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Abstract. Collaborative filtering recommenders provide effective per-
sonalization services at the cost of sacrificing the privacy of their end
users. Due to the increasing concerns from the society and stricter pri-
vacy regulations, it is an urgent research challenge to design privacy-
preserving and yet robust recommenders which offer recommendation
services to privacy-aware users. Our analysis shows that existing so-
lutions fall short in several aspects, including lacking attention to the
precise output to end users and ignoring the correlated robustness is-
sues. In this paper, we provide a general system structure for latent
factor based collaborative filtering recommenders by formulating them
into model training and prediction computing stages, and also describe a
new security model. Aiming at pragmatic solutions, we first show how to
construct privacy-preserving and yet robust model training stage based
on existing solutions. Then, we propose two cryptographic protocols to
realize a privacy-preserving prediction computing stage, depending on
whether or not an extra proxy is involved. Different from standard Top-
k recommendations, we alternatively let the end user retrieve the unrated
items whose predictions are above a threshold, as a result of our privacy
by design strategy. Experimental results show that our new protocols are
quite efficient.

1 Introduction

Today, personalization is widely adopted by a large number of industries, from
entertainment to precision medicine. The main enabling technology is recom-
mender systems, which employ all sorts of techniques to predict the preferences
of human subjects (e.g. the likes and dislikes towards a movie). A typical system
architecture is shown in Figure 1.

So far, a lot of generic recommender algorithms have been proposed, as sur-
veyed in [24]. Recently, deep learning has become a very powerful tool and
has been used to numerous applications, including recommender [32]. Never-
theless, the collaborative filtering recommender systems are most popular and
well-known due to their explainable nature (e.g. you like x so you may also like
y). Given a user set U = {1, 2, · · · , N} and their rating vectors Ri for i ∈ U , letR
denote the set of (i, j) such that ri,j 6= 0. One of the most popular collaborative

ar
X

iv
:1

91
0.

03
84

6v
1 

 [
cs

.C
R

] 
 9

 O
ct

 2
01

9



Real-world recommenders often build a
preference model based on data from a
number of sources, such as user’s ex-
plicit feedback (e.g. rating vectors) and
implicit information (e.g. how long a
user has stayed on the page of an item).
Like in most literature work and for sim-
plicity reasons, we only consider explicit
feedback in this paper. The discussions
and proposed solutions might also be
applied to other types of data.

Fig. 1. Standard Recommender Structure

filtering algorithms is based on low-dimensional factor models, which derive two
feature matrices U and V from the rating matrix. The feature vector ui denotes
user i’s interest and the feature vector vj denotes item j’s characteristics. Every
feature vector has the dimension k, which is often a much smaller integer than
M and N . In implementations, U = {ui}1≤i≤N and V = {vj}1≤j≤M are often
computed by minimizing the following function:

min
U,V

1

|R|
∑

(x,j)∈R

(rx,j − 〈ux,vj〉)2 + λ
∑
x∈U
||ux||22 + µ

∑
j∈I

||vj ||22 (1)

for some positive parameters λ, µ, typically through the stochastic gradient de-
scent (SGD) method or its variants. Note that one advantage of the latent factor
based collaborative filtering is its better resistance to robustness attacks than
the neighbourhood-based ones [20].

1.1 Privacy and Robustness Issues

Besides the likes and dislikes, users’preferences might lead to inferences towards
other sensitive information about the individuals, e.g. the religion, political ori-
entation, and financial status. When a user is involved in a recommender system
with a pseudonym, there is the risk of re-identification. For instance, Weinsberg
et al. [30] demonstrated that what has been rated by a user can potentially help
an attacker identify this user. Privacy issues have been recognized for a long time
and a lot of solutions have been proposed today, as surveyed in [5,14]. Robustness
is about controlling the effect of manipulated inputs, and is a fundamental issue
for recommender systems. Its importance can be easily seen from the numerous
scandals, including fake book recommendations 1, fake phone recommendations
2 and malicious medical recommendations 3. In their seminal work, Lam and

