)

Check for
updates

1

Our aim in this work was to investigate if the expression of protein-coding genes
provide sufficient information to classify an individual with respect to a pheno-
type, in particular Parkinson’s disease (PD). There is an urgent need for devel-
oping biomarkers for diagnosing and monitoring the progression of Parkinson’s
disease. The combination of multiple cerebrospinal fluid biomarkers has emerged
as an accurate diagnostic and prognostic model, while blood-based markers have
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Abstract. The goal of this study was to investigate if gene expres-
sion measured from RNA sequencing contains enough signal to separate
healthy and afflicted individuals in the context of phenotype prediction.
We observed that standard machine learning methods alone performed
somewhat poorly on the disease phenotype prediction task; therefore we
devised an approach augmenting machine learning with topological data
analysis.

We describe a framework for predicting phenotype values by utiliz-
ing gene expression data transformed into sample-specific topological
signatures by employing feature subsampling and persistent homology.
The topological data analysis approach developed in this work yielded
improved results on Parkinson’s disease phenotype prediction when mea-
sured against standard machine learning methods.

This study confirms that gene expression can be a useful indicator of
the presence or absence of a condition, and the subtle signal contained in
this high dimensional data reveals itself when considering the intricate
topological connections between expressed genes.
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also been explored [10,22]. Recently, also gene expression and methylation sig-
natures from blood samples have been examined for this purpose [30].

In the current work we examined the use of sequencing-based gene expression
values from blood samples as features for predicting disease diagnosis. We found
standard machine learning methods ineffective and instead looked into the possi-
bilities of understanding the shape of the high-dimensional gene expression data
by taking into account its topological features. More specifically, we examined
persistent homology emerging from the gene expression data.

In life sciences, topological data analysis (TDA) has previously been applied
in medical imaging [13,29], protein characterization [8,17], describing molecular
architecture [24,26], and cancer genomics [3,21]. There have been several studies
exploring TDA in genomics [7]. Gene expression from peripheral blood data
has been used to build a model based on TDA network model and discrete
Morse theory to look into routes of disease progression [27]. Persistent homology
has also been employed for comparison of several weighted gene coexpression
networks [18].

Here we describe a method that translates gene expression measurements for
an individual sample into a weighted point cloud. We further hypothesize that
this weighted point cloud has topological information relevant to classification
tasks. Since the point cloud generated by directly mapping gene expressions
can be large and in very high dimension, standard topological data analysis
(TDA) algorithms suffer from a combinatorial explosion. We therefore employ
subsampling and averaging methods using much fewer points. This subsampling
method is also robust in terms of noise present in the original point cloud.

Ultimately, we use the gene expressions of subjects with and without
Parkinson’s disease to generate topological summaries per subject. These sum-
maries essentially act as unique fingerprints that describe the topology of the
gene expression in a sample. We use these fingerprints to enhance the fea-
ture vector that is used for disease phenotype prediction, and in turn achieve
improved results compared to standard machine learning methods (support vec-
tor machines, random forests, neural networks). Our study also implies that gene
expression measured from blood samples is a useful indicator of the presence or
absence of Parkinson’s disease.

2 Methods

2.1 Setting up the Problem

We work under the hypothesis that the set X of all subjects’ samples, each
encoded as a collection of gene expression values, can provide us with enough
topological information to discern between healthy subjects and subjects with
Parkinson’s disease. We denote by X a matrix of size n,.ows X Nicors Where each
row corresponds to a subject and each column corresponds to a gene. Each entry
X ; then corresponds to the j-th gene expression of the i-th subject.
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(a) (b) () (d) (e)

Fig. 1. Illustration of persistent homology. Here (e) represents the barcodes associated
with increasing radius from (a) to (d).

The co-expression patterns between genes can reveal functional connections
between them, e.g. the expression of a set of genes belonging to the same bio-
logical pathway may be co-ordinated (see [16] for applications of co-expression
analysis). In particular, pathways perturbed in disease may contribute to gene
expression differences between healthy and afflicted subjects.

