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Abstract. Genome Rearrangements affect large stretches of genomes
during evolution. One of the most studied genome rearrangement is the
transposition, which occurs when a sequence of genes is moved to another
position inside the genome. Mathematical models have been used to esti-
mate the evolutionary distance between two different genomes based on
genome rearrangements. However, many of these models have focused
only on the (order of the) genes of a genome, disregarding other impor-
tant elements in it. Recently, researchers have shown that considering
existing regions between each pair of genes, called intergenic regions, can
enhance the distance estimation in realistic data. In this work, we study
the transposition distance between two genomes, but we also consider
intergenic regions, a problem we name Sorting Permutations by Inter-
genic Transpositions (SbIT). We show that this problem is NP-hard and
propose a 3.5-approximation algorithm for it.

Keywords: Genome rearrangements - Intergenic regions -
Transpositions + Approximation algorithm

1 Introduction

Genome rearrangements are events that modify genomes by inserting or remov-
ing large stretches of DNA sequences, or by changing the order and the orienta-
tion of genes inside genomes. A transposition [1] is a rearrangement that swaps
the position of two adjacent sequences of genes inside a genome. Another exam-
ple of genome rearrangement is the reversal [11], that reverses the order and the
orientation of a sequence of genes.

We compute the rearrangement distance between two genomes by deter-
mining the minimum number of events that transform one into another. A model
M is a set of genome rearrangements that can be used to calculate the rear-
rangement distance.
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Algorithms based on the rearrangement distance perform whole-genome com-
parison and may be used as a tool to infer phylogenetic relationships. The usual
method fills a matrix of pairwise distances among genomes that is later used to
generate phylogenetic trees [2,12,14]. As for “classical” rearrangements, having
a large spectrum of models globally helps better-understanding things.

While in practice it is likely rarely so, if genomes contain no repeated gene
and share the same set of n genes, they can be represented as permutations.
Without loss of generality, we consider that one of these genomes is the identity
permutation, i.e., the sorted permutation ¢ = (12 ...n).

The Sorting by Rearrangements Problem thus consists in determining the
shortest sequence of events from M that sorts a permutation 7, i.e., that trans-
forms it to ¢. Sorting by Rearrangements has been extensively studied in the
past. For instance, Sorting by Transpositions has been proved NP-hard [6],
while the best algorithm so far has an approximation factor of 1.375 [8].

Representing genomes through their gene order (thus, by permutations)
implies that information not contained directly in the genes is lost. In particu-
lar; in the case of intergenic regions, DNA sequences between the genes are not
considered. Recently, some authors argued that incorporating intergenic regions
sizes in the models changes the distance estimations, and actually improves
them [3,4]. It seems worth investigating models considering both gene order and
intergenic sizes.

Results considering intergenic sizes for models with Double-Cut and Join
(DCJ) and DClJs along with indels (i.e., insertions and deletions) are known: the
former is NP-hard and it has a 4/3-approximation algorithm [9], while the latter
is polynomial [7]. In addition to the approximation algorithm, the authors in [7]
also developed two exact algorithms: a fixed-parameter tractable algorithm and
an integer linear programming formulation. Practical tests from [7] showed that
statistical properties of the inferred scenarios using intergenic regions are closer
to the true ones than scenarios which do not use them.

Some results considering intergenic sizes with super short operations (i.e.,
a reversal or a transposition applied to one or two genes of the genome) are
known [13]. Using the concept of breakpoints, Brito et al. showed a 4-approx-
imation algorithm (resp. 6-approximation algorithm) for sorting by reversals
(resp. reversals and transpositions) when also considering intergenic regions on
unsigned permutations [5]. They also showed that both problems are NP-hard.

In this paper, we investigate the transposition distance between genomes
that also takes into account intergenic regions, a problem we name Sorting
by Intergenic Transpositions (SbIT). Instead of using breakpoints, here
we propose a modification of a known graph structure to represent both gene
order and intergenic sizes in a single graph. We show that SbIT is NP-hard, and,
with the help of this adapted graph structure, we design a 3.5-approximation
algorithm.