1 https://tinyurl.com/y9nyo8y9
2 https://tinyurl.com/ycc8lujh
3 https://tinyurl.com/ybuevrwq
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Riedl [17] investigated the concept of shilling attacks, where a malicious com-
pany lies to the recommender system (or, inject fake profiles) to have its own
products recommended more often than those from its competitors. Following
this, a number of works have been dedicated to the investigation of different
robustness attacks and corresponding countermeasures. Interestingly, Sandvig,
Mobasher, and Burke [20] empirically showed that model-based algorithms are
more robust than memory-based algorithms; Cheng and Hurley [10] proposed
informed model-based attacks against trust-aware solutions, and demonstrated
it against the privacy-preserving solution by Canny [8].

Clearly, robustness attacks pose a threat to the business perspective of the
RecSys and subsequently impact the quality of service for the users. Privacy
is increasingly becoming a concern for the privacy-aware users, and it is also
a concern for the RecSys when it wants to deploy a machine learning as a
service business model [28]. Unfortunately, privacy and robustness have a com-
plementary yet conflicting relationship. On the complementary side, it is clear
that privacy disclosure can lead to more successful robustness attacks as the
attacker can adapt its attack strategy accordingly, and a robust system reduces
the attack surface for the privacy attackers who injects fake profiles to infer the
honest users’ information based on the received outputs. On the conflicting side,
a privacy-preserving recommender makes it harder to combat robustness attacks
because the robustness attack detection algorithms will not work well when all
users’ inputs are kept private. We elaborate on this aspect in Section 3.

1.2 Our Contribution

In this paper, we aim at a comprehensive investigation of the privacy and robust-
ness issues for recommender systems, by considering both the model training and
the prediction computing stages. To this end, we first provide a general system
architecture and present a high-level security model accordingly. We then review
the existing privacy-preserving latent factor based recommender solutions and
identify their potential issues. Particularly, we notice that most cryptographic
solutions have mainly aimed at the privacy protection for the model training
stage without paying much attention to the prediction computing stage. This
consequently results in serious privacy issues in practice. We also highlight that
existing privacy-preserving solutions make it harder to detect and prevent ro-
bustness attacks.

Towards privacy-preserving solutions that respect robustness attack detec-
tion, we separately address the issues in the model training and prediction com-
puting stages. For the former, we show that existing solutions can be adapted,
particularly it is straightforward for the expert-based ones such as that from
[29]. As to the latter, we propose two new cryptographic protocols, one of which
involves an extra proxy. Our experimental results show that both protocols are
very efficient with respect to practical datasets. The employed privacy by design
approach, namely returning unrated items whose approximated predictions are
above a threshold, might have profound privacy implications, nevertheless we
leave a detailed investigation as future work.
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1.3 Organisation

The rest of the paper is organised as follows. In Section 2, we introduce a generic
recommender system architecture that consists of two stages: model training and
prediction computing. Accordingly, we present a high-level security model. In
Section 3, we analyse some representative privacy-preserving recommender solu-
tions and identify their deficiencies in our security model. In Section 4, we present
a solution framework to demonstrate how to construct secure recommender so-
lutions in our security model. In Section 5, we propose a new privacy-preserving
protocol for prediction computing, which does not involve a third-party proxy.
In Section 6, we propose a new privacy-preserving protocol for prediction com-
puting, which is more efficient but relies on a proxy. In Section 7, we conclude
the paper.

2 System Architecture and Security Model

Fig. 2. Recommender as a Service Architecture

We assume the RecSys builds recommender models and offers recommenda-
tion as a service to the users. If some users do not care about their privacy,
then they can offer their rating vectors directly to the RecSys to receive recom-
mendations. In addition, the Recsys may collect as much non-private data as
possible in order to build an accurate recommender model. We assume there are
privacy-aware users who are not willing to disclose their rating vectors while still
wishing to receive recommendations. Our main objective is to design solutions
to guarantee that, from the view point of a privacy-aware user Alice,

– She receives high-quality recommendations, by avoiding the robustness at-
tacks mentioned in Section 1.1.
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– She minimizes the information disclosure about her rating vector, under the
prerequisite that she receives high-quality recommendations.