Co-expression can be examined by computing pairwise correlations between
gene expression measurements. Therefore, we construct a new matrix X from X,
consisting of all pairwise distance correlations between genes (columns), rather
than samples (rows), as defined in [28]. Distance correlation conveys different
information about the relations between genes than the standard Pearson’s cor-
relation as it measures both linear and nonlinear association, whereas the former
can only detect linear association.

Later, we show how to use the theory of persistent homology to determine
the persistent topological landscapes present in the gene expression data of a
sample, by first transforming it into a weighted point cloud. We do this transfor-
mation by utilizing the gene correlations across all available samples (matrix X).
The topological summaries of the weighted point clouds (persistence landscapes)
are then used to construct a machine learning model to predict the phenotype
(healthy or PD) for each sample.

2.2 Topological Background

In this section, we give a brief intuition as to how persistent homology is used to
describe the shape of data. For a full account of basic constructions in this area,
we refer the reader to [9]. We now give a brief intuitive description of a filtered
Cech complex of a specific covering.

Consider the toy example of a set points sampled uniformly from a “figure
eight” shape in R? as shown in Fig. 1a. We can start growing disks around each
point in the sample and consider the union of these disks. Initially when the
radius p of the disks are close to zero, we get a set of disconnected sets (Fig. 1a).
As we continue, we notice that at some particular radius p = pp, a set with
the same topology as the figure eight is obtained (Fig. 1b). Upon increasing the
radius further to p = ps, the smaller of the two holes in the figure is completely
filled while the other remains (Fig. 1c). Further increasing p = ps, fills up the
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larger hole as well (Figure 1d), making the union of disks consist of a single
connected component for all p > ps.

The next step is to look at the combinatorial information contained in the
evolving unions of disks. We achieve this by constructing a filtered simplicial
compler, a mathematical object consisting of vertices, edges, triangles, tetrahe-
dra, and their higher dimensional analogues, called simplices, with information
on when these are added to the complex. First we add a vertex for each point
in the point cloud at time 0, then whenever two disks intersect, we add an edge.
Every time three disks intersect, we add a triangle, and similarly we add higher
dimensional simplices for higher order intersections. Therefore, we get a sequence
of simplices. In this sequence, the topological persistence computation is a set of
birth-death pairs of homology cycle classes that indicate when a class is born and
when it dies. In the previous example, it indicates when the loops are formed
and when they are filled up. The pair (birth,death] of these homology classes
can be indicated as a sets of points in R? (called persistence diagrams; see [15])
or as sets of horizontal lines (called persistence barcodes; see [9]; illustrated in
Fig. 1e).

Keeping track of the holes in this union of disks lets us know how long
they persist, and we apply the same reasoning for more general point clouds
with a notion of closeness or distance, even when they are not metrics in the
mathematical sense. In particular we work with a set of points that form a
semimetric space, a space that satisfies all but one of the metric spaces axioms:
the triangle inequality does not hold in general.

In this article, we use the same construction as the one of a Weighted Vietoris-
Rips complex [6, Section 5], pointing out that the properties obtained in the cited
article state as hypothesis that the input space is metric. It is obvious, however,
that applying the construction to a semimetric space still yields a filtered sim-
plicial complex.

The rank of homology groups of a space, in the usual non-persistent set-
ting, are called Betti numbers of said space, and are denoted by (3, — number.
Intuitively, these numbers account for different topological features: Gy indi-
cates the number of connected components, 3, indicates the number of cycles
or loops, whereas (5 counts the number of voids. In our example, Fig. le rep-
resents barcodes associated with Figs. la-d. In Fig. le (Hp), we have many Sy
at the beginning, as observed in Fig. la which die as p increases to connect the
different components. In Fig. le (Hy) we have a red bar, which corresponds to
the final connected component that lives forever. In Fig. le (H;), we notice two
long bars, representing the two loops that are formed and then eventually filled
up. The fact that one bar is longer than the other suggests the size of one hole
greater than the other. Also, notice that these bars in H; appear up after the
cycles in Hy have died. In our data analysis using topological features, we wish
to use these intervals in persistent homology to better understand the shape of
the data.
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Fig. 2. TDA pipeline flowchart.

2.3 TDA Workflow

Our overall workflow is described in Fig.2 and the relevant steps are discussed
in detail below.

