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Preface

In the last 20 years, several interdisciplinary researches in the fields of physics,
information technology and cybernetics, the numerical processing of Signals and
Images, and electrical and electronic technologies have led to the development of
Intelligent Systems.

The so-called Intelligent Systems (or Intelligent Agents) represent the still more
advanced and innovative frontier of research in the electronic and computer field,
able to directly influence the quality of life, competitiveness, and production
methods of companies, to monitor and evaluate the environmental impact, to make
public service and management activities more efficient, and to protect people’s
safety.

The study of an intelligent system, regardless of the area of use, can be sim-
plified into three essential components:

1. The first interacts with the environment for the acquisition of data of the domain
of interest, using appropriate sensors (for the acquisition of Signals and Images);

2. The second analyzes and interprets the data collected by the first component,
also using learning techniques to build/update adequate representations of the
complex reality in which the system operates (Computational Vision);

3. The third chooses the most appropriate actions to achieve the objectives
assigned to the intelligent system (choice of Optimal Decision Models) inter-
acting with the first two components, and with human operators, in case of
application solutions based on man–machine cooperative paradigms (the current
evolution of automation including industrial one).

In this scenario of knowledge advancement for the development of Intelligent
Systems, the information content of this manuscript is framed in which are reported
the experiences of multi-year research and teaching of the authors, and of the
scientific insights existing in the literature. In particular, the manuscript divided into
three parts (volumes), deals with aspects of the sensory subsystem in order to
perceive the environment in which an intelligent system is immersed and able to act
autonomously.

The first volume describes the set of fundamental processes of artificial vision
that lead to the formation of the digital image from energy. The phenomena of light
propagation (Chaps. 1 and 2), the theory of color perception (Chap. 3), the impact
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of the optical system (Chap. 4), the aspects of transduction from luminous energy
are analyzed (the optical flow) with electrical signal (of the photoreceptors), and
aspects of electrical signal transduction (with continuous values) in discrete values
(pixels), i.e., the conversion of the signal from analog to digital (Chap. 5). These
first 5 chapters summarize the process of acquisition of the 3D scene, in symbolic
form, represented numerically by the pixels of the digital image (2D projection
of the 3D scene).

Chapter 6 describes the geometric, topological, quality, and perceptual infor-
mation of the digital image. The metrics are defined, the aggregation and correlation
modalities between pixels, useful for defining symbolic structures of the scene of
higher level with respect to the pixel. The organization of the data for the different
processing levels is described in Chap. 7 while in Chapter 8, the representation and
description of the homogeneous structures of the scene is shown.

With Chapter 9 starts the description of the image processing algorithms, for the
improvement of the visual qualities of the image, based on point, local, and global
operators. Algorithms operating in the spatial domain and in the frequency domain
are shown, highlighting with examples the significant differences between the
various algorithms also from the point of view of the computational load.

The second volume begins with the chapter describing the boundary extraction
algorithms based on local operators in the spatial domain and on filtering techniques
in the frequency domain.

In Chap. 2 are presented the fundamental linear transformations that have
immediate application in the field of image processing, in particular, to extract the
essential characteristics contained in the images. These characteristics, which
effectively summarize the global informational character of the image, are then used
for the other image processing processes: classification, compression, description,
etc. Linear transforms are also used, as global operators, to improve the visual
qualities of the image (enhancement), to attenuate noise (restoration), or to reduce
the dimensionality of the data (data reduction).

In Chap. 3, the geometric transformations of the images are described, necessary
in different applications of the artificial vision, both to correct any geometric dis-
tortions introduced during the acquisition (for example, images acquired while the
objects or the sensors are moving, as in the case of satellite and/or aerial acquisi-
tions), or to introduce desired visual geometric effects. In both cases, the geomet-
rical operator must be able to reproduce as accurately as possible the image with the
same initial information content through the image resampling process.