For our recommender as a service, we assume a system architecture shown in
Figure 2. We note that existing collaborative filtering recommender systems typ-
ically have the model training and prediction computing stages even though they
might not mention them explicitly. In addition, it is also quite often that a proxy
(i.e. cloud computing facility) is employed to carry out the massive computations
(e.g. Netflix heavily uses Amazon cloud services). It is worth emphasizing that
many privacy-preserving solutions (particularly cryptographic solutions) also in-
troduce such a third party, e.g. the crypto service provider in the term of [16]
and [21]. For the different usage scenarios, the trust assumptions on the proxy
can vary a lot, and we elaborate on it later. Next, we briefly introduce what will
happen in the two stages.

1. In the model training stage, labeled in Figure 2, the RecSys trains a model,
e.g. similarities between items (or users) in neighbourhood-based recom-
menders and feature matrices for users and items in latent model based
ones, based on data from one or more sources. To clean the data and detect
robustness attacks, before the training, we suppose that the RecSys will run
an algorithm RobDet over the training dataset. To simplify our discussion,
we assume the the output of RobDet is a binary bit for every input profile
(i.e. rating vector). If it is 0, then the profile is deemed as malicious so that
will not be used in the training.

2. After training, we refer to the output of the model training stage as a set
of parameters MODparams. Note that the parameters might be in an en-
crypted form when privacy protection has been applied. In the prediction
computing stage, the RecSys uses the model parameters MODparams and
possibly Alice’s rating vector to infer Alice’s preferences.

2.1 The Proposed Security Model (high level)

We make the following general assumptions related to security. First of all, we
assume the communication channel is secured with respect to confidentiality
and integrity in the sense: (1) an honest user can be assured that his input will
reach the RecSys or another intended party without being eavesdropped on and
manipulated; (2) the RecSys can be assured that the honest user, who initiates
the communication, will receive the message without being eavesdropped on
and manipulated. It is worth stressing that there is no guarantee whether RecSys
knows the true identity of the user it is communicating with. Secondly, we assume
that the RecSys is a rational player and offers recommendation as a service and
a user offers monetary rewards for receiving recommendations. Without this
assumption, there will not be any guarantee for achieving privacy and robustness
because the RecSys will deviate from the protocol for any possible benefits.

Regarding robustness, we require that the RecSys is able to (efficiently) run
any chosen RobDet algorithm over the training dataset to identify the malicious
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profiles, i.e. rating vectors, as we have described in the beginning of this section.
The output of RobDet should be the same regardless what privacy protection
mechanisms have been deployed.

Regarding privacy, we consider the following specific requirements. Note that,
similar to the semantic security of encryption schemes, indistinguishability-based
games can be defined to formally capture all requirements. We skip the details
here, partially due to the fact that the cryptographic primitives we use (e.g.
homomorphic encryption) guarantee indistinguishability straightforwardly.

– Alice’s privacy against RecSys. If the RecSys does not collude with the proxy,
then it learns nothing about Alice’s input and output except for informa-
tion implied in the output of RobDet (i.e. whether or not Alice’s profile is
suspicious if it has been used in the model training stage).

– Alice’s privacy against Proxy. If the proxy does not collude with the RecSys,
then it learns nothing about Alice’s input and output.

– Alice’s privacy against other users. Other users do not learn more informa-
tion about Alice’s rating vector than that implied in the legitimate outputs
they receive.

– RecSys’s privacy against Alice and other users. Alice and other users do
not learn more information than that implied in the legitimate outputs they
receive.

As a remark, in many existing solutions reviewed in Section 3.2, the legiti-
mate outputs can contain too much private information. This has motivated our
privacy-by-design approach in Section 4.1. As an informal requirement, when
both the RecSys and the Proxy are compromised simultaneously, the informa-
tion leakage about the privacy-aware users’ data should also be minimized. To
this end, we note that most existing solutions except for the expert-based ones
will leak everything.

