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Abstract. This paper presents an approach to incrementally learn a re-
shaping term that modifies the trajectories of an autonomous dynamical
system without affecting its stability properties. The reshaping term is
considered as an additive control input and it is incrementally learned
from human demonstrations using Gaussian process regression. We pro-
pose a novel parametrization of this control input that preserves the
time-independence and the stability of the reshaped system, as analyt-
ically proved in the performed Lyapunov stability analysis. The effec-
tiveness of the proposed approach is demonstrated with simulations and
experiments on a real robot.
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1 Introduction

In unstructured environments, the successful execution of a task may depend on
the capability of the robot to rapidly adapt its behavior to the changing scenario.
Behavior adaptation can be driven by the robot’s past experience or, as in the
Programming by Demonstration (PbD) paradigm [20], by a human instructor
that shows to the robot how to perform the task [16, 19, 21]. Demonstrated
skills can be encoded in several ways. Dynamical systems (DS) are a promising
approach to represent demonstrated skills and plan robotic motions in real-time.
DS have been successfully used in a variety of robotic applications including
point-to-point motion planning [3,6,14,17], reactive motion replanning [1,2,5,7],
and learning impedance behaviors from demonstrations [18,23].

Although DS are widely used in robotics applications, there is not much work
on incremental learning approaches for DS. Some approaches have extended the
Dynamic Movement Primitives (DMPs) [6] towards incremental learning. In [8],
authors provide a corrective demonstration to modify a part of a DMP trajectory
while keeping the rest unchanged. The work in [9, 10] propose passivity-based
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Fig. 1. System overview. (Top) The user observes the original robot behavior. (Middle)
If the robot behavior does not match the requirements (it hits the red bar in the
depicted case), novel demonstrations of the task are provided. (Bottom) The robot
executes the refined behavior and avoids the obstacle.

controllers to allow a human operator to incrementally demonstrate a DMP tra-
jectory safely interacting with the robot during the execution. The limitation of
these approaches is that they rely on DMPs that are time dependent DS. As
quantitatively shown in [15], time dependent DS use task dependent heuristics
to preserve the shape of a demonstrated motion in the face of temporal or spa-
cial perturbations. On the other hand, time-independent DS naturally adapt to
motion perturbations and exhibit higher generalization capabilities.

In [12], authors propose to reshape the velocity of an autonomous (i.e. time in-
dependent) DS using a modulation matrix. The modulation matrix is parametrized
as a rotation matrix and a scalar gain. These parameters are incrementally
learned from demonstration using Gaussian processes regression [13]. The ap-
proach in [12] has the advantage to locally modify the DS dynamics, i.e. the
dynamics in regions of the state space far from the demonstrated trajectories re-
main unchanged. The main limitations of [12] are that it directly applies only to
first-order DS and to low-dimensional spaces (up to 3 dimensions where rotations
can be uniquely represented). In our previous work [4], we propose to suppress a
learned reshaping term (additive control input) using a time-dependent signal.
The reshaping term depends on less parameters than the modulation matrix
in [12] and it naturally applies to high-dimensional DS and state spaces. More-
over, generated trajectories accurately follow the demonstrated ones. However,
the time-dependence introduces practical limitations due to the hand tuning of
the time constant used to suppress the reshaping term. For instance, if a longer
trajectory is required for some initial conditions, the reshaping term can be
suppressed too early introducing deviations from the demonstrated path.

In this paper, we propose a novel parameterization of the reshaping term that
preserves the stability of the reshaped DS without introducing time-dependencies.
This is obtained by projecting the reshaping term in the subspace orthogonal
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to the gradient of a given Lyapunov function. The presented parameterization
is general and no restrictions are imposed on the order of the DS, as well as
on the dimension of the state space. Moreover, the dynamics of the original DS
are locally affected by the reshaping action, giving the possibility to learn dif-
ferent behaviors in different regions of the state space. To this end, we adopt a
kernel based (local) regression technique, namely Gaussian process regression,
to retrieve a smooth control input for each state. The control action is learned
incrementally from user demonstrations by deciding when new points are added
to the training set. As in [4, 12], a trajectory-based sparsity criterion is used to
reduce the amount of points added to the training set and reduce the computa-
tion time. The incremental learning procedure proposed in this work is shown
in Fig. 1.

