most readily available free-form text records in the MIMIC III
dataset.

5 Experiments

We consider the 18 categories of medical codes, presented in Table 1, as 18
separate binary classification problems. That is, each group of ICD-9 codes from
the MIMIC III discharge summaries is predicted in isolation. FastText is used
for training word embeddings and representing documents, and the Waikato
Environment for Knowledge Analysis (WEKA) [11, 26] framework is used to
train classifiers on these documents. This section discusses the experimental
setup in more detail.

5.1 Data Pre-processing

In order to maximise the use of free-form medical text “as is,” we minimise pre-
processing. One of the significant issues of data mining medical text in free-form
is the use of acronyms and abbreviations. Simple changes such as converting
uppercase letters to lowercase, or omitting full stops can result in a completely
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Table 2: Word embeddings trained by us (top), from previous work (middle), or
concatenations thereof (bottom). Dimension details are presented, as are training
times and word embeddings model sizes.

Models Dimensions Source Data Train Time Model Size

M300 300 MIMIC 1 hour 5G
T300 300 TREC 7 hours 13G
TM300 300 TREC+MIMIC 9 hours 15G
T600 600 TREC 13 hours 23G
TM600 600 TREC+MIMIC 16 hours 30G
T900 900 TREC 19 hours 35G
TM900 900 TREC+MIMIC 23 hours 54G

W300 [10] 300 Wiki - 7G
BWV200 [4, 28] 200 PubMed1+MIMIC - 26G
BSV700 [4, 28] 700 PubMed+MIMIC - 21G

T300+M300 600 TREC+MIMIC 8 hours 18G
W300+T300+M300 900 Wiki+TREC+MIMIC 8+ hours 25G
T900+W300 1,200 Wiki+TREC 19+ hours 42G
TM900+W300 1,200 Wiki+TREC+MIMIC 23+ hours 61G

different meaning. For example, “Ab” is used to refer to an antibody, while “AB”
is used to refer to abortion. As word embeddings are case sensitive, we keep the
text as is for both training and experiments to capture maximum meaning. We
do not perform downcasing, nor do we remove special characters or full stops.
We only remove extra spaces and unwanted newline characters, as fastText uses
new line characters to separate examples.

5.2 Training Word Embeddings

Our embeddings are trained to the exact same specifications as the Wikipedia
and common crawl fastText models in [10]. We make use of both MIMIC III
and TREC 2017 datasets to train our word embeddings. The sizes of these
datasets are 4GB and 24GB, respectively. The word embeddings are trained
using the CBOW method, character n-grams of length 5, a window of size 5, ten
negative samples per positive sample, and with various settings for the number
of dimensions. The learning rate used for training these models is 0.05, with the
exception of M300 (see Table 2), where the learning rate is 0.03. We also include
two very recently published (2019) medical text trained word embeddings of
dimension size 200 and 700 [4, 28] for comparison.

Table 2 presents details of the embedding trained by us, previously pub-
lished word embeddings, and the concatenated word embeddings. Concatenated

1 https://www.ncbi.nlm.nih.gov/pubmed/
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Fig. 2: Flow chart of using bag-of-words for prediction.

embeddings are word embeddings formed by concatenating multiple word em-
beddings. For example, in the T300+M300, the first 300 elements are the word
vectors obtained using the TREC dataset, and the second 300 elements are taken
from the embeddings trained on MIMIC III. The table includes details on di-
mensions, input data, training time2 and the size of the model. Both the size of
the input data and the number of dimensions influence the training times and
model sizes.

5.3 Experimental Process and Classification

Figures 2 and 3 present flowcharts of using BOW and word embeddings for
predicting ICD-9 groups from MIMIC III discharge summaries. We use a total
of 52,710 discharge summaries, with text length ranging from a few sentences to
close to twenty pages. WEKA’s implementation of BOW is used with a varied
number of words. We use ten-fold cross-validation and classifiers as implemented
in WEKA.

We use logistic regression with ridge value of 1 for word embeddings experi-
ments. We experimented with the use of random forests, with various parameter
choices, as well as other ridge values for logistic regression. However, we found
logistic regression was performing well and was providing consistent F-measures
across a range of different ridge values. The purpose of this research is not to
achieve the highest possible F-measures, but to show that the high dimensional
word embeddings trained on medical text do provide advantages in health appli-
cations relative to low dimensional embeddings trained on general text. Hence,
we only present results for logistic regression.

For BOW due to the sparsity of the data for large dictionary sizes (such
as 100,000 or 600,000 words) we use an implementation of logistic regression
optimised for sparse data.

6 Results

This section presents an overview of our experimental results. Table 3 provides
a comparison of F-measure for predicting ICD-9 groups from free-form MIMIC
III discharge summaries for 300-dimensional and 600-dimensional embeddings.