3 Literature Work and Standing Challenges

Regardless efficiency, designing a secure recommender system is a very chal-
lenging task. For example, applying statistical disclosure mechanisms does not
guarantee security, as Zhang et al. [31] showed how to recover perturbed ratings
in the solutions by Polat and Du [23]. Employing advanced cryptographic prim-
itives is also not a panacea, as Tang and Wang [27] pointed out a vulnerability
in the homomorphic encryption based solution by Jeckmans et al. [15]. Next,
we analyse some representative solutions from the literature and identify the
standing challenges.

3.1 Preliminary on Building Blocks

We use the notation x
$← Y to denote that x is chosen from the set Y uni-

formly at random. A public key encryption scheme consists of three algorithms
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(Keygen,Enc,Dec): Keygen(λ, L) generates a key pair (PK,SK); Enc(m,PK)
outputs a ciphertext c; Dec(c, SK) outputs a plaintext m. Some schemes, e.g.
Paillier [22], are additively homomorphic, which means there is an operator ⊕
such that Enc(m1, PK) ⊕ Enc(m2, PK) = Enc(m1 + m2, PK). While some re-
cent somewhat homomorphic encryption (SWHE) schemes are both additively
and multiplicatively homomorphic to a certain number of operations, which
means there are operators ⊕ and ⊗ such that Enc(m1, PK) ⊕ Enc(m2, PK) =
Enc(m1 + m2, PK) and Enc(m1, PK) ⊗ Enc(m2, PK) = Enc(m1m2, PK). In
practice, one of the most widely-used SWHE library is Simple Encrypted Arith-
metic Library (SEAL) from Microsoft [11], which is an optimized implementation
of the YASHE scheme [6]. Note that homomorphic subtraction 	 can be directly
defined based on ⊕ and with similar computational cost.

3.2 Examining some Cryptographic Solutions

Cryptographic solutions aim at minimizing the information leakage in the com-
putation process, by treating the recommender as a large-scale multi-party com-
putation protocol. When designing privacy-preserving solutions, it has become
a common practice to introduce one or multiple third parties, not all of which
are supposed to collude with each other, in order to eliminate a single trusted
third party and improve efficiency. Nikolaenko et al. [21] and Kim et al. [16]
introduced a CSP (i.e. crypto service provider) and employed garbled circuits
and homomorphic encryption respectively to perform privacy-preserving matrix
factorization. These solutions put the emphasis on the matrix factorization step
(i.e. model training stage) while failing to pay more attention to the prediction
computing stage. In [21], it is proposed that every user i is given his own feature
vector ui so that it can interact with the RecSys and CSP to retrieve predictions
on all items (i.e. ui(vi)

T (1 ≤ j ≤M)). In reality, the users do not need to know
his feature vector and the predictions to all items, they only need to know the
items they might like. In more detail, there are several concerns.

– Given the fact that M << N (i.e. the number of items are far less than
the user population), a small number of colluded users can recover the item
feature matrix V, based on which they can try to infer information about
the rest of the population. This leads to unnecessary information leakages
against the honest users.

– The malicious users might make illegal use of the recovered V, through
providing recommendation services using technologies, such as incremental
matrix factorization. Besides the potential privacy concern, this may hurt
the business model of the RecSys.

– Privacy-preserving mechanisms, such as encryption and garbled circuits,
make it very difficult to detect Sybil attacks, where an attacker injects fake
profiles into the system and then it can (1) try to infer private informa-
tion based on the outputs to these fake profiles (2) and mount robustness
attacks. Canny [9] used zero-knowledge proof technique to fight against ill-
formed profiles (i.e. ratings set beyond {0, · · · , 5}), but it is not effective

7



against Sybil attacks. With respect to the robustness attacks in reality, the
forged rating vectors are always well-formed (but the rating values in these
forged rating vectors follow maliciously defined distributions), otherwise the
RecSys can easily identify the ill-formed ones in plaintext. To detect and
prevent robustness attacks, special detection algorithms need to be executed
on the input rating vectors in the privacy-preserving solutions.