The rest of the paper is organized as follows. Section 2 presents the theo-
retical background and the proposed parameterization of the reshaping term.
The incremental learning algorithm is described in Section 3. Simulations and
experiments are presented in Sec. 4. Section 5 states the conclusions and the
future extensions.

2 Orthogonal Reshaping of Dynamical Systems

In this section, we describe an approach to reshape the dynamics of a generic
DS without modifying its stability properties.

2.1 Theoretical Background

We assume that the robot’s task is encoded into a m-th order autonomous DS
(time-dependencies are omitted to simplify the notation)

p(m) = g
(
p,p(1), . . . ,p(m−1)

)
(1)

where p ∈ Rn is the robot position (in joint or Cartesian space), p(i) is the
i-th time derivative of p and g : Rn → Rn is, in general, a non-linear function.
The m-th order dynamics (1) can be rewritten, through the change of variables
xT = [xT1 , . . . ,x

T
m] = [pT , . . . , (p(m−1))T ], as the first-order dynamics

ẋ1 = x2

· · ·
ẋm = g (x1, . . . ,xm)

−→ ẋ = f(x) (2)

where x ∈ Rmn is the state vector. The solution of (2) Φ(x0, t) ∈ Rmn is called
trajectory. Different initial conditions x0 generate different trajectories.

A point x̂ : f(x̂) = 0 ∈ Rmn is an equilibrium point. An equilibrium is
locally asymptotically stable (LAS) if limt→+∞Φ(x0, t) = x̂,∀x0 ∈ S ⊂ Rmn. If
S = Rmn, x̂ is globally asymptotically stable (GAS) and it is the only equilibrium
of the DS. A sufficient condition for x̂ to be GAS is that there exists a scalar,
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continuously differentiable function of the state variables V (x) ∈ R satisfying
(3a)-(3c) (see, for example, [11] for further details).

V (x) ≥ 0, ∀x ∈ Rmn and V (x) = 0⇐⇒ x = x̂ (3a)

V̇ (x) ≤ 0, ∀x ∈ Rmn and V̇ (x) = 0⇐⇒ x = x̂ (3b)

V (x)→∞ as ‖x‖ → ∞ (radially unbounded) (3c)

Note that, if condition (3c) is not satisfied, the equilibrium point is LAS. A
function satisfying (3a)-(3b) is called a Lyapunov function.

2.2 Reshaping Control Input

If the task consists in reaching a specific position x̂ (discrete movement), one
can assume that (2) has a GAS equilibrium at x̂ and that a Lyapunov function
V (x) is known [6,14]. Let us consider the reshaped DS in the form

ẋ = f(x) + u(x) (4)

where u(x) = [0, . . . ,0,um(x)] ∈ Rmn is a continuous control input that satisfies

u(x̂) = 0⇐⇒ um(x̂) = 0 ∈ Rn (5a)

Vxu(x) = 0⇐⇒ Vxmum(x) =
∂V

∂xm
um(x) = 0, ∀xm ∈ Rn (5b)

where Vx indicates the gradient of V (x) with respect to x, i.e. Vx = ∂V (x)/∂x.
Under conditions (5) the following theorem holds:

Theorem 1. A GAS equilibrium x̂ of (2) is also a GAS equilibrium of the
reshaped DS (4).

Proof. From (4) and (5a) it holds that f(x̂)+u(x̂) = 0, i.e. x̂ is an equilibrium of
(4). To analyze the stability of x̂, let us consider V (x), the Lyapunov function for
(2), as a candidate Lyapunov function for (4). Being V (x) a Lyapunov function
for (2) it satisfies conditions (3a) and (3c) also for the reshaped DS (4). The
condition (3b) can expressed in terms of the gradient of V (x) as

V̇ (x) = Vxẋ =

[
∂V (x)

∂x1
, . . . ,

∂V (x)

∂xm

]
(f(x) + u(x))

=
∂V (x)

∂x1
x2 + . . .+

∂V (x)

∂xm
g(x) + �������∂V (x)

∂xm
um(x) = Vxf(x) < 0,∀x 6= x̂

where (∂V (x)/∂xm)um(x) = 0 by assumption (5b).