Consider Z = Xyrqin, @ matrix of size Myows X Neolumns corresponding to
a subset of samples in X that will be used to train a classifier later on. Recall
that Z; ; corresponds to the j-th gene expression of the i-th subject in the
gene expression matrix Z, and that the matrix Z consists of all pairwise sample
distance correlations between columns (genes) of Z. From [28, Theorem 3|, we
know that the distance correlation between two vectors (samples of a random
variable) is zero if and only if are they are independent, that it is non-negative,
and that it is bounded above by 1. It is also symmetric. In our particular data,
we additionally have that no two different columns have distance correlation of 1.

Next we define the matrix M = 1 — Z, where 1 denotes the Myows X Neols
constant matrix with value 1. By the preceding paragraph, M defines now a
semimetric on the set of genes in our dataset.

We now, for each subject s in X, construct a filtered simplicial complex Kj,
as follows:

1. Its vertices are the set of genes. All added at time 0.
2. For each edge o = (g, g;), we compute

x2-x2\2
t \/M§j+( ) +2X? 4 2X?
o 2 i
and add o to K, at time t,.

3. For each simplex o with |o] > 2 we add it at the maximum time of addition
of its edges.
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A

t

Fig. 3. Discrete sampling of a persistence landscape of a subject, brighter colors indi-
cate higher values in the landscape.

This is an analytical solution for adding simplices to the Weighted Vietoris-
Rips construction, studied in [6], for the semi metric space M (of genes) with
weights on X, the original data matrix. We are essentially assigning to each
gene its expression associated to the subject s. In the actual implementation,
we multiplied the weights by a scaling term, since all distances are bound by 1
above but the weights themselves can be higher.

To mitigate the computational cost of our setup we used a subsampling
approach, as studied in [11], so that instead of working with the entire set of
genes at all times, for each subject we repeatedly subsampled smaller sets of
Nsubsample geNes, obtaining several filtered simplicial complexes.

For each of the simplicial complexes we obtained persistence landscapes [5]
for homology dimensions 0 and 1. Such landscapes are, for each homology degree,
sequences {A\,} of decreasing piecewise linear (PL) functions Ay : R — R. We
elected persistence landscapes as opposed to barcodes or diagrams because of
their amenability to compute statistical estimators, such as averages. After com-
putation of all landscapes, for each subject we then obtained its average land-
scape.

We then quantized the resulting landscapes by sampling r, values evenly
in the interval [0, ¢mqz], Where tpmq, is a value estimated from the data that
corresponds to the last time of the filtration where there were changes in the
persistent homology of the complex being processed. This results, for each per-
sistence landscape, in a 2D array of size r, X n), where n) is the number of
non-zero PL functions in the landscape. See Fig. 3 for an example of one such
landscape.

Note that other alternatives to performing vectorization of topological sum-
maries, such as persistence images [2], exist and could be used in place of persis-
tence landscapes, but to compare their performance is beyond the scope of this
article.
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2.4 Machine Learning Framework

For each subject, we obtained a feature vector of 19,581 gene expression mea-
surements (see Sect.2.6) and a known class label 0 (161 control subjects) or 1
(264 affected subjects) according to the Parkinson’s disease phenotype. We split
the data 80-20 into training and test sets, over 50 iterations, except for the com-
putationally more intensive TDA-CNN where we considered 4 iterations after
observing the results between iterations were nearly identical.

First we generated a basis of comparison for our TDA approach (TDA-CNN)
with standard machine learning algorithms. We used several widely used binary
classifiers to train a model and then test its predictions on unseen data: support
vector machines with radial basis function kernel (SVM-RBF) and linear kernel
(SVM-Linear), as well as random forest (RF) and a simple neural network (MLP-
NN, consisting of 3 hidden layers with 20 neurons each, using relu activations).
These methods were applied using the scikit-learn python library [23].