This work is organized as follows. Section2 presents some definitions we
extensively use throughout this paper. Section3 presents the graph structure
we use to produce our approximation algorithm. Section4 contains a series of
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intermediate lemmas that support our algorithm. Section5 describes the 3.5-
approximation algorithm for SbIT. Section 6 concludes the paper.

2 Basic Definitions

A genome G is a sequence of n genes denoted by g;, with ¢ € [1..n], in which
two consecutive genes g;_1 and g;, with j € [2..n], are separated by a noncoding
region called intergenic region, denoted by r; — that are also present on its
extremities (r1 and 7,41): G =71,91,72,925 - -y Tns Iy Trt1-

Given two genomes of closely related species, for the simplifying purposes of
our initial analysis, we expect they will share the same set of genes, which may
appear in different orders due to genome rearrangements. Selective pressures
tend to conserve genes and not intergenic regions [3]. Therefore, genome rear-
rangements hardly cut inside genes, whereas cuts appear in intergenic regions.

Our model assumes that (i) no gene is duplicated in a genome and (ii) both
genomes share the same set of genes. We assign unique integer numbers in the
range [1..n] to each gene and represent them as a permutation. Therefore, the
sequence of genes in a genome is modeled by a permutation 7 = (7 72 ... ),
m €N, 1 <m; <n,and m; # 7; for all ¢ # j.

We represent intergenic regions by their lengths instead of assigning unique
identifiers to each of them, which would be pointless because rearrangements
may split intergenic regions several times. The sequence of intergenic regions
around n genes is represented as = (71 ®2 ... Tn41), 7 € N. Intergenic
region 7; is on the left side of 7;, whereas ;41 is on the right side.

Our goal is to compute the distance between two genomes: (7, %) and (o, 7).
We may assign unique labels to genes arbitrarily, so we simplify the definition
of our problem by setting o as the identity permutation ¢, such that ¢ = ¢+ =
(1 2 ... n)and ¢ = I, which describes all the information we need to our
problem. Therefore, an instance of our problem is composed by three elements
(m, %, 1), such that 2" % = S2'H' i which guarantees that total intergenic
region lengths are conserved.

An intergenic transposition is an operation pE;JykZ)), 1<i<j<k<n+l,
0<a2z<m0<y<m,0< 2 <a, and {z,y,z} C N. An intergenic
o)
where (1) 7’ = (M1 ... M1 TjTjq1 -« W1 Tyt 1 - - - Tj—1 TkTht1 - - - T ), and

Ny o or | e o vy | e o v | e v
(11)7T —(71'1...7Ti_17rj+1...7'rk_17Ti+1...’/Tj_17Tk+1...7Tn+1)7SHCh

that 7 =2 +7; —y, T; =z + T — 2, and T}, =y + T — 2.
As we can see, while pE;jykZ)) keeps [ intact, it moves segments from 7 and
7t to other positions and also modifies the contents of three elements from 7: it
cuts 7; after first x nucleotides, 7; after first y nucleotides, and 7, after first z
nucleotides, and rearranges them as defined above. Figure 1 shows examples of
instances and the application of an intergenic transposition.

The intergenic transposition distance d;(w, 7, ) is the minimum number
m of intergenic transpositions p1, ..., py, that transform 7 into ¢, and 7 into i.

SN 2RS,

transposition acts on instances to generate new ones: (, 7, 7)-p = (', 7, 1),
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Therefore, d(m,7,7) = m implies a minimal sequence (m, 7,7
(4,0, 0).

Lemma 1. Sorting by Intergenic Transpositions (SbIT) is NP-hard.

) 1 pm =

Proof. The Sorting by Transpositions problem (SbT) has already been proved
NP-hard [6]. An instance of this problem consists of a permutation -y and a non-
negative integer d. The goal is to determine if its possible to transform ~ into ¢
applying at most d transpositions.

We can reduce all instances of SbT to instances of SbIT by setting m = ~
and # =7= (00 ... 0). Note that it is possible to transform v into ¢ applying at
most d transpositions if and only if d;(m, %, 7) < d. O

From now on, we will refer to intergenic transposition as transposition only.