Corollary 1. Theorem 1 implies that x̂ is the only equilibrium point of (4), i.e.
f(x) + u(x) vanishes only at x = x̂.

Proof. In Theorem 1 it is proved that Vx (f(x) + u(x)) vanishes only at x̂.
Hence, also f(x) + u(x) vanishes only at x̂.
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Corollary 2. Theorem 1 still holds for a LAS equilibrium, i.e. if x̂ is a LAS
equilibrium of (2) then x̂ is a LAS equilibrium of (4).

Proof. If x̂ is LAS, only the conditions (3a)-(3b) are satisfied ∀x ∈ S ⊂ Rmn.
The proof of Theorem (1) still holds if x ∈ S ⊂ Rmn.

Theorem 1 has a clear physical interpretation for second-order dynamical
systems in the form ẋ1 = x2, ẋ2 = K(x̂1 − x1) −Dx2, where K and D are
positive definite matrices and x̂ = [x̂T1 ,0

T ]T is the equilibrium point. The GAS
of x̂ can be proven through the energy-based Lyapunov function V = 1

2 (x̂1 −
x1)TK(x̂1 − x1) + 1

2x
T
2 x2 and the La Salle’s theorem [11]. The assumptions

on um in Theorem 1 can be satisfied by choosing um orthogonal to Vx2
= x2.

Hence, um is a force that does no work (orthogonal to the velocity), i.e. um
modifies the trajectory of the system but not its energy.

2.3 Control input parametrization

In order to satisfy the conditions (5) we choose the control input um in (4) as

um =

{
Nud = Nh(x1) (pd(x1)− x1) if x 6= x̂

0 otherwise
(6)

where x1 ∈ Rn is the position of the robot. The scalar gain h(x1) ≥ 0 and
the desired position pd(x1) ∈ Rn are learned from demonstrations (see Sec.
3). The adopted parametrization (6) requires always n + 1 parameters, i.e. the
position vector pd ∈ Rn (where n is the Cartesian or joint space dimension)
and the scalar gain h ∈ R. For comparison, consider that the parametrization
in [12] uses a rotation and a scalar gain and that a minimal representation of
the orientation in Rn requires at least n(n−1)/2 parameters [24]. The vector ud
represents an elastic force attracting the position x1 towards the desired position
pd. The matrix N is used to project ud into the subspace orthogonal to Vxm

and it is defined as
N = ‖Vxm‖2

(
In×n − V̄ Txm

V̄xm

)
(7)

where In×n is the n-dimensional identity matrix and V̄xm = Vxm/‖Vxm‖. The
term ‖Vxm

‖2 guarantees a smooth convergence of um to zero. Note that the
control input um → 0 if h(x1) → 0. This property is exploited in Sec. 3 to
locally modify the trajectory of the DS.

3 Learning Reshaping Terms

In this section, an approach is described to learn and online retrieve for each po-
sition x1 the parameter vector λ = [h, pTd ] that parametrizes the control input
in (6). We use a local regression technique, namely Gaussian process regression
(GPR), to ensure that um → 0 (h→ 0) when the robot is far from the demon-
strated trajectories. This makes it possible to locally follow the demonstrated
trajectories, leaving the rest almost unchanged.
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3.1 Compute Training Data

Consider that a new demonstration of a task is given as X = {xtd,1, ẋ
t
d,m}Tt=1,

where xtd,1 ∈ Rn is the desired position at time t and ẋtd,m ∈ Rn is the time

derivative of the last state component xtd,m at time t. For example, if one wants
to reshape a second-order DS, then X contains T positions and T accelerations.
The procedure to transform the demonstration into T observations of Λ = {λt =

[λ1, . . . , λn+1]
t

=
[
h, pTd

]t}Tt=1 requires following steps:

I. Set {ptd = xtd,1}Tt=1, where xd,1 are the demonstrated positions.

The gain ht in (6) multiplies the position error pd−x1 and it is used to modulate
the control action um and to improve the overall tracking performance. The value
of ht is computed by considering that ẋm = g(x) + um from (2) and (4). The
following steps are needed:

II. Create the initial state vector x0
d = [(x1

d,1)T ,0T , . . . ,0T ]T ∈ Rmn.

III. Compute
{
xto = Φ(x0

d, (t− 1)δt)
}T
t=1

, where Φ is the solution of (2) with

initial condition x0
d (see Sec. 2.1) and δt is the sampling time.