2 Training was run on a 4 core Intel i7-6700K CPU @ 4.00GHz with 64GB of RAM.
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Fig. 3: Flow chart of using word embeddings for prediction.

For 300-dimensional embeddings, W300 are word embeddings that are trained by
fastText on Wikipedia and other common crawl text. W300 embeddings are read-
ily available for use in any application. Except for the circulatory label, which
is the most frequent one (78.4%), word embeddings specially trained on medical
corpora have better F-measures. Overall T300 provides better F-measures than
other 300-dimensional word embeddings for most ICD-9 groups. When com-
pared to the recently published BWV200, we found that our 300-dimensional
word embeddings performed better for all categories, and on par for E and V.

For 600-dimensional word embeddings, Table 3 presents comparisons across
embeddings obtained in a single training phase (T600 and TM600), and word
embeddings obtained via concatenation (T300 + M300). We compare our 600
dimension word embeddings to the published 700 dimensional word embeddings
(BSV700). F-measures of our 600 dimensional word embeddings are on par with
or better than those of the recently published high dimensional word embeddings.

Table 4 presents a comparison for predicting ICD-9 code from free-form dis-
charge summaries in MIMIC III with various dimensions of word embeddings,
different number of words for BOW, and between word embeddings and BOW.
For word embeddings, the best F-measures for 600-, 900- and 1200- dimensional
embeddings are presented for each ICD-9 group. We also indicate which model
produced the best 900-dimensional and 1,200-dimensional embeddings (see Table
2 for details of word embeddings, input data and model dimensionality). Gener-
ally, the higher the dimensionality, the better the F-measures are for predicting
the ICD-9 groups.

For BOW, F-measures of dictionary sizes 1,000, 10,000, 100,000 and 600,000
are presented for all 18 ICD-9 groups. BOW with 600,000 number of words is
the largest possible number of features. There is an increase in F-measure as the
size of the dictionary increases. A dictionary size of 600,000 results in the best
F-measures for all ICD-9 category except pregnancy.

In comparison to word embeddings, F-measures of BOW is consistently better
for all ICD-9 groups that occur for less than 42% of the examples. In terms of
BOW performance, pregnancy is the most interesting ICD-9 group. Its frequency
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Table 3: A comparison of F-measures for predicting ICD-9 groups using 200, 300,
600 and 700-dimensional word embeddings are presented. BWV200 and BSV700
are both published word embeddings and are compared with 300-dimensional
word embeddings and 600-dimensional word embeddings, respectively. We use
bold to indicate the best F-measures among low dimensional groups of word
embeddings (200-300) and the higher dimensional word embeddings (600-700).
The best F-measure across all presented word embeddings is underlined for each
category.

ICD-9 BWV200 W300 M300 T300 TM300 T600 TM600 T3+M3 BSV700

circ 0.931 0.932 0.932 0.932 0.931 0.935 0.934 0.924 0.931
e+v 0.829 0.828 0.829 0.829 0.828 0.832 0.832 0.832 0.831
endo 0.847 0.845 0.846 0.849 0.846 0.851 0.849 0.850 0.847
resp 0.774 0.774 0.774 0.778 0.772 0.789 0.788 0.787 0.776
inj 0.660 0.649 0.663 0.662 0.660 0.675 0.676 0.677 0.682
gen 0.721 0.716 0.724 0.731 0.725 0.740 0.740 0.740 0.732
diges 0.679 0.692 0.693 0.696 0.692 0.712 0.705 0.710 0.696
bld 0.557 0.566 0.573 0.570 0.570 0.593 0.589 0.594 0.586
symp 0.475 0.486 0.482 0.487 0.483 0.504 0.502 0.500 0.505
ment 0.533 0.530 0.530 0.542 0.539 0.577 0.576 0.577 0.559
nerv 0.530 0.534 0.527 0.543 0.531 0.571 0.558 0.564 0.553
inf 0.634 0.634 0.641 0.647 0.647 0.663 0.659 0.664 0.648
musc 0.254 0.274 0.258 0.294 0.267 0.338 0.314 0.319 0.315
pren 0.589 0.590 0.588 0.594 0.587 0.601 0.597 0.598 0.603
neop 0.693 0.688 0.702 0.705 0.690 0.728 0.721 0.732 0.727
skin 0.343 0.335 0.344 0.346 0.344 0.389 0.384 0.386 0.397
cong 0.365 0.371 0.369 0.391 0.350 0.438 0.406 0.435 0.424
preg 0.525 0.502 0.543 0.565 0.512 0.579 0.566 0.599 0.586

is only 0.31% in the MIMIC III dataset. Text in this group is very specific,
including uniquely identifying words such as delivery, labour and birth, and is
probably one possible explanation to the success of BOW for predicting the
pregnancy label.

