Undergraduate Topics in Computer Science

Series Editor

Ian Mackie, University of Sussex, Brighton, UK

Advisory Editors

Samson Abramsky © , Department of Computer Science, University of Oxford, Oxford, UK

Chris Hankin (D), Department of Computing, Imperial College London, London, UK
Mike Hinchey (©), Lero - The Irish Software Research Centre, University of Limerick, Limerick, Ireland
Dexter C. Kozen, Department of Computer Science, Cornell University, Ithaca, NY, USA
Andrew Pitts © , Department of Computer Science and Technology, University of Cambridge, Cambridge, UK

Hanne Riis Nielson (D), Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark

Steven S. Skiena, Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
Iain Stewart©, Department of Computer Science, Durham University, Durham, UK
'Undergraduate Topics in Computer Science' (UTiCS) delivers high-quality instructional content for undergraduates studying in all areas of computing and information science. From core foundational and theoretical material to final-year topics and applications, UTiCS books take a fresh, concise, and modern approach and are ideal for self-study or for a one- or two-semester course. The texts are all authored by established experts in their fields, reviewed by an international advisory board, and contain numerous examples and problems, many of which include fully worked solutions.

The UTiCS concept relies on high-quality, concise books in softback format, and generally a maximum of 275-300 pages. For undergraduate textbooks that are likely to be longer, more expository, Springer continues to offer the highly regarded Texts in Computer Science series, to which we refer potential authors.

More information about this series at http://www.springer.com/series/7592

David Makinson

Sets, Logic and Maths for Computing

Third Edition

David Makinson
Department of Philosophy, Logic and Scientific Method London School of Economics London, UK

ISSN 1863-7310
ISSN 2197-1781 (electronic)
Undergraduate Topics in Computer Science
ISBN 978-3-030-42217-2 ISBN 978-3-030-42218-9 (eBook)
https://doi.org/10.1007/978-3-030-42218-9
$1^{\text {st }}$ and $2^{\text {nd }}$ editions: © Springer-Verlag London Limited 2008, 2012
$3^{\text {rd }}$ edition: © Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The first part of this preface is for the student; the second for the instructor. Some readers may find it helpful to look at both. Whoever you are, welcome!

For the Student

You have finished secondary school and are about to begin at a university or technical college. You want to study informatics or computing. The course includes some mathematics-and that was not necessarily your favourite subject. But there is no escape: a certain amount of finite mathematics is a required part of the first-year curriculum, because it is a necessary toolkit for the subject itself.

What is in This Book?

That is where this book comes in. Its purpose is to provide the basic mathematical language required for entering the world of the information and computing sciences.

It does not contain all the mathematics that you will need through the several years of your undergraduate career. There are other very good, often quite massive, volumes that do that. At some stage you will find it useful to get one and keep it on your shelf for reference. But experience has convinced this author that no matter how good a compendium is, beginning students tend to feel intimidated, lost, and unclear about what is in it to focus on. This short book, in contrast, offers just the basics that you need to know from the beginning, on which you can build further as needed.

It also recognizes that you may not have done much mathematics at school, may not have understood very well what was going on, and may even have grown to detest it. No matter: you can learn the essentials here, and perhaps even have fun doing so.

So, what is the book about? It is about certain tools that we need to apply over and over again when thinking about computations. They include, from the world of sets,

- Collecting things together. In the jargon of mathematics, first steps with sets.
- Comparing things. This is the theory of relations.
- Associating one item with another. Introduces the key notion of a function.
- Recycling outputs as inputs. We explain the ideas of recursion and induction.

From other parts of finite mathematics,

- Counting. The mathematician calls it combinatorics.
- Weighing the odds. This is done with probability.
- Squirrel math. Here we make use of trees.

From logic,

- Yea and Nay. Just two truth-values underlie propositional logic.
- Everything and nothing. That is what quantificational logic is about.
- Just supposing. How complex proofs are built out of simple ones.
- Sticking to the Point. How to make logic sensitive to relevance (new to this edition).

How Should You Use It?

Without an understanding of basic concepts, large portions of computer science remain behind closed doors. As you begin to grasp the ideas and integrate them into your thought, you will also find that their application extends far beyond computing into many other areas. So, there is work to be done.

The good news is that there is not all that much to commit to memory. Your sister studying medicine, or brother going for law, will envy you terribly for this. In our subject, the two essential things are to understand and to be able to apply.