IV. Compute {utm}Tt=1 from (6) with h = 1 and {xt1 = xto,1}Tt=1.
V. Set

ht =


‖ẋtd,m − g(xto)‖

‖utm‖
if ‖utm‖ > 0

0 otherwise

t = 1, . . . , T (8)

Once the observations of λ are computed, any local regression technique can be
applied to learn the relationship between λ and the position x1 of the DS to
reshape.

3.2 Gaussian Process Regression

Gaussian processes (GP) are widely used to learn input-output mappings from
observations [13]. GP models the scalar noisy process λt = f(xt1) + ε ∈ R, t =
1, . . . , T with ε a Gaussian noise with zero mean and variance σ2

n. Therefore,
n processes λti are assumed to generate the training input X = {xt1}Tt=1 and
output Λi = {λti}Tt=1. Given the training pairs (X,Λi) and a query point x∗, it
is possible to compute the joint distribution[

Λi
λ∗i

]
∼ N

(
0,

[
KXX + σ2

nI Kx∗X

KXx∗ k(x∗,x∗)

])
(9)

where λ∗i is the expected output at x∗. The matrix Kx∗X = {k(x∗,xt1)}Tt=1,
KXx∗ = KT

x∗X . Each element ij of KXX is given by {KXX}ij = k(xi,xj),
where k(•, •) is a user-defined covariance function. In this work, we used the
squared exponential covariance function

k(xi,xj) = σ2
k exp

(
−‖xi − xj‖

2

2l

)
+ σ2

nδ(xi,xj) (10)
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k(xi,xj) is parameterized by the 3 positive parameters σ2
k, σ2

n, and l. The tunable
parameters σ2

k, σ2
n, and l can be hand-crafted or learned from training data [13].

We decide to keep them fixed in order to perform incremental learning by simply
adding new points to the training set. It is worth noticing that the adopted
kernel function (10) guarantees that λ→ 0 for points far from the demonstrated
positions.

Predictions with a GP model are made using the conditional distribution of
λ∗i |Λi, i.e.

λ∗i |Λi ∼ N
(
µλ∗

i |Λi
, σ2
λ∗
i |Λi

)
(11)

where

µλ∗
i |Λi

= Kx∗X

(
KXX + σ2

nI
)−1

Λi

σ2
λ∗
i |Λi

= k(x∗,x∗)−Kx∗X

(
KXX + σ2

nI
)−1

KXx∗

(12)

The mean µλ∗
i |Λi

approximates λ∗i , while the variance σ2
λ∗
i |Λi

plays the role of a

confidence bound. If, as in this work, a multidimensional output is considered,
one can simply train one GP for each dimension.

To reduce the computation effort due to the matrix inversion in (12), incre-
mental GP algorithms introduce criteria to sparsely represent incoming data [22].
Assuming that T data {xt1, ht, ptd}Tt=1 are already in the training set, we add a
new data point [xT+1

1 , hT+1, pT+1
d ] if the cost

CT+1 = ‖pT+1
d − p̂T+1

d ‖ > c̄ (13)

where p̂T+1
d indicates the position predicted at xT+1

1 with (12) using only data
{xt1, ht, ptd}Tt=1 already in the training set. Similarly to [4, 12], the tunable
parameter c̄ represents the error in approximating demonstrated positions and
it can be easily tuned. For example, c̄ = 0.2 means that position errors smaller
than 0.2 meters are acceptable. The proposed incremental reshaping approach
is summarized in Tab. 1.

4 Results

4.1 Simulation - Learning Bi-Modal Behaviors

The goal of this simulation is to illustrate the incremental nature of the proposed
reshaping approach, its ability to learn different behaviors in different regions of
the space, and the possibility to reshape high order DS. The original trajectory
is obtained by numerically integrating (δt = 0.01 s) the second-order DS

ẋ1 = x2

ẋ2 = −10x1 − 2
√

10x2

(14)
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Table 1. Proposed reshaping approach.

Batch

Create a set of predefined tasks encoded as stable DS.

Stable DS can be designed by the user or learned

from demonstrations as in [6, 14].

Provide a Lyapunov function V (x) for each DS.