3 Weighted Cycle Graph

We adapted a graph structure called breakpoint graph [1,10] to conveniently
represent an instance (m,7,I) in a single graph. This structure allows us to
describe algorithms and prove approximation bounds. All definitions we propose
here are exemplified in Figs.2 and 3.

We represent a given instance by a weighted cycle graph G(w,7,0) =
(V, E,w), where V is the set {-n,..., -2, =1,1,2,...,n} U {0,—(n+1)}, E is
the set of edges that can be either gray or black, and w : F — N is a function
mapping edges to values corresponding to intergenic region lengths. The black
edge set is {e; = (—m;, +mi—1) : 1 < i <n+ 1}, and w(e;) = 7;. The gray edge
set is {e, = (+(i —1),—i): 1 <i<n+1}, and w(e}) = #;. In this definition, we
consider mp = 0 and 7,41 = n+1.

The graph can be drawn in many arbitrary ways, but it is more convenient
to place its vertices on a horizontal line in the same order as the elements of 7,
so o (resp. —m,41) is the leftmost (resp. rightmost) element of it. In addition,

G : cat[Gene1] aacca|Gene 2][Gene 3|cTGTA [Gene 4] acTCAC[Gene 5|GGC[Gene 6] T6TTC TG [Gene 7] [Gene glcT (1)

Go 1 c[Gene 3|TTCAGAT[Gene 2][Gene 1|cTC T [Gene 7]CT[Gene 6] AGTGACA [Gene 4] ATCC Gene 8] [Gene 5| TGGCTCTCA (7T)
2] 1 2]

(2,5,6)
(2,1,2)
G3 1 6[Gene 3|17 [Gene 6] AccAGAT [Gene 2][Gene 1] cTC T [Gene 7] TGACA [Gene 4] aTCC[Gene 8 [Gene 5 TG (1)

Fig. 1. Two (fictitious) genomes G1 and G» that share 8 genes. We represent G; as the

identity permutation, which leads to G2 as the permutation 7 = (32 17 6 4 8 5).

We assume that the number of nucleotides between genes are good estimators for

intergenic regions lengths. For example, in G; before “Gene 1”7 we have 3 nucleotides,

between “Gene 1”7 and “Gene 2”7 we have 5, and so on. Thus, (7,#,7) is such that

T=(32176485),7=(170427409),andi=(351563722). Genome Gs
VSN R

represents (7', %', ') = (7r77”T7Z)-pg:ig;7so7r' =(36217485),# =(1370464009).
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for each element m; € w, vertex —m; € G(7,7,1) is drawn to the left of vertex
+m;. Since black edges relate to 7, they are drawn as horizontal lines, and we
label the black edge e; as i. Gray edges are drawn as arcs.

Each vertex in G(w,7,7) has a gray edge and a black edge, which allows
a unique decomposition of edges in cycles of alternating colors. Each cycle C'
with ¢ black edges is represented as a list (c!,c?,...,cf) of the labels from its
black edges, and to make the notation unique we assume c' to be the index
of the “rightmost” black edge (i.e., the black edge with the highest label using
our default drawing) and we traverse it from right to left. We follow by several
definitions regarding cycles.

A cycle is long if it has 3 or more black edges; a cycle is short if it has 2 black
edges; a cycle is trivial if it has 1 black edge; a cycle is non-trivial if it is either
short or long. A non-trivial cycle C' = (c!,...,c") is non-oriented if ¢!, ..., c*
is a decreasing sequence (note that every short cycle C' is non-oriented); C' is
oriented otherwise.

Given a non-trivial cycle C' = (c!,...,¢c"), every pair of black edges e.: and
eqi+1) with 1 <4 < £ is called an open gate if for any ¢/ € C with j & {4,i+1}
either ¢/ > ¢ or ¢ < 1 if ¢ > ¢t and either ¢/ > ¢! or ¢ < ¢ otherwise.
Besides, the pair of black edges e.1 and e, is called an open gate if ¢! > ¢/ > ¢*
for any ¢/ € C with j ¢ {1,¢}. Note that on every short cycle C = (c!,c?) the
pair e.1,e.2 is an open gate.