But that is a more subtle affair than one might imagine, as the two are interdependent. Application without understanding is blind and quickly leads to errorsoften trivial, but sometimes ghastly. On the other hand, comprehension remains poor without the practice given by applications. In particular, you do not fully register a definition until you have seen how it takes effect in specific situations: positive examples reveal its scope, negative ones show its limits. It also takes some experience to be able to recognize when you have really understood something, compared to having done no more than recite the words or call upon them in hope of blessing.

For this reason, exercises have been included as an integral part of the learning process. Skip them at your peril. That is part of what is meant by the old proverb 'there is no royal road in mathematics'. Although all exercises in this edition are accompanied by a solution, you will benefit much more if you first cover the answer and try to work it out for yourself. That requires self-discipline, but it brings real rewards. Moreover, the exercises have been chosen so that in many instances the result is just what is needed to make a step somewhere later in the book. Thus, they are also part of the development of the general theory.

By the same token, don't get into the habit of skipping verifications when you read the text. Postpone, yes, but omit, no. In mathematics, you have never fully appreciated a fact unless you have also grasped why it is true, i.e. have assimilated
at least one proof of it. The well-meaning idea that mathematics can be democratized by teaching the facts and forgetting about the proofs has wrought disaster in some secondary and university education systems.

In practice, the tools that are bulleted above are rarely applied in isolation from each other. They gain their real power when used in concert, setting up a crossfire that can bring tough problems to the ground. For example, the concept of a set, once explained in the first chapter, is used everywhere in what follows; relations reappear in graphs, trees and logic; functions are omnipresent.

For the Instructor

Any book of this kind needs to find delicate balances between the competing virtues and shortcomings in different choices of material and ways of presenting it.

Manner of Presentation

Mathematically, the most elegant and coherent way to proceed is to begin with the most general concepts, and gradually unfold them so that the more specific and familiar ones appear as special cases. Pedagogically, this sometimes works but often it is disastrous. There are situations where the reverse is required: begin with some of the more familiar examples and special cases, and then show how they may naturally be broadened.

There is no perfect solution to this problem; we have tried to find a minimally imperfect one. Insofar as we begin the book with sets, relations and functions in that order, we are following the first path. But in some chapters we have followed the second one. For example, when explaining induction and recursion we begin with the most familiar special case, simple induction/recursion over the positive integers; then pass to their cumulative forms for the same domain; broaden to their qualitatively formulated structural versions; finally, give the most general articulation, on arbitrary well-founded sets. Again, in the chapter on trees, we have taken the rather unusual step of beginning with rooted trees, where intuition is strongest and applications abound, then abstracting to unrooted trees.

In the chapters on counting and probability, we have had to strike another balance between traditional terminology and notation and its translation into the language of sets, relations and functions. Most textbook presentations do it all in the traditional way, which has its drawbacks. It leaves the student in the dark about the relation of this material to what was taught in earlier chapters on sets and functions. And, frankly, it is not always very rigorous or transparent. Our approach is to familiarize readers with both kinds of presentation-using the language of sets and functions for a clear understanding of the material itself, and the traditional languages of counting and probability to permit rapid communication in the local dialect.

In those two chapters yet another balance had to be found. One can easily supply counting formulae and probability equalities to be committed to memory and applied in drills. It is more difficult to provide reader-friendly explanations and proofs that permit students to understand what they are doing and why. Again, this book tries to do both, with a rather deeper commitment to the latter than is usual. In particular, it is emphasized that whenever we wish to count the number of selections of k items from a pool of n, a definite answer is possible only when it is clearly understood whether the selections admit repetition and whether they discriminate between orders, giving four options and thus four different counting formulae for the toolbox. The student should learn which tool to choose when, and why, as well as how to use it.

The place of logic in the story is delicate. We have left its systematic exposition to the end-a decision that may seem rather strange, as one uses logic whenever reasoning mathematically, even about the most elementary things discussed in the first chapters. Don't we need a chapter on logic at the very beginning of the book? The author's experience in the classroom tells him that, in practice, that does not work well. Despite its simplicity-perhaps indeed because of it-logic can be elusive for beginning students. It acquires intuitive meaning only as examples of its employment are revealed. Moreover, it turns out that a really clear explanation of the basic concepts of logic requires some familiarity with the mathematical notions of sets, relations, functions and trees.

For these reasons, the book takes a different tack. In early chapters, notions of logic are identified briefly as they arise in the discussion and verification of more 'concrete' material. This is done in 'logic boxes'. Each box introduces just enough to get on with the task in hand. Much later, in the last four chapters, all this is brought together and extended. By then, the student should have little trouble appreciating what the subject is all about and how natural it all is, and will be ready to use other basic mathematical tools to help study it.