Incremental

Observe the robot’s behavior in novel scenarios.

If needed, provide a corrective demonstration, for

example by kinesthetic teaching the robot.

Learn the parameters of the control input (4), as

described in Sec. 3. Tuning parameters can be set

empirically by simulating the reshaped DS.

Repeat until the refined behavior is satisfactory.

where x1 = [x, y]T ∈ R2 is the position and x2 the velocity. The system (14) has
a GAS equilibrium at x̂ = 0 ∈ R4 and Lyapunov function V (x) = 1

2 (xT1 x1 +
xT2 x2).

Local demonstrations are drawn from different Gaussian distributions, as de-
scribed in Tab. 2, to obtain different bi-modal behaviors. A total of four demon-
strations are used in each case, i.e. two (red and green crosses in Fig. 2) for the
behavior in the region R+ where x > 0, two (magenta and blue crosses in Fig.
2) for the region R− where x < 0. As shown in Fig. 2, the original DS position
trajectory (black solid line) is incrementally adapted to follow the demonstrated
positions and different behaviors are effectively learned in R+ and R−. Totally
four simulations are conducted and shown in Fig. 2. In all the presented cases,
the DS is successfully reshaped to follow the demonstrated trajectories. The pro-
posed approach locally modifies the DS, in fact demonstrations in R+, being far
from R−, do not affect the behavior in R− (and vice versa). The equilibrium
position x̂1 = 0 ∈ R2 is always reached, an expected result considering Theorem
1. Results are obtained with noise variance σ2

n = 0.1, signal variance σ2
k = 1,

length scale l = 0.4, and threshold c̄ = 0.02 m.

4.2 Experiments

The effectiveness of the proposed approach is demonstrated with two experi-
ments on a KUKA LWR IV+ 7 DoF manipulator. In both experiments, novel
demonstrations of the desired position are provided to the robot by kinesthetic
teaching. To guarantee a safe physical guidance, the task is interrupted and the
robot is put in the gravity compensation mode as soon as the user touches the
robot. The external torques estimation provided by the fast research interface [?]
is used to detect physical contacts.
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Table 2. Demonstrations used for the four simulations in Fig. 2.

Figure Demonstrations in R− Demonstrations in R+

2(a)
x ∈ [−2,−2.5] x ∈ [2, 2.5]

y = 0.1N (−2, 0.03) y = 0.1N (2, 0.03)

2(b)
x ∈ [−2,−2.5] x ∈ [2, 2.5]

y = −0.1N (−2, 0.03) y = 0.1N (2, 0.03)

2(c)
x ∈ [−2,−2.5] x ∈ [2, 2.5]

y = 0.1N (−2, 0.03) y = −0.1N (2, 0.03)

2(d)
x ∈ [−2,−2.5] x ∈ [2, 2.5]

y = −0.1N (−2, 0.03) y = −0.1N (2, 0.03)

0.12

0.1

0.08

0.06

0.04

0.02

0

-3 -2 -1 3210

original 
trajectory

x [m]

y
 [

m
]

reshaped 
trajectories

(a)

0.1

0.05

0

-0.1

-0.05

-3 -2 -1 3210
x [m]

original 
trajectory

reshaped 
trajectories

(b)

-3 -2 -1 3210
x [m]

0.1

0.05

0

-0.1

-0.05

y
 [

m
]

original 
trajectory

reshaped 
trajectories

(c)

original 
trajectory

reshaped 
trajectories

-3 -2 -1 3210
x [m]

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

(d)

Fig. 2. Different bi-modal behaviors obtained by reshaping the same dynamical sys-
tem. Red and magenta dashed lines are the reshaped trajectories after providing two
demonstrations, one (red crosses) for R+ and one (magenta crosses) for R−. Blue and
green solid lines are the reshaped trajectories after providing four demonstrations.

End-effector Collision Avoidance This experiment shows the ability of the
proposed reshaping approach to learn different behaviors in different regions of
the space and the possibility to reshape non-linear DS. The task consists in
reaching the goal position x̂1 = [−0.52, 0, 0.02]

T
m with the robot’s end-effector

while avoiding a box (see Fig. 3(d)) of size 7× 7× 23 cm. Two boxes are placed
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in the scene in different positions, one in the region R+ where y > 0 (Fig. 3(d)),
one in the region R− where y < 0 (Fig. 3(e)). Hence, the robot has to learn a
bi-modal behavior to avoid collisions in R+ and R−.