When training a recommender model, it is unnecessary to always take into
the ratings from all possible users. Amatriain et al. [2] introduced recommender
system based on expert opinions, and showed that the recommendation accu-
racy can be reasonably good even if a target user’s data is not used in training
the model. Following this concept, Ahn and Amatriain [1] proposed a privacy-
preserving distributed recommender system, and similar concept has been adopted
in [26,29]. The solution from [29] is very interesting because it leads to very ef-
ficient solutions. We briefly summarize it below.

– In the model training stage, suppose the expert data set consists of rat-
ing vectors Rt (1 ≤ t ≤ N). The model parameters are denoted as Θ =
{A,Q,b∗t ,b

∗
j}, where A and Q = {q1, · · · ,qM} are two independent item

feature spaces, µ is the global rating average, bt = r̄t − µ and bj = r̄j − µ
are the average rating for user t and item j respectively, b∗t = {b∗t }Nt=1 ,
b∗j = {b∗j}Mj=1 are the user and item bias vectors. Suppose user t has not
rated item j, his preference is formulated as follows.

r̂t,j = µ+ bt + bj + b∗t + b∗j + (RtA)qTj (2)

Similar to other solutions, SGD can be used to learn the parameter Θ.

– In the prediction computing stage, suppose the user i is not in the expert
dataset and has the rating vector Ri and rating average Ri, the prediction
for rating ri,j is computed as follows

r̂i,j = Ri + bj +

∑N
t=1 b

∗
t

N
+ b∗j + (RiA)qTj (3)

According to their experimental results, the accuracy of the predictions are al-
most the same to the state-of-the-art recommender systems even though user
i is not required to be involved in the model training stage. As such, Wang et
al. [29] further proposed an efficient privacy-preserving protocol based on Pail-
lier encryption scheme, so that the prediction (i.e. Equation (3)) can be com-
puted in the encrypted form. Unfortunately, their solution allows a malicious

user i or several of such users to straightforwardly recover bj +
∑N
t=1 b

∗
t

N +b∗j ,AqTj
(1 ≤ j ≤ M), which are functionally equivalent to the model parameters Θ, by
solving some simple linear equations. This attack poses severe threats against the
recommendation as a service objective and the privacy of the RecSys, claimed
in [29].
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3.3 Examining the DP-based Solutions

While cryptographic solutions might provide provable security for the computa-
tion, they do not consider the information leakages from the legitimate outputs.
In particular, the inference against an honest user or a group of honest users
might be very severe when the attacker has effectively controlled part of the
population (e.g. by launching Sybil attacks). Following the seminal work of Mc-
Sherry and Mironov [19], researchers have tried to apply the differential privacy
concept to the prevent information leakages from recommender outputs, e.g.
[4,12,13].

One of the main issues with DP-based approach is how to set the privacy
parameter ε. Specific to recommender systems, it is unrealistic to predefine a pri-
vacy budget, because the recommender algorithm (i.e. model training stage) will
be executed hundreds, thousands or more times. With respect to the sequential
composition theorem, the privacy guarantee becomes N · ε after N executions of
the recommender algorithm. In this case, to maintain a meaningful level of pri-
vacy protection, the privacy parameter ε in every execution needs to be so small
such that the recommendation accuracy will be totally destroyed. Besides, most
DP-solutions assume a trusted curator (e.g. RecSys), which means there is no
privacy against this party. In other solutions (e.g. local differential privacy[25])
no trusted curator is required but it will severely interfere with robustness at-
tack detection operations. For example, a privacy-aware user who prefers a higher
level of privacy protection might be prone to be classified as malicious due to
the extensive perturbation of his rating vector.