Bafna and Pevzner [1] showed that for every open gate e.i and e, from C
with ¢! > ¢/ there exists another non-trivial cycle D with black edges ey and
eqi such that either ¢ > d* > ¢? > d/ or d* > ¢' > d? > ¢/. In this case, we say
that D closes this open gate. Figure 2 shows two examples of cycles with open
gates and how cycles can close these open gates.

Cycles can be either balanced or unbalanced. A cycle C' = (c!,...,cf) is
balanced if Zle lw(el;) —w(eqi)| = 0, and is unbalanced otherwise. In other
words, one cycle is balanced if the sum of weights of gray edges equals the sum
of weights of black edges, and it is unbalanced otherwise. An unbalanced cycle
C = (ct,...,c" is called positive if Zle(w(e'ci) —w(eqi)) >0, and it is called

negative otherwise. Figure 3 shows an example of a weighted cycle graph and

2 1 2 2 1 1
(@ ¢ c C d C d Edges:
C C D gray
- — black

—— — — — — —
(b) f3 f2 fl fs 93 fz 92 fl gl
F F G

—

— — — — — — — — —

Fig. 2. (a) The cycle C = (c',¢?) has an open gate (c',c?) closed by D = (d*,d?) on
the right. (b) The cycle F' = (f*, f%, f*) has three open gates (f*, f?), (f%, f*), and
(f%, 1) closed by G = (g%, g%, ¢°) on the right.
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the application of an intergenic transposition on it, as well as the weighted cycle
graph for an instance (¢, 1, I).

Let ¢(m,#,7), cp(m,7,L), and ¢, (7, 7,), denote the number of cycles,
balanced cycles, and unbalanced cycles in G(, 7, 7), respectively.

Lemma 2. The instance (t,I,I) has two properties that do not occur together
in any other instance: (i) c(t,0,0) = n+ 1, and (i) cp(¢,0,0) = n+ 1. As a
consequence, we have that ¢, (¢,7,7) =0 (see Fig. 3(c) for an example).

C

Note that Sorting by Intergenic Transpositions is more complicated than
the Sorting by Transpositions because increasing the number of cycles is not
sufficient - these cycles need to be balanced.

Given a sequence of transpositions S, = (p1,p2,..., pk), let (w,&,0) - S,
denotes (m,7,7) - p1 - p2 « ... pr such that p;11 is always a transposition for
(m,7,0)-p1-...-p; with 1 <@ < k. Let Ac(m,%,0,S,) = c((m, 7,0)-S,)—c(m, 7, T)
and Acy (7, 7%,0,S,) = cp((7,7,0) - Sp) — cp(m, 7, £) denote the variation in the
number of cycles and balanced cycles, respectively, when S, is applied to (7, 7, £).

Lemma 3. Ac(rm, 7,7, p) € {2,0,—2} for any transposition p.

Proof. Straightforward from Bafna and Pevzner [1]. O
1 2 3 4 5 6 7 8
(a) 3 D
5 C 1 B ] 4
(oS \2) 2/ [a7\4) Lo
40 "2 42 " +1 "3 +3 "4 +4 7 +7 6 +6 5 +5 8
1,2,3
pgs,s,lg
4 N

(b) s D”"3 D" 2 D 1

BE SO RN

2 "3 43 "4 +4 -7 47 6 +6 5 45 8

(c) 5 3 2 1 4 1
: +0@»1 +1@-2 +2@3 +@4 @ -2_ @ -3

+4 5 45 6 +6 7 +7 8

Fig. 3. We color the figure to improve cycle visualization. Black edges are drawn as
horizontal lines, and gray edges are drawn as arcs. Arrows over black edges represent
how we traverse them, and numbers on the top of the image indicate black edges labels.
(a) The weighted cycle graph G(rm,#,0) form =(2134765), 1 =(45212340),
and I = (5321421 3). G(nm, i) has four cycles: A = (8,6) is a non-oriented
positive short cycle; B = (7,5) is a non-oriented short negative cycle; C' = (4) is a
trivial balanced cycle, and D = (3,1,2) is an oriented long negative cycle. (b) The
weighted cycle graph G((m, *,1) - pggg), with Ac(m, #,7, p) = 2 and Acy(7, *,1,p) =
1. The transposition applied to the negative cycle D from (a) transformed it into three
trivial cycles D' = (3), D" = (2), and D"’ = (1) such that D"’ is balanced. (¢) The
weighted cycle graph G(¢, I, 1), with ¢(¢,I,0) = e (¢, 0,0) =n+ 1, and cu(¢,7,7) = 0.
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Lemma 4. Acy(w, 7,1, p) <2 for any transposition p.