The original position trajectory is obtained by numerically integrating (δt =
0.005 s) the first-order and non-linear DS ẋ1 = f(x1−x̂1), where x1 = [x, y, z]T ∈
R3 is the end-effector position and ẋ1 ∈ R3 is the end-effector linear velocity.
The orientation is kept fixed. The original DS is learned from demonstrations
by using the approach in [14]. The Lyapunov function for the original DS is
V = 1

2 (x1− x̂1)T (x1− x̂1) [14]. The original end-effector trajectories are shown
in Fig. 3(a)–(c) (black solid lines).

Following the original trajectory generated with initial position x1(0) = [−
0.52, 0.5, 0.02]

T
m (or x1(0) = [−0.52,−0.5, 0.02]

T
m), the robot hits the box. To

prevent this, two partial demonstrations (one in R+ and one R−) are provided
to show to the robot how to avoid the obstacles (brown solid lines in Fig. 3(a)–
(c)). The original DS position trajectories (black solid lines in Fig. 3(a)–(c))
are incrementally adapted to follow the demonstrated positions and different
avoiding behaviors are effectively learned in R+ and R−.

The proposed approach locally modifies the DS, in fact demonstrations in
R+, being far from R−, do not affect the behavior in R− (and vice versa). The

equilibrium position x̂1 = [ − 0.52, 0, 0.02]
T

m is always reached, as stated by
Theorem 1. Figure 3 also shows the learned behaviors (green in R+ and blue
in R− solid lines) for different initial positions in a 3D view (Fig. 3(a)) and in
the xz plane (Fig. 3(b) and 3(c)). In all cases, the robot is able to achieve the
task. Snapshots of the learned bi-modal behavior are depicted in Fig. 3(d) and
3(e). Results are obtained with noise variance σ2

n = 0.1, signal variance σ2
k = 1,

length scale l = 0.001, and the threshold c̄ = 0.04 m. With the adopted c̄ only
106 points over 798 are added to the GP.

Joint Space Collision Avoidance This experiment shows the scalability of
the proposed approach to high dimensional spaces and its ability to reshape high
order DS. The task is a point-to-point motion in the joint space from x1(0) =
[35, 55, 15,−65,−15, 50, 90]T deg to x̂1 = [−60, 30, 30,−70,−15, 85, 15]T deg. The
original joint position trajectory is obtained by numerically integrating (δt =
0.005 s) the second-order DS ẋ1 = x2, ẋ2 = 2(x̂1 − x1) − 2

√
2x2, where x1 =

[θ1, . . . , θ7]T ∈ R7 are the joint angles and x2 ∈ R7 the joint velocities. The
system has a GAS equilibrium at x̂ = [x̂T1 ,0

T ]T ∈ R14 and Lyapunov function
V = 1

2 (x̂1 − x1)T (x̂1 − x1) + 1
2x

T
2 x2. The original joint angle trajectories are

shown in Fig. 4 (black solid lines).
As shown in Fig. 1, following the original trajectory the robot hits an un-

foreseen obstacle (the red bar in Fig. 1). A kinesthetic demonstration is then
provided (red lines in Fig. 4) to avoid the collision. With the reshaped trajec-
tory (blue lines in Fig. 4) the robot is able to avoid the obstacle (Fig. 1) and
to reach the desired goal x̂1. Results are obtained with noise variance σ2

n = 0.1,
signal variance σ2

k = 1, length scale l = 0.01, and the threshold c̄ = 15 deg. With
the adopted c̄ only 27 points over 178 are added to the GP.



Incremental Motion Reshaping of Autonomous Dynamical Systems 11

0.1

0.09

0
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.58
-0.56

-0.54
-0.52

-0.5
-0.48

-0.46
-0.44

-0.42
-0.4

y [m]

z 
[m

]

x [m
]

End-effector trajectories

goal pos.
initial pos.
original traj.
reshaped traj.
reshaped traj.
demonstration

obstacles

(a) 3D view.

0.1

0.09

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

z
 [

m
]

-0.4
x [m]

-0.44-0.42 -0.46 -0.48 -0.5 -0.52 -0.54 -0.56 -0.58

(b) XZ view in R+.