From time to time there are boxes of a different nature-'Alice boxes'. This little trouble-maker comes from the pages of Lewis Carroll to ask embarrassing questions in all innocence. Often, they are on points that students find puzzling but which they have trouble articulating clearly, or are too shy to pose. It is hoped that the Mad Hatter's replies are of assistance to them as well as to Alice.

The house of mathematics can be built in many different ways and students often have difficulty reconciling the formulations and constructions of one text with those of another. Quite often, we comment on such variations. In particular, two points in quantificational (first-order) logic always give trouble if variants are not compared explicitly. One concerns distinct, although ultimately equivalent, ways of reading the quantifiers; the other arises from differing conventions for using the terms 'true' and 'false' in application to formulae containing free variables.

Choice of Topics

Overall, our choice of topics is fairly standard, as can be seen from the chapter titles. If strapped for class time, an instructor can omit some later sections of some chapters, or even entire chapters that are not close to the interests of the students or the dictates of the curriculum. For example, few computer science curricula will require the material of Chaps. 10 and 11 (levels of inference, logic with relevance) and few philosophy students will be fired up by the Chap. 5 (counting) or the last part of Chap. 7 (on unrooted trees). But it is urged that Chaps. 1-3, the first four sections of Chap. 7, as well as 8 and 9, be taught uncut as just about everything in them is useful to everybody.

We have not included a chapter on the theory of graphs. That was a difficult call to make, and the reasons for the decision were as follows. Although trees are a particular kind of graph, there is no difficulty in covering everything we want to say about rooted trees without entering into general graph theory. Moreover, an adequate treatment of graphs, even if squeezed into one chapter of about the same length as the others, takes a good two weeks of additional class time to cover properly with enough examples and exercises to make it sink in. The basic theory of graphs is a rather messy topic, with a rather high definition/theorem ratio and multiple options about how wide to cast the net (directed/undirected graphs, with or without loops, multiple edges and so on). The author's experience is that students gain little from a high-speed run through a series of distinctions and definitions memorized for the examinations and then promptly forgotten.

On the other hand, recursion and induction are developed in more detail than is usual in texts of this kind, where it is common to neglect recursive definition in favour of inductive proof and to restrict attention to the natural numbers. Although Chap. 4 begins with induction on the natural numbers it goes on to explain number-free forms of both inductive proof and recursive definition including, in particular the often-neglected structural forms that are so important for computer science, logic and theoretical linguistics. We also explain the very general versions based on arbitrary well-founded relations. Throughout the presentation, the interplay between recursive definition and inductive proof is brought out, with the latter piggy-backing on the former. This chapter ends up being the longest in the book.

Instructors may be surprised that the chapters on logic do not attempt to drill readers in building derivations in formal notation, following what is known as a system of 'natural deduction'. The reason is that the author, after years teaching a variety of such systems, has become convinced that they are of marginal pedagogical benefit. Students take a long time to become accustomed to the idiosyncrasies of whichever layout they are exposed to, tend to lose sight of essential principles in the finicky procedural details, and forget most of it as soon as the exams are over. Instead, Chap. 10, on proof and consequence, seeks to make clear the basic ideas that underlie natural deduction, explaining the difference between
first-level, second-level and split-level derivations as well as how to squeeze a derivation tree into a derivation sequence and how to flatten a split-level derivation into a format that mimics a first-level one.

Finally, a decision had to be made whether to include specific algorithms in the book. Most first-year students of computing will be taking courses, in parallel, on principles of programming and some specific programming language; but the languages chosen differ from one institution to another and change over time. The policy in this text is to sketch the essential idea of basic algorithms in plain but carefully formulated English. Instructors wishing to link material with specific programming languages should feel free to do so.

Courses Outside Computer Science

Computer science students are not the only ones who need to learn about these topics. Students of mathematics, philosophy, as well as the more theoretical sides of linguistics, economics and political science, all need to master basic formal methods covering more or less the same territory. This text can be used, with some omissions and additions, for a 'formal methods' course in any of those disciplines.