In Chap. 4Reconstruction of the degraded image (image restoration), a set of
techniques are described that perform quantitative corrections on the image to
compensate for the degradations introduced during the acquisition and transmission
process. These degradations are represented by the fog or blurring effect caused by
the optical system and by the motion of the object or the observer, by the noise
caused by the opto-electronic system and by the nonlinear response of the sensors,
by random noise due to atmospheric turbulence or, more generally, from the pro-
cess of digitization and transmission. While the enhancement techniques tend to
reduce the degradations present in the image in qualitative terms, improving their
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visual quality even when there is no knowledge of the degradation model, the
restoration techniques are used instead to eliminate or quantitatively attenuate the
degradations present in the image, starting also from the hypothesis of knowledge
of degradation models.

Chapter 5, Image Segmentation, describes different segmentation algorithms,
which is the process of dividing the image into homogeneous regions, where all the
pixels that correspond to an object in the scene are grouped together. The grouping
of pixels in regions is based on a homogeneity criterion that distinguishes them
from one another. Segmentation algorithms based on criteria of similarity of pixel
attributes (color, texture, etc.) or based on geometric criteria of spatial proximity of
pixels (Euclidean distance, etc.) are reported. These criteria are not always valid,
and in different applications, it is necessary to integrate other information in relation
to the a priori knowledge of the application context (application domain). In this last
case, the grouping of the pixels is based on comparing the hypothesized regions
with the a priori modeled regions.

Chapter 6, Detectors and descriptors of points of interest, describes the most
used algorithms to automatically detect significant structures (known as points of
interest, corners, features) present in the image corresponding to stable physical
parts of the scene. The ability of such algorithms is to detect and identify physical
parts of the same scene in a repeatable way, even when the images are acquired
under conditions of lighting variability and change of the observation point with
possible change of the scale factor.

The third volume describes the artificial vision algorithms that detect objects in
the scene, attempt their identification, 3D reconstruction, their arrangement and
location with respect to the observer, and their eventual movement.

Chapter 1, Object recognition, describes the fundamental algorithms of artificial
vision to automatically recognize the objects of the scene, essential characteristics of
all systems of vision of living organisms. While a human observer also recognizes
complex objects, apparently in an easy and timely manner, for a vision machine, the
recognition process is difficult, requires considerable calculation time, and the results
are not always optimal. Fundamental to the process of object recognition become the
algorithms for selecting and extracting features. In various applications, it is possible
to have an a priori knowledge of all the objects to be classified because we know the
sample patterns (meaningful features) from which we can extract useful information
for the decision to associate (decision-making) each individual of the population to a
certain class. These sample patterns (training set) are used by the recognition system
to learn significant information about the objects population (extraction of statistical
parameters, relevant characteristics, etc.). The recognition process compares the
features of the unknown objects to the model pattern features, in order to uniquely
identify their class of membership. Over the years, there have been various disci-
plinary sectors (machine learning, image analysis, object recognition, information
research, bioinformatics, biomedicine, intelligent data analysis, data mining,…) and
the application sectors (robotics, remote sensing, artificial vision, …) for which
different researchers have proposed different methods of recognition and developed
different algorithms based on different classification models. Although the proposed
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algorithms have a unique purpose, they differ in the property attributed to the classes
of objects (the clusters) and the model with which these classes are defined (con-
nectivity, statistical distribution, density,…). The diversity of disciplines, especially
between automatic data extraction (data mining) and machine learning (machine
learning), has led to subtle differences, especially in the use of results and in ter-
minology, sometimes contradictory, perhaps caused by the different objectives. For
example, in data mining the dominant interest is automatic grouping extraction, in
automatic classification the discriminating power of the pattern classes is funda-
mental. The topics of this chapter overlap between aspects related to machine
learning and those of recognition based on statistical methods. For simplicity, the
algorithms described are broken down according to the methods of classifying
objects in supervised methods (based on deterministic, statistical, neural, and non-
metric models such as syntactic models and decision trees) and non-supervised
methods, i.e., methods that do not use any prior knowledge to extract the classes to
which the patterns belong.