0.1

0.09

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

z
 [

m
]

-0.4
x [m]

-0.44-0.42-0.46-0.48 -0.5-0.52-0.54-0.56-0.58

(c) XZ view in R−.
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(e) Reshaped trajectory starting at x1(0) ∈ R−.

Fig. 3. Results of the end-effector collision avoidance experiment.

4.3 Discussion

The proposed approach works for high order DS, as underlined in Sec. 2 and
demonstrated in Sec. 4.2. Being robot manipulators dynamics described by
second-order DS, a second-order DS is sufficient to generate dynamically feasible
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Fig. 4. Original joint angles trajectories (black lines), the provided demonstration (red
lines) and reshaped joint angles trajectories (blue lines) for the joint space collision
avoidance experiment.

trajectories. For this reason, we show results for DS up to the second order. The
adopted control law in (6) pushes the robot position towards the demonstrated
position, without considering desired velocities or accelerations. We adopt this
solution because, in the majority of the cases, a user is interested in reconfig-
uring the robot and (s)he can hardly show a desired velocity (or acceleration)
behavior through kinesthetic teaching.

It must be noted that the proposed control law (6) does not always guarantee
good tracking of the demonstrated trajectories, as shown in Fig. 4. In general, to
have good tracking performance, different controllers have to be designed for dif-
ferent DS [11]. Nevertheless, in this work we do not focus on accurately tracking
the demonstrated trajectories, but we want to modify the robot’s behavior until
the task is correctly executed. The joint angle trajectories in Fig. 4 guarantee
the correct execution of the task, i.e. the robot converges to the desired joint
position while avoiding the obstacle. The loss of accuracy also depends on the
orthogonality constraint in (5b) between the gradient of the Lyapunov function
and the control input. This constrain allows only motions perpendicular to the
gradient to be executed, which limits the control capabilities and increases the
number of demonstrations needed in order to obtain the satisfactory behavior. In
principle, it is possible to relax the constraint (5b) by requiring that Vxu(x) ≥ 0.
The design of a control input the satisfies Vxu(x) ≤ 0 is left as a future work.

Figure 4 shows an overshoots in the resulting position trajectory (see, for
instance, the angle θ6). To better understand this behavior, consider that we are
controlling a spring-damper (linear) DS with a proportional controller (with a
non-linear gain). In case the resulting closed-loop system is not critically damped,
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the retrieved trajectory overshoots the goal position. For the experiment in Sec.
4.2, adding a damping control action (PD-like controller) would solve the over-
shoot problem. However, there is no guarantee that a generic non-linear DS does
not overshoot under a PD-like control action. Moreover, adding another term
to (6) will increase the number of parameters to learn. Therefore, we use a pro-
portional controller in this work and leave the learning of more sophisticated
controllers as a future extension.

5 Conclusions and Future Work

We presented a novel approach to incrementally modify the position trajectory of
a generic dynamical system, useful to on-line adapt predefined tasks to different
scenarios. Compared to state-of-the-art approaches, our method works also for
high-order dynamical systems, preserves the time-independence of the DS, and
does not affect the stability properties of the reshaped dynamical system, as
shown in the conducted Lyapunov-based stability analysis.

A control law is proposed that locally modifies the trajectory of the dynamical
system to follow a desired position. Desired positions, as well as the control gain,
are learned from demonstrations and retrieved on-line using Gaussian process
regression. The procedure is incremental, meaning that the user can add novel
demonstrations until the learned behavior is not satisfactory. Due to the local
nature of the reshaping control input, different behaviors can be learned and
executed in different regions of the space. Simulations and experiments on a 7
DoF manipulator show the effectiveness of the proposed approach in reshaping
non-linear, high-order dynamical systems, and its scalability to high dimensional
spaces (up to R14).

Our approach applies to dynamical systems with a LAS or a GAS equilibrium
point. Nevertheless, DS that converges towards periodic orbits (limit cycles) have
been used in robotic applications to generate periodic behaviors [6]. Compared
to static equilibria, limit cycles stability has a different characterizations in terms
of Lyapunov analysis. Our next research will focus on considering incremental
reshaping of periodic motions while preserving their stability properties.
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