In the case of philosophy there was, in the second half of the twentieth century, an unfortunate tendency to teach only elementary logic, leaving aside any instruction on sets, relations, functions, recursion/induction, probability and trees. The few students going on to more advanced courses in logic were usually exposed to such tools in bits and pieces, but without a systematic grounding. Even within logic, the election of material was often quite narrow, focussing almost entirely on natural deduction. But as already remarked, it is difficult for the student to get a clear idea of what is going on in logic without having those other concepts available in the tool-kit. It is the author's belief that all of the subjects dealt with in this book (with the exception of Chap. 5 on counting and the last two sections of Chap. 7, on unrooted trees) are equally vital for an adequate course for students of philosophy. With some additional practice on the subtle art of making approximate representations of statements from ordinary language in the language of propositional and predicate logic, the book can also be used as a text for such a course.

The Third Edition

The first edition of this book was published in 2008; the second appeared in 2012 and the many changes made were itemized in the preface for that edition. This third edition adds Chap. 11, Sticking to the point: relevance in logic, which introduces procedures of syntactic control for logical consequence; it should be good fun for students of computing as well as those from philosophy.

In previous editions, only about half of the exercises were accompanied by a solution and some readers using the text for self-study let the author know their unhappiness with that situation. This edition provides solutions to all exercises, mostly in full but occasionally in outline. It is hoped that, as a result, the text is friendlier than before to readers working alone and takes some of the burden off instructors. To be honest, the task of writing out solutions in full also helped better appreciate the student's situation facing the exercises, leading to many modifications. Together, the solutions and new chapter increase the size of the book by about a third.

Even more than in the first two editions, the third takes the time to inform readers of shorthand ways of speaking and useful 'abuses of language'. Such information is more important than often realized. In the author's experience, when a student has trouble assimilating a point, as often as not it is a result of misunderstanding the language in which it is made.

The notation chosen for the text is the same as in the previous editions except for two items, both in the chapters on logic. For classical logical consequence, we now use the standard double turnstile \vDash rather than \vdash, reserving the latter sign for consequence relations in general. For the substitution of a term t for all free occurrences of a variable x in a formula α we now write $\alpha_{x:=t}$ instead of the more common notation $\alpha(t / x)$ used in the previous editions; this is to ensure that there can be no hesitation about which way round the substitution goes when t is itself a variable.

To bring out its general structure, the book has now been divided into three broad parts: Sets (including mathematical objects built with them, such as relations and functions), Math (in the traditional quantitative sense focusing on counting and finite probability), and Logic. Of course, this partition leaves open the question where to put the chapter on induction and recursion, which begins with induction on the natural numbers while going on to general issues of structural and well-founded recursion and induction, as also the chapter on trees which, conversely, begins as part of the theory of relations but ends with a combinatorial flavour. The former was put in Sets, while the latter went into Math, but the reverse allocation would be almost as appropriate.

As the third edition was being prepared a colleague asked whether, leaving aside all options of presentation, the book has content that is not easily found in other introductory texts. The author's response is relayed here for anyone with the same question. Sections 4.6 (structural recursion and induction), 4.7.3 (defining functions by well-founded recursion on their domains) and 8.4 .4 (most modular versions of sets of propositional formulae) bring within the grasp of a beginner important notions that are usually left unexplored. The same is true of most of Chap. 10 (consequence relations and higher-order rules of inference) as well as all of Chap. 11 (relevance in logic).

A section of the author's webpage https://sites.google.com/site/davidcmakinson/ is earmarked for material relating to this edition: typos and other errata, additional comments, further exercises, etc. As the text goes to press these rubrics are empty but, with the help of readers, they will surely soon be populated. Observations should go to david.makinson@gmail.com.

London, UK
David Makinson
February 2020

Acknowledgements The late Colin Howson and ensuing department heads at the London School of Economics (LSE) provided a wonderful working environment and the opportunity to test material in classes. Anatoli Degtyarev, Franz Dietrich, Valentin Goranko, George Kourousias, Abhaya Nayak and Xavier Parent provided helpful comments on drafts of the first two editions; George also helped with the diagrams. For the third edition, Chap. 11 benefitted from valuable remarks by Lloyd Humberstone, Abhaya Nayak, Xavier Parent, Nick Smith and Peter Smith.

A number of readers and LSE students drew attention to typos that remained in the first two editions: Luc Batty, Alex Bendig, Michael Broschat, Panagiotis Dimakis, Niklas Fors, Rick Greer, Herbert Huber, Deng (Joe) Jingyuan, Regina Lai, Daniel Mak, Pascal Meier, Fredrik Nyberg, Daniel Shlomo. Thanks to you all.