4 Modular Solution Constructions

In this section, we present modular solutions which secure both the model train-
ing and prediction computing stages. We first introduce a privacy-by-design con-
cept to minimize information leakages from the outputs, and then describe two
types of constructions. In one type of construction, the RecSys trains its recom-
mender model without relying on privacy-aware users’ data, while in the other
the RecSys needs privacy-aware users’ data to train the model so that these
users can receive meaningful recommendations. For notation purpose, we refer
to them as Expert-based Solution and Self-based Solution respectively.

Note that for the constructions, we leave the detailed description of privacy-
preserving protocols for the prediction computing stage to Section 5 and 6.

4.1 Privacy by Design Concept

In Section 3.2, we have shown that the legitimate outputs in the solutions from
[21,29] contain a lot of unnecessary information and can leak the recommender
model to a small group of malicious users. To avoid such problems, we enforce
the privacy by design concept by restricting the output to any user to be the
unrated items whose predictions are above a threshold in the proposed prediction
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computing stage. This significantly reduces the leakage of MODparams to the
user and also allow more efficient protocol design. In reality, the predictions to
many items can be quite close so that it is very subtle to only return Top-k (say
k=20) items. For example, for MovieLens 1M Dataset with 1 million ratings
from 6000 users on 4000 movies4, the distribution of predictions is shown in
Figure 3, where the horizontal Axis stands for the prediction value and vertical
Axis stands for the number of predictions that possess the value. Note that all
predicted ratings have been rounded to have one decimal place. Intuitively, as
an example, it makes more sense to return the unrated items whose ratings are
4.9 or 5. Put it another way, we only need to return the items whose predicted
ratings fall into the set {V1 = 5, V2 = 4.9}.

Fig. 3. Prediction Distribution

4.2 Privacy-preserving and Robust Expert-based Solution

In this solution, we adopt the recommender algorithm [29], which has the nice
property that the privacy-aware user Alice does not need to share her rating vec-
tor with the RecSys to train the recommender model and the process of model
training is very simple. Note that in some other expert-based recommender sys-
tems, Alice’s data may not be needed to train the model but the process of model
training will be much more complex (i.e. often retraining the recommender model
is required before being able to generate recommendations for Alice).

1. In the solution, the model training stage is very straightforward. Given an
expert dataset, the RecSys can first run any robustness attack detection
algorithm RobDet to figure out the outliers or even malicious profiles. Then,
the RecSys can learn the model parameters Θ = {A,Q,b∗t ,b

∗
j} from the

expert dataset, which is publicly available to the RecSys. More information
can be seen from Section 3.2.

4 https://grouplens.org/datasets/movielens/1m/
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2. Let’s assume that Alice is labelled as user i in the privacy-aware user group,
the prediction computing stage consists of the following steps.

(a) User i generates a public/private key pair (pki, ski) for an SWHE scheme,
and shares the public key pki with RecSys.

(b) User i sends JRiKpki and JRiKpki to the RecSys, which may require the
user to prove that the encrypted Ri is well formed similar to what has
been done in [9].

(c) If everything is ok, the RecSys can predict user i’s preference on item j
as

Jr̂i,jKpki = JRiKpki ⊕ bj ⊕
∑N
t=1 b

∗
t

N
+ b∗j ⊕ JRiKpkiAqTj (4)

(d) If there is no proxy, user i and the RecSys run the protocol from Section 5
to generate recommendations for user i. Otherwise, they run the protocol
from Section 6.

4.3 Privacy-preserving and Robust Self-based Solution

In this solution, we build on top of the privacy-preserving solutions from [21]
and [16].

1. In the model training stage, we need to augment existing privacy-preserving
protocols for the model training stage, e.g. those from [21] and [16], to enable
privacy-preserving robustness attack detection.
– In case of [21], we need to devise a larger garbled circuit, which first

evaluates RobDet and then chooses the unsuspicious inputs to proceed
with the matrix factorization procedure.

– In case of [16], we need to devise a cryptographic protocol that can
evaluate RobDet algorithm on the same encrypted inputs to those used
in the HE-based matrix factorization algorithm.

A seamless augmentation will depend on the specific robustness attack de-
tection algorithms, so that in this paper we skip the details, which can be
an interesting future though.