Proof. From Lemma 3 we know that we can increase the number of cycles by at
most 2. In this scenario, one cycle C is split in three by a single transposition p.
If C is balanced, the best we can expect is that p creates three balanced cycles,
so Acy(m, 7,7, p) = 2. Otherwise, at least one of the resulting cycles shall be
unbalanced too, since weights of black edges of the three cycles sum up to a
value that is different from the sum of weights of gray edges. Therefore, the best
we expect is that the other two cycles are balanced, so Acy(m, 7,7, p) = 2. O
Theorem 5. d;(m,7,1) > n“%”“””)

Proof. By Lemma 2 we know that ¢(¢,7,7) = n + 1. Therefore, our goal is to
increase the number of cycles from ¢, (7, 7, I) to n+1; since this number increases
by at most 2 for each transposition (Lemma 4), the lemma follows. a

4 Preliminary Results

This section presents properties and lemmas to support the 3.5-approximation
presented in Sect. 5.

Let e, and e be two arbitrary black edges in the same cycle C' =
(ct,...,c"), with {x,y} C [1..]. We define the function f : E x E — 7Z as
Feersear) = T070 on o lw(els) = wlew)] +w(el):

In other words, given the path P of black and gray edges that goes from e«
t0 eev, f(€ew,ecs) computes the sum of weights of gray edges in P minus the
weights of black edges from P — excluding the black edges e.= and e.y. Observe
that we traverse the first black edge in the cycle from right to left, which means
that the path that goes from e.- to e.y is different from the path that goes from
ecy to ecx.

Note that f(ece,ew) + f(eev,ecx) — w(ee=) — w(ew) indeed computes the
sum of weights of all gray edges minus the sum of weights of all black edges.
Therefore, a cycle C is balanced if f(ece,ecv) + f(eev,€ce) — w(eex) — wleew) =
0, positive if f(ece,ecv) + flew,eer) — w(es) — w(ew) > 0, and negative if
flecr,ecv) + flew, ecr) —w(ee) — wlee) < 0.

We follow by presenting several lemmas, that will later be combined to prove
the correctness of our 3.5-approximation algorithm. Let us first present the ideas
behind them. Due to space constraints, proofs of Lemmas 6-13 are omitted.
However, it can be seen in Fig.4 how (and in which case) each of these lemmas
is applied, as explained in detail right after the lemmas.

The next two lemmas deal with non-trivial negative cycles. Lemmas6 and
8 show that it is always possible to increase balanced cycles by applying one
transposition on negative cycles that are non-oriented and oriented, respectively.

Lemma 6. Let C' be a non-trivial non-oriented negative cycle. There is a trans-
position that increases the number of balanced cycles by one.
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Lemma 7. Let C = (c!,...,c*) be a non-trivial oriented cycle. If C is not
positive, there is a triple (¢*,c¥,c¢*) with¢® > c¢* > ¥ and 1 <z <y < z<k
such that 0 < f(eee,eew) < w(c®) +w(c¥), or 0 < fleew,ecz) < w(c¥) 4+ w(c?),
or 0 < flees, ecr) < w(c?) +w(c?).

Lemma 8. Let C' be an oriented long negative cycle. There is a transposition
that increases the number of balanced cycles by 1 and the number of cycles by 2.

Now let us explain how to deal with trivial negative cycles. We use Lemma 9
as an intermediary step to the correctness of Lemma 10, that shows how many
transpositions are needed to transform trivial negative cycles into trivial bal-
anced.

Lemma 9. It is possible to make any redistribution of weights of three distinct
black edges ey, ep2, and ey using two transpositions.

Lemma 10. Let G be a weighted cycle graph in which all negative cycles are
trivial. Then, there are two transpositions that increase the number of balanced
cycles by 2.