In Chap. 2 RBF, SOM, Hopfield and deep neural networks, four different types
of neural networks are described: Radial Basis Functions—RBF, Self-Organizing
Maps—SOM, the Hopfield, and the deep neural networks. RBF uses a different
approach in the design of a neural network based on the hidden layer (unique in the
network) composed of neurons in which radial-based functions are defined, hence
the name of Radial Basis Functions, and which performs a nonlinear transformation
of the input data supplied to the network. These neurons are the basis for input data
(vectors). The reason why a nonlinear transformation is used in the hidden layer,
followed by a linear one in the output one, allows a pattern classification problem to
operate in a much larger space (in nonlinear transformation from the input in the
hidden one) and is more likely to be linearly separable than a small-sized space.
From this observation, derives the reason why the hidden layer is generally larger
than the input one (i.e., the number of hidden neurons is greater than the cardinality
of the input signal).

The SOM network, on the other hand, has an unsupervised learning model and
has the originality of autonomously grouping input data on the basis of their
similarity without evaluating the convergence error with external information on the
data. It is useful when there is no exact knowledge on the data to classify them. It is
inspired by the topology of the brain cortex model considering the connectivity
of the neurons and in particular, the behavior of an activated neuron and the
influence with neighboring neurons that reinforce the connections compared to
those further away that are becoming weaker.

With the Hopfield network, the learning model is supervised and with the ability
to store information and retrieve it through even partial content of the original
information. It presents its originality based on physical foundations that have
revitalized the entire field of neural networks. The network is associated with an
energy function to be minimized during its evolution with a succession of states,
until reaching a final state corresponding to the minimum of the energy function.
This feature allows it to be used to solve and set up an optimization problem in
terms of the objective function to be associated with an energy function. The
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chapter concludes with the description of the convolutional neural networks
(CNN), by now the most widespread since 2012, based on the deep learning
architecture (deep learning).

In Chap. 3 Texture Analysis, the algorithms that characterize the texture present
in the images are shown. Texture is an important component for the recognition of
objects. In the field of image processing has been consolidated with the term
texture, any geometric and repetitive arrangement of the levels of gray (or color) of
an image. In this context, texture becomes an additional strategic component to
solve the problem of object recognition, the segmentation of images, and the
problems of synthesis. Some of the algorithms described are based on the mech-
anisms of human visual perception of texture. They are useful for the development
of systems for the automatic analysis of the information content of an image
obtaining a partitioning of the image in regions with different textures.

In Chap. 4 3D Vision Paradigms are reported the algorithms that analyze 2D
images to reconstruct a scene typically of 3D objects. A 3D vision system that has
the fundamental problem typical of inverse problems, i.e., from single 2D images,
which are only a two-dimensional projection of the 3D world (partial acquisition),
must be able to reconstruct the 3D structure of the observed scene and eventually
define a relationship between the objects. 3D reconstruction takes place starting
from 2D images that contain only partial information of the 3D world (loss of
information from the projection 3D!2D) and possibly using the geometric and
radiometric calibration parameters of the acquisition system. The mechanisms of
human vision are illustrated, based also on the a priori prediction and knowledge
of the world. In the field of artificial vision, the current trend is to develop 3D
systems oriented to specific domains but with characteristics that go in the direction
of imitating certain functions of the human visual system. 3D reconstruction
methods are described that use multiple cameras observing the scene from multiple
points of view, or sequences of time-varying images acquired from a single camera.
Theories of vision are described, from the Gestalt laws to the paradigm of Marr’s
vision and the computational models of stereovision.

In Chap. 5 Shape from Shading—(SfS) are reported the algorithms to reconstruct
the shape of the visible 3D surface using only the brightness variation information
(shading, that is, the level variations of gray or colored) present in the image. The
inverse problem of reconstructing the shape of the surface visible from the changes
in brightness in the image is known as the Shape from Shading problem. The
reconstruction of the visible surface should not be strictly understood as a 3D
reconstruction of the surface. In fact, from a single point of the observation of the
scene, a monocular vision system cannot estimate a distance measure between
observer and visible object, so with the SfS algorithms, there is a nonmetric but
qualitative reconstruction of the 3D surface. It is described the theory of the SfS
based on the knowledge of the light source (direction and distribution), the model of
reflectance of the scene, the observation point, and the geometry of the visible
surface, which together contribute to the image formation process. The relationships
between the light intensity values of the image and the geometry of the visible
surface are derived (in terms of the orientation of the surface, point by point) under
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some lighting conditions and the reflectance model. Other 3D surface reconstruc-
tion algorithms based on the Shape from xxx paradigm are also described, where xxx
can be texture, structured light projected onto the surface to be reconstructed, or
2D images of the focused or defocused surface.