7 Discussion

In this paper, we investigate how the source domain used for training word em-
beddings impacts the performance of medical text classification. We also demon-
strate the effect that embedding dimensionality plays in determining the accu-
racy of the resulting classifiers. The prediction of ICD-9 codes from discharge
summaries of MIMIC III is used as an example health application to show that
high dimensions, especially trained on health-related corpora, have better F-
measures compared to word embeddings with lower dimensions or are trained
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Table 4: A comparisons of F-measure for ICD-9 groups between word embed-
dings with varied dimensions (left) and BOW with varied number of words
(right). For word embeddings the best F-measure across 900-dimensional and
1200-dimensional word embeddings for each category are presented. Correspond-
ing best 900- and 1,200- dimensional models are also listed. For details of the
models see Table 2. We use bold to indicate the best F-measures among varied
dimensional word embeddings and varied number of words for BOW. The best
F-measure across all is underlined for each category.

ICD-9 Word Embeddings BOW
600 900 best 900- 1,200 best 1,200- 1,000 10,000 100,000 600,000

dim model dim model

circ 0.935 0.937 T900 0.936 T9W3 0.930 0.920 0.931 0.932
e+v 0.832 0.833 W3T3M3 0.833 T9W3 0.801 0.788 0.808 0.812
endo 0.851 0.853 T900 0.854 T9W3 0.814 0.825 0.840 0.845
resp 0.789 0.792 W3T3M3 0.794 TM9W3 0.763 0.775 0.788 0.792
inj 0.677 0.684 WTM+T900 0.689 TM9W3 0.642 0.675 0.693 0.697
gen 0.740 0.748 TM9 0.751 TM9W3 0.733 0.751 0.769 0.775
diges 0.712 0.724 T900 0.730 T9W3 0.701 0.728 0.748 0.752
bld 0.594 0.601 TM9 0.607 T9W3 0.558 0.595 0.608 0.614
symp 0.504 0.514 W3T3M3 0.517 T9W3 0.476 0.507 0.524 0.528
ment 0.577 0.592 TM9 0.606 TM9W3 0.567 0.616 0.635 0.639
nerv 0.571 0.577 T900 0.586 T9W3 0.491 0.594 0.628 0.629
inf 0.664 0.671 T900 0.677 T9W3 0.606 0.667 0.693 0.698
musc 0.338 0.354 T900 0.372 T9W3 0.344 0.476 0.488 0.489
pren 0.601 0.607 W3T3M3 0.608 Both 0.574 0.557 0.620 0.623
neop 0.732 0.741 W3T3M3 0.746 T9W3 0.665 0.713 0.766 0.773
skin 0.389 0.418 T900 0.435 T9W3 0.438 0.483 0.526 0.530
cong 0.438 0.465 T900 0.463 T9W3 0.348 0.485 0.519 0.529
preg 0.599 0.593 W3T3M3 0.605 TM9W3 0.737 0.705 0.709 0.726

on general text such as Wikipedia. We also compare our word embeddings with
recently published word embeddings and show that our embeddings perform
better for most ICD-9 groups and are very similar for others. Reasons for such
differences include pre-processing of input data, parameter selection, and source
of the datasets used for training the embeddings. We also present comparisons
with BOW, where we observe that F-measures obtained using BOW are consis-
tently better that word embeddings for all ICD-9 groups that occur for less than
42% of the examples. In general, word embeddings are favoured over BOW as
word embeddings are known to capture the meaning of text content, and can
better utilise a range of classifiers compared to BOW. However, the results also
indicate that for some categories, such as pregnancy, where the data is rather
imbalanced, and very specific vocabulary is used, BOW may be the better option.
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We also present the sizes and training times required for training word em-
beddings. Model sizes and training times are both influenced by the input data
size and the number of dimensions generated, and can become quite large. The
main reason for the large model sizes is the use of hash tables for storing char-
acter n-gram information. FastText does provide ways to reduce the final word
embeddings model sizes, however such compression necessarily also impacts on
accuracy.

For this research, we considered ICD-9 groupings as a set of binary classifica-
tion problems. Alternatively they could also be represented as a single multi-label
classification problem. Each unique patient admitted to the hospital can have
more than one diagnosis and be categorised into different groups or have more
than one diagnosis from the same ICD-9 group. Our main aim for this research
was to investigate high dimensional word embeddings trained in the medical
text and hence treating ICD-9 grouping as a binary classification problem was
sufficient. However, to optimise the accuracy of predicting ICD-9 code from the
free-form medical text, it will be essential to also investigate it as a hierarchical
multi-label classification problem in future work.
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