The next three lemmas dealing with non-trivial balanced cycles. Lemmas 11,
12 and 13 show that it is possible to increase balanced cycles by applying trans-
positions on oriented long balanced cycles, non-oriented long balanced cycles,
and short balanced cycles, respectively.

Lemma 11. Let C' be an oriented long balanced cycle. Then it is possible to
increase the number of balanced cycles by two after at most three transpositions.

Lemma 12. Let C' be a non-oriented long balanced cycle in a graph with no
oriented cycles. It is possible to increase the number of balanced cycles by four
after at most seven transpositions.

Lemma 13. Let G be a graph with no long cycles such that all cycles are bal-
anced. If G has short cycles it is possible to increase the number of balanced
cycles by two after two transpositions.

In Fig.4(a) the blue cycle A = (6,4,2) is non-oriented and negative, so
we can apply Lemma 6 using the positive cycle B = (7,5), and the intergenic
transposition pgig generates in Fig. 4(b) the trivial balanced cycle C = (2), and
the non-trivial cycle D = (7,5,3,6), that in this case is negative and oriented.

We then can use Lemma 8 on D, and the transposition pg?g% generates in

Fig.4(c) the trivial balanced cycle E = (3), the trivial cycle F = (7), and the
short cycle G = (6,4). Note that F' is negative and G is balanced. At this stage,
there is no long cycle, and we can use Lemma 10 on the trivial negative cycle F'.
This lemma requires a positive cycle to interact with the trivial negative, and
H = (8) is the only positive cycle. Since H is also trivial, we need to borrow
a black edge of a balanced cycle to apply the transposition, so let us use the
short balanced cycle G. Two consecutive transpositions on these black edges (see
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Fig. 4. Black egdes
of the figure. Gray
genic transpositions

*=(2,6,5,4,1,4, 3,

1 1 5 9 8 4 2 7

g8d84d "aaodadasddadg

are drawn as horizontal lines, and their labels are on the top
edges are drawn as arcs. (a)—(g) shows a sequence of inter-
that sorts the instance (m,#%,7) with @ = (3 2 1 6 5 4 7),
0), and I = (4,1,3,5,2,3,6,1) using Lemmas 6-10 and 13. (h)—

(n) shows a sequence of intergenic transpositions that sorts the instance (m, 7, ) with
T=(54321687),7=(3,7,8,3,7,4,10,1,2), and I = (3,1,6,5,9,8,4,2,7) using
Lemmas 11 and 12. (Color figure online)

Fig.4(c) and (d)) generate two balanced cycles I = (7) and J = (8) in Fig. 4(e),
without modifying G. The weighted cycle graph in Fig. 4(e) has only balanced
cycles, and they are either short or trivial. In this case we can use Lemma 13
that applies two intergenic transpositions to two non-oriented short cycles, in
this case G = (6,4) and K = (5,1). The two consecutive transpositions applied
to G and K (see Fig.4(e) and (f)) generate four balanced cycles, increasing
the number of balanced cycles by 2, and completing the sorting process — the
weighted cycle graph in Fig. 4(g) has only balanced cycles.

In Fig. 4(h) the green cycle A’ = (9, 7,8) is oriented, and since it is also bal-
anced we can use Lemma 11. The three transpositions in Fig. 4(h—j) breaks A’
into three balanced cycles. In Fig. 4(k) we have only balanced non-oriented cycles,
and we can use Lemma 12 that applies a transposition followed by Lemma 11
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twice. The first transposition is applied over cycle B’ = (5,3, 1) transforming the
blue cycle in Fig.4(k) into an oriented balanced cycle C’ = (6,2,4). The first
application of Lemma 11 breaks C” into three balanced cycles (in this case, one
transposition is sufficient) and also transforms the non-oriented cycle B’ into the
oriented cycle B” = (5,1,3) (from Fig.4(1) to (m)). The second application of
Lemma 11 breaks B” into three balanced cycles (using again only one transpo-
sition), completing the sorting process — Fig. 4(g) has only balanced cycles.

5 The 3.5-Approximation Algorithm

Algorithm 1 focuses on applying transpositions that increase the number of bal-
anced cycles, following a sequence of steps using Lemmas 6, 8, 10, 11, 12, and 13.