2. At the end of the privacy-preserving matrix factorization, either from [21] or
[16], the RecSys will possess JuiKpkc (1 ≤ i ≤ N) and JviKpkc (1 ≤ j ≤ M),
where (PKc, SKc) is an SWHE public/private key pair from the CSP (or
Proxy in our system structure). The participants (i.e. user i, RecSys, and
Proxy) then perform the following steps.
(a) The RecSys computes user i’s preference on item j as Jr̂i,jKpkc = JuiKpkc⊗

JvjKpkc for every 1 ≤ j ≤M .
(b) For every 1 ≤ j ≤ M , the RecSys selects a random number rj , then

computes and sends Jr̂i,j⊕rjKpkc to the proxy. User i generates a Paillier
public/private key pair (PKi, SKi) and send PKi to the Proxy.

(c) The Proxy decrypts Jr̂i,j⊕rjKpkc and re-encrypts the plaintext to obtain
Jr̂i,j ⊕ rjKpki (1 ≤ j ≤M).

(d) For every 1 ≤ j ≤M , the RecSys removes rj from Jr̂i,j⊕rjKpki to obtain
Jr̂i,jKpki .
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3. If there is no proxy, user i and the RecSys run the protocol from Section 5
to generate recommendations for user i. Otherwise, they run the protocol
from Section 6.

It is clear that the model training stage of our expert-based solution satisfies
all our robustness and privacy expectations, while the privacy analysis depends
on the protocols from Section 5 and 6 because the existing steps do not leak in-
formation due to the encrypted operations and randomization. For the self-based
solution, we can guarantee the same level of privacy and robustness protection,
although it will apparently be less efficient than the previous expert-based one.

5 Privacy-preserving Prediction Computing

In this section, we describe a privacy-preserving protocol for user i to learn the
unrated items whose predictions fall into a set {V1, · · ·VT }, without relying on a
proxy. Here T will be a small integer, which may be 2 or 3 in practice referring to
the example in the previous section. Observing that privacy-preserving protocols
for the model training stage often output integer predictions (in encrypted form),
because they need to scale the intermediary computation results in order to
be compatible with the cryptographic tools such as homomorphic encryption
algorithms. Therefore, we assume the RecSys possesses the encrypted predictions
Jxj · θ + yjKpki for every 1 ≤ j ≤M at the end of the privacy-preserving model
training stage. We explicitly present the ratings according to a unit θ, because
in our protocol the recommendations will only be based on the xj part and the
yj part is rounding off.

5.1 Description of the Proposed Protocol

At the beginning of the prediction computing stage, we suppose user i possesses
two public/private key pairs: one is (PKi, SKi) for the Paillier scheme which
has been setup in Section 4.2 and 4.3 while the other is new key pair (PK ′i, SK

′
i)

for a SWHE encryption scheme [18]. The public keys PKi, PK
′
i are shared with

the RecSys. As shown in Figure 4, the protocol runs in two phases where λ is
the security parameter.

In the reduction phase, the RecSys and user i round off the yj part in the
encrypted predictions. Specifically, for every 1 ≤ j ≤M , the following operations
will be carried out.

1. The RecSys first randomizes xj and yj to generates ∆j for user i.
2. Then, user i obtains the randomized prediction value αj through decryption

and then computes βj , which is the randomized xj in an approximation form
with εj ∈ {0, 1}. Finally, user i encrypts βj under his own SWHE public key
if item j is unrated, and encrypts a random value otherwise.

3. After receiving Γj , the RecSys homomorphically removes the randomization
noise rj1 to obtain Φj , which is a ciphertext for xj + εj if item j is unrated
and a ciphertext for a random value otherwise.