In Chap. 6 Motion Analysis, the algorithms of perception of the dynamics of the
scene are reported, analogous to what happens in the vision systems of different
living beings. With motion analysis algorithms, it is possible to derive the 3D
motion, almost in real time, from the analysis of sequences of time-varying 2D
images.

Paradigms on movement analysis have shown that the perception of movement
derives from the information of the objects evaluating the presence of occlusions,
texture, contours, etc. The algorithms for the perception of the movement occurring
in the physical reality and not the apparent movement are described. Different
methods of movement analysis are analyzed from those with limited computational
load such as those based on time-variant image difference to the more complex ones
based on optical flow considering application contexts with different levels of
motion entities and scene-environment with different complexities.

In the context of rigid bodies, from the motion analysis, derived from a sequence
of time-variant images, are described the algorithms that, in addition to the
movement (translation and rotation), estimate the reconstruction of the 3D structure
of the scene and the distance of this structure by the observer. Useful information
are obtained in the case of mobile observer (robot or vehicle) to estimate the
collision time. In fact, the methods for solving the problem of 3D reconstruction
of the scene are acquired by acquiring a sequence of images with a single camera
whose intrinsic parameters remain constant even if not known (camera not cali-
brated) together with the non-knowledge of motion. The proposed methods are part
of the problem of solving an inverse problem. Algorithms are described to recon-
struct the 3D structure of the scene (and the motion), i.e., to calculate the coordi-
nates of 3D points of the scene whose 2D projection is known in each image of the
time-variant sequence.

Finally, in Chap. 7 Camera Calibration and 3D Reconstruction, the algorithms
for calibrating the image acquisition system (normally a single camera and stere-
ovision) are fundamental for detecting metric information (detecting an object’s size
or determining accurate measurements of object–observer distance) of the scene
from the image. The various camera calibration methods are described that deter-
mine the relative intrinsic parameters (focal length, horizontal and vertical
dimension of the single photoreceptor of the sensor, or the aspect ratio, the size
of the matrix of the sensor, the coefficients of the radial distortion model, the
coordinates of the main point or the optical center) and the extrinsic parameters that
define the geometric transformation to pass from the reference system of the world
to that of camera. The epipolar geometry introduced in Chap. 5 is described in this
chapter to solve the problem of correspondence of homologous points in a stereo
vision system with the two cameras calibrated and not. With the epipolar geometry
is simplified the search for the homologous points between the stereo images
introducing the Essential matrix and the Fundamental matrix. The algorithms for
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estimating these matrices are also described, known a priori the corresponding
points of a calibration platform.

With epipolar geometry, the problem of searching for homologous points is
reduced to mapping a point of an image on the corresponding epipolar line in the
other image. It is possible to simplify the problem of correspondence through a
one-dimensional point-to-point search between the stereo images. This is accom-
plished with the image alignment procedure, known as stereo image rectification.
The different algorithms have been described; some based on the constraints of the
epipolar geometry (non-calibrated cameras where the fundamental matrix includes
the intrinsic parameters) and on the knowledge or not of the intrinsic and extrinsic
parameters of calibrated cameras. Chapter 7 ends with the section of the 3D
reconstruction of the scene in relation to the knowledge available to the stereo
acquisition system. The triangulation procedures for the 3D reconstruction of the
geometry of the scene without ambiguity are described, given the 2D projections
of the homologous points of the stereo images, known the calibration parameters
of the stereo system. If only the intrinsic parameters are known, the 3D geometry
of the scene is reconstructed by estimating the extrinsic parameters of the system at
less than a non-determinable scale factor. If the calibration parameters of the stereo
system are not available but only the correspondences between the stereo images
are known, the structure of the scene is recovered through an unknown homography
transformation.

Francavilla Fontana, Italy Arcangelo Distante
December 2020 Cosimo Distante
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