Algorithm 1. a 3.5-approximation algorithm for SbIT.

Data: an instance (m, 7, I).
Result: a sequence p1, p2, ..., pm such that (m, %) - p1-p2- ...  pm = (4,1).

1 sequence — ()
2 while (7, 7#,7) # (1,7,7) do
3 G — G(m,7,7)
4 if there exists an oriented cycle C' in G that is either balanced or negative
then
5 if C is negative then
6 L S, « transposition from Lemma 8
7 | else S, « transpositions from Lemma 11
8 else if there exists a negative cycle C in G that is either non-oriented or
trivial then
9 if C is non-oriented then
10 L S, « transposition from Lemma 6
11 | else S, « transpositions from Lemma 10
12 else
13 if there exists a long balanced cycle C' in G then
14 L S, « transpositions from Lemma 12
15 else S, < transpositions from Lemma 13
16 (m,7,0) — (m,7,0) - Sp
17 sequence.append(S,)

18 return sequence

Let us briefly show the correctness of Algorithm 1, i.e., it stops and reaches
(4,0, 0).

While (7, 7,7) # (1,7,7) we have that one of the following must be true: (i)
there is an oriented cycle. in this scenario we break this cycle if it is balanced or
negative on lines 5 and 7; (ii) there is a negative cycle (considering that they are
not oriented): we create balanced cycles if it is non-oriented or trivial on lines 9
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and 11; and (iil) cycles are all balanced, and there is no oriented cycles. If there
is a long cycle we break it at line 13, and we break short cycles at line 15.

Note that we did not care about the positive oriented cycles: they become
either balanced or negative before the algorithm uses (iii), and will be handled
in (i) at some point. If the algorithm reaches (iii) then all cycles are balanced
since any negative cycle is handled by (i) and (ii).

Concerning the complexity of Algorithm 1, the loop of lines 2-17 iterates
up to m = n+1 times. Since each time the algorithm applies one of those lemmas,
it increases the number of balanced cycles by at least one. Finding which lemma
to use (and at which positions the transposition takes place) requires O(n?) time.
Thus, the overall complexity of Algorithm 1 is O(n?).

Now let us discuss about the approximation factor Algorithm 1 guarantees.
Note that some of the steps of the algorithm require more than one transposition,
so the approximation factor will be computed as follows:

Definition 14. Let S, = (p1,p2,...,pa) be a sequence of transpositions such
that (m, 7, 1) - S, = (0,0,0). By Lemma 4, S, creates up to 2d balanced cycles.

Therefore, the approximation factor is at most a(oF r)z—dcb Rk

The following lemma shows that each step of Algorithm 1 guarantees an
approximation factor of 3.5 or less, which leads to the 3.5-approximation algo-
rithm we propose.

Lemma 15. Algorithm 1 has an approximation factor of 3.5.

Proof. We use the formula from Definition 14 to calculate the approximation
factor of each step.

— Step using Lemma 8 creates at least one new balanced cycle using one trans-
position, which leads to the maximum approximation % =2.

— Step using Lemma 11 creates at least two new balanced cycles using up to
three transpositions, so its maximum approximation factor is g =3.

— Step using Lemma 6 creates a new balanced cycles using one transposition,
and its approximation is % = 2.

— Step using Lemma 10 it creates two new balanced cycles using two transpo-
sitions, so its approximation is % = 2.

— Step using Lemma 12 creates four new balanced cycle using up to seven
transpositions, and it follows that the maximum approximation is % =3.5.

— Step using Lemma 13 creates two new balanced cycles using two transposi-

tions, so it follows that its approximation is % =2. a

6 Conclusion

We adapted the breakpoint graph to represent both gene order and intergenic
sizes, and investigated properties of this new graph structure during a sorting
process. As a result, we were able to design an approximation algorithm for
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the Sorting by Intergenic Transpositions. We also show that this problem is
NP-Hard.

As future works, one can explore a problem where the probability of an
intergenic region being affected by transpositions is related to its size, i.e., when
genome rearrangements are more likely to cut the genome on bigger intergenic
regions. One can also investigate the use of reversals and transpositions on signed
permutations along with intergenic regions.
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