Contents

Part I Sets
1 Collecting Things Together: Sets 3
1.1 The Intuitive Concept of a Set 3
1.2 Basic Relations between Sets 4
1.2.1 Inclusion 4
1.2.2 Identity and Proper Inclusion 6
1.2.3 Diagrams 9
1.2.4 Ways of Defining a Set 12
1.3 The Empty Set 13
1.3.1 Emptiness 13
1.3.2 Disjoint Sets 14
1.4 Boolean Operations on Sets 15
1.4.1 Meet 15
1.4.2 Union 17
1.4.3 Difference and Complement 21
1.5 Generalised Union and Meet 25
1.6 Power Sets 27
1.7 End-of-Chapter Exercises 31
1.8 Selected Reading 35
2 Comparing Things: Relations 37
2.1 Ordered Tuples, Cartesian Products, Relations 37
2.1.1 Ordered Tuples 38
2.1.2 Cartesian Products 39
2.1.3 Relations 41
2.2 Tables and Digraphs for Relations 44
2.2.1 Tables 44
2.2.2 Digraphs 45
2.3 Operations on Relations 46
2.3.1 Converse 46
2.3.2 Join, Projection, Selection 48
2.3.3 Composition 50
2.3.4 Image 53
2.4 Reflexivity and Transitivity 55
2.4.1 Reflexivity 55
2.4.2 Transitivity 57
2.5 Equivalence Relations and Partitions 59
2.5.1 Symmetry 59
2.5.2 Equivalence Relations 60
2.5.3 Partitions 62
2.5.4 The Partition/Equivalence Correspondence 63
2.6 Relations for Ordering 66
2.6.1 Partial Order 66
2.6.2 Linear Orderings 69
2.6.3 Strict Orderings 70
2.7 Closing with Relations 73
2.7.1 Transitive Closure of a Relation 73
2.7.2 Closure of a Set Under a Relation 75
2.8 End-of-Chapter Exercises 76
2.9 Selected Reading 81
3 Associating One Item with Another: Functions 83
3.1 What is a Function? 83
3.2 Operations on Functions 87
3.2.1 Domain and Range 87
3.2.2 Restriction, Image, Closure 87
3.2.3 Composition 89
3.2.4 Inverse 90
3.3 Injections, Surjections, Bijections 91
3.3.1 Injectivity 91
3.3.2 Surjectivity 93
3.3.3 Bijective Functions 95
3.4 Using Functions to Compare Size 96
3.4.1 Equinumerosity 96
3.4.2 Cardinal Comparison 98
3.4.3 The Pigeonhole Principle 98
3.5 Some Handy Functions 100
3.5.1 Identity Functions 100
3.5.2 Constant Functions 101
3.5.3 Projection Functions 102
3.5.4 Characteristic Functions 102
3.5.5 Choice Functions 103
3.6 Families and Sequences 105
3.6.1 Families of Sets 105
3.6.2 Sequences and Suchlike 106
3.7 End-of-Chapter Exercises 108
3.8 Selected Reading 113
4 Recycling Outputs as Inputs: Induction and Recursion 115
4.1 What are Induction and Recursion? 115
4.2 Proof by Simple Induction on the Positive Integers 116
4.2.1 An Example 117
4.2.2 The Principle Behind the Example 118
4.3 Definition by Simple Recursion on the Positive Integers 123
4.4 Evaluating Functions Defined by Recursion 125
4.5 Cumulative Induction and Recursion 127
4.5.1 Cumulative Recursive Definitions 127
4.5.2 Proof by Cumulative Induction 129
4.5.3 Simultaneous Recursion and Induction 131
4.6 Structural Recursion and Induction 133
4.6.1 Defining Sets by Structural Recursion 134
4.6.2 Proof by Structural Induction 138
4.6.3 Defining Functions by Structural Recursion on Their Domains 140
4.7 Recursion and Induction on Well-Founded Sets 144
4.7.1 Well-Founded Sets 144
4.7.2 Proof by Well-Founded Induction 147
4.7.3 Defining Functions by Well-Founded Recursion on their Domains 149
4.7.4 Recursive Programs 151
4.8 End-of-Chapter Exercises 152
4.9 Selected Reading 156
Part II Maths
5 Counting Things: Combinatorics 159
5.1 Basic Principles for Addition and Multiplication 159
5.1.1 Principles Considered Separately 160
5.1.2 Using the Two Principles Together 163
5.2 Four Ways of Selecting k Items Out of n 164
5.2.1 Order and Repetition 164
5.2.2 Connections with Functions 166
5.3 Counting Formulae: Permutations and Combinations 169
5.3.1 The Formula for Permutations 169