In the TDA-CNN approach, for a given resolution r,, we fed each subject’s
vectorized persistence landscape as a tensor of shape (74, ry,2), one channel per
homology degree, into a Convolutional Neural Network (CNN) [20] implemented
using the Keras library [12] with the Tensorflow [1] backend. We employed a
nearest neighbors filter to scale in the y-axis when ny # 7,. The architecture
we used consisted of two separate paths, one per channel, each consisting of 3
convolutional layers, each with 64 3 x 3 filters, with Max-Pooling layers [25] of
size 2 x 2 after each convolutional layer. We then fed the outputs of these two
paths into a dense layer with 32 neurons. Finally we used a 2-neuron layer with
softmax activations [4] as output. All other activations were exponential linear
units [14].

2.5 Topological Data Analysis Implementation

We used our own implementation, maTilDA: Multi-Purpose Toolkit for
TDA, for the construction of the Weighted Vietoris-Rips complex, its persistent
homology, barcode computations, persistence landscapes and discrete sampling.

2.6 Gene Expression Data Processing

We downloaded gene expression data derived from RNA sequencing, acquired
from blood samples of Parkinson’s disease (PD) and control subjects, from the
Parkinson’s Progression Markers Initiative (https://www.ppmi-info.org/, Phase
1 data). The downloaded sequencing read counts per gene (1,889 samples and
57,820 genes) were examined and outliers removed: 1,141 abundantly expressed
RNTS cytoplasmic genes and 742 samples whose read count distributions were
different from other samples (having reads assigned to more than 35k genes)
were removed.
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Table 1. F scores (micro and macro), true positive rate (TPR), and true negative rate
(TNR) for predicting Parkinson’s disease status from gene expression data. Underlined
numbers indicate best values per row.

TDA-CNN | SVM-Linear | SVM-RBF | Random Forest | MLP-NN
Fi-micro | 0.877 0.629 0.641 0.641 0.556
Fi-macro | 0.871 0.580 0.477 0.549 0.400
TPR 0.870 0.773 0.960 0.874 0.672
TNR 0.890 0.391 0.112 0.256 0.362

RoDEO [19] was applied (with parameters P = 20 bins, I = 10 iterations, and
R = 10® reads) to scale the samples to a normalized range of counts [1,20]. For
the study in this paper we focused on 20, 345 protein-coding genes per sample.
We further removed uninformative genes with a constant RoDEO projected value
for each sample, and duplicate genes with identical value distributions, obtaining
a final set of 19,581 genes.

For the purpose of this study, subjects with Parkinson’s disease (cohorts PD,
GENPD, REGPD) were denoted by phenotype label 1, and subjects without the
disease (HC, GENUN, REGUN) by phenotype label 0. We thus had a total of
264 PD samples and 161 unaffected samples (if a subject had several time points
sequenced, we took the first one).

3 Results and Discussion

Table 1 shows the Fj score, true positive rate (TPR), and true negative rate
(TNR) for our TDA approach as well as for baseline machine learning meth-
ods, on the task of predicting Parkinson’s disease diagnosis. We included both
micro-F; and macro-F; scores, the latter gives equal weight to each class to take
into account class imbalance [31]. Our TDA with the convolutional neural net-
work (TDA-CNN) approach achieved remarkable improvement of both micro-
and macro-F; scores compared to the other methods. The TDA-CNN approach
achieve scores above 0.87, while SVM (with two different kernel options) and ran-
dom forest yield similar values to each other, up to 0.64 for micro-F; and 0.58 for
macro-F}. Note that convolutional neural networks operate on two-dimensional
image data, thus we chose a multilayer perceptron neural network (MLP-NN)
as a comparison on the RoDEO-processed gene expression vector data. For this
data, the MLP-NN approach seems particularly ill suited, with scores 0.56 and
0.40 for micro- and macro-Fy, respectively.

In terms of true positive and true negative rates, the standard methods have
very low TNR, indicating abundant false positives. The TDA-CNN approach, on
the other hand achieves a balance between sensitivity and specificity with TPR
and TNR having high values (0.87 and above).

The findings indicate blood-based gene expression does contain signal that
is relevant for separating subjects with and without Parkinson’s disease. Fur-
ther work includes understanding these subtle signals in order to transform the
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findings into diagnostic and prognostic models. The introduced framework of
topological data analysis with convolutional neural network prediction is a gen-
eral approach that could be applied to gene expression data relating to other
phenotypes.
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