5.3.2 Counting Combinations 171
5.4 Selections Allowing Repetition 175
5.4.1 Permutations with Repetition Allowed 175
5.4.2 Combinations with Repetition Allowed 177
5.5 Rearrangements 179
5.6 End-of-Chapter Exercises 181
5.7 Selected Reading 183
6 Weighing the Odds: Probability 185
6.1 Finite Probability Spaces 185
6.1.1 Basic Definitions 186
6.1.2 Properties of Probability Functions 188
6.2 Philosophy and Applications 190
6.2.1 Philosophical Interpretations 190
6.2.2 The Art of Applying Probability Theory 192
6.2.3 Digression: A Glimpse of the Infinite Case 192
6.3 Some Simple Problems 193
6.4 Conditional Probability 196
6.4.1 The Ratio Definition 197
6.4.2 Applying Conditional Probability 199
6.5 Interlude: Simpson's Paradox 205
6.6 Independence 207
6.7 Bayes’ Rule 210
6.8 Expectation 214
6.9 End-of-Chapter Exercises 217
6.10 Selected Reading 221
7 Squirrel Math: Trees 223
7.1 My First Tree 223
7.2 Rooted Trees 226
7.2.1 Explicit Definition 226
7.2.2 Recursive Definitions 228
7.3 Working with Trees 230
7.3.1 Trees Grow Everywhere 230
7.3.2 Labelled and Ordered Trees 231
7.4 Interlude: Parenthesis-Free Notation 234
7.5 Binary Trees 236
7.6 Unrooted Trees 239
7.6.1 Definition 240
7.6.2 Properties 241
7.6.3 Spanning Trees 244
7.7 End-of-Chapter Exercises 246
7.8 Selected Reading 248
Part III Logic
8 Yea and Nay: Propositional Logic 251
8.1 What is Logic? 251
8.2 Truth-Functional Connectives 252
8.3 Logical Relationship and Status 257
8.3.1 The Language of Propositional Logic 257
8.3.2 Tautological Implication 258
8.3.3 Tautological Equivalence 261
8.3.4 Tautologies, Contradictions, Satisfiability 266
8.4 Normal Forms 270
8.4.1 Disjunctive Normal Form 270
8.4.2 Conjunctive Normal Form 273
8.4.3 Least Letter Set 275
8.4.4 Most Modular Version 277
8.5 Truth-Trees 279
8.6 End-of-Chapter Exercises 285
8.7 Selected Reading 289
9 Something About Everything: Quantificational Logic 291
9.1 The Language of Quantifiers 291
9.1.1 Some Examples 292
9.1.2 Systematic Presentation of the Language 293
9.1.3 Freedom and Bondage 297
9.2 Some Basic Logical Equivalences 298
9.2.1 Quantifier Interchange 298
9.2.2 Distribution 300
9.2.3 Vacuity and Re-lettering 301
9.3 Two Semantics for Quantificational Logic 304
9.3.1 The Shared Part of the Two Semantics 304
9.3.2 Substitutional Reading 306
9.3.3 The x-Variant Reading 309
9.4 Semantic Analysis 312
9.4.1 Logical Implication 313
9.4.2 Clean Substitutions 316
9.4.3 Fundamental Rules 317
9.4.4 Identity 319
9.5 End-of-Chapter Exercises 320
9.6 Selected Reading 324
10 Just Supposing: Proof and Consequence 327
10.1 Elementary Derivations 327
10.1.1 My First Derivation Tree 328
10.1.2 The Logic behind Chaining 330
10.2 Consequence Relations 331
10.2.1 The Tarski Conditions 332
10.2.2 Consequence and Chaining 334
10.2.3 Consequence as an Operation 336
10.3 A Higher-Level Proof Strategy: Conditional Proof 338
10.3.1 Informal Conditional Proof 339
10.3.2 Conditional Proof as a Formal Rule 340
10.3.3 Flattening Split-Level Proofs 343
10.4 Other Higher-Level Proof Strategies 345
10.4.1 Disjunctive Proof and Proof by Cases 345
10.4.2 Proof by Contradiction 350
10.4.3 Proof Using Arbitrary Instances 354
10.4.4 Summary Discussion of Higher-Level Proof 356
10.5 End-of-Chapter Exercises 359
10.6 Selected Reading 361
11 Sticking to the Point: Relevance in Logic 363
11.1 Some Curious Classical Principles 363
11.2 A Bit of History 365
11.3 Analyses of some Truth-Trees 369
11.4 Direct Acceptability 373
11.5 Acceptability 379
11.6 End-of Chapter Exercises 385
11.7 Selected Reading 387
Index 389