12



User i RecSys
Paillier : (PKi, SKi) Jxj · θ + yjKpki
SWHE : (PK′i, SK

′
i) (1 ≤ j ≤M)

Reduction

for each
1 ≤ j ≤M

rj1
$← {0, 1}λ

rj2
$← [0, θ)

∆j = Jxj · θ + yjKpki ⊕ (rj1 · θ + rj2)
= J(xj + rj1) · θ + yj + rj2Kpki

∆j←−−

αj = Dec(∆j , SKi)
= (xj + rj1) · θ + yj + rj2

βj =
αj−(αj mod θ)

θ
= xj + rj1 + εj

If item j is unrated :
Γj = Enc(βj , PK

′
i)

Otherwise :

rj3
$← {0, 1}λ

Γj = Enc(rj3, PK
′
i)

Γj−−→
Φj = Γj 	 rj1

Evaluation

Ωj =

T∏
x=1

(Φj 	 Vx)

Ψj = RAND(Ωj)
Ψj(1≤j≤M)
←−−−−−−−−−

{j|Dec(Ψj , SK
′
i) 6= 0}

Fig. 4. Learning Membership in {V1, · · ·VT } without a Proxy

In the Evaluation phase, for every 1 ≤ j ≤M , the RecSys computes Ωj through
T homomorphic subtractions and T − 1 multiplications, which is a ciphertext
for 0 if the plaintext corresponding to Φj falls into {V1, · · ·VT } and a ciphertext
for a non-zero value otherwise. In order to hide the non-zero values, the RecSys
randomize Ωj via the RAND function, e.g. homomorphicly multipling a random
number, to obtain Ψj , which can be decrypted by user i to learn the index of
recommended items.

5.2 Security and Performance Analysis

The operations in the protocol are done with encrypted data and randomization
has been applied to the predictions revealed to user i. As such the protocol only
reveals the desired items to user i while leaks nothing to the RecSys.

For Paillier, we set the size of N to be 2048, and for SWHE we use Microsoft
SEAL library. We select the ciphertext modulus q = 2226−226+1, the polynomial
modulus p(x) = x8192+1. Using Chinese Reminder Theorem, we select two 40-bit
primes to represent the plaintext space of 280. The primes are 1099511922689 and
1099512004609. By packing 8192 plaintexts into one ciphertext, we can process
8192 multiplications in one homomorphic multiplication. Based on an Intel(R)
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Core(TM) i7-5600U CPU 2.60GHz, 8GB RAM, the timing is summarized in
Table 1.

Paillier.Enc Paillier.Dec Paillier.⊕ SWHE.Enc

31.30 ms 12.88 ms 8.50 µs 52.43 ms

SWHE.Dec SWHE.⊗ partial SWHE.⊗ SWHE.⊕
39.63 ms 207.76 ms 70.28 ms 742 µs

Table 1. Costs for SWHE and Paillier

The number of different cryptographic operations for the proposed protocol
are summarized in Table 2. In the last column, we estimate the real-world run-
ning time based on the aforementioned benchmarking results, where M = 4000
by assuming the MovieLens 1M Dataset and T = 2. Note that this dataset has
been used in Section 4.1.

Paillier.Dec Paillier.⊕ SWHE.Enc SWHE.Dec SWHE.⊗ partial SWHE.⊗ SWHE.⊕ Time
User M M M 420 s

RecSys M M M(T − 1) M(T + 1) 998 s

Table 2. Computational Complexities

With respect to the MovieLens 1M Dataset, we consider the standard case
where user i and the RecSys interactively rank the predictions and the RecSys
returns the top-ranked items. In order to rank, user i and RecSys need to perform
a comparison for two predictions for the RecSys to learn the order of them.
Based on the same computer as above, for a comparison with the protocol from
[7], the computation time for user i and the Recsys is 175.88 ms and 184.60
ms respectively. Suppose we adopt a standard sorting algorithm to realise the
ranking, and the average computation time for the user and RecSys will be
8442.24 s and 8860.80 s, respectively. The time delay due to the communication
is about 4800 s, by assuming each computation takes up to 100 ms as in [7]. It
is clear that our protocol is much more efficient.

6 Privacy-preserving Prediction Computing with Proxy

In this section, we describe the protocol that relies on a proxy, and also provide
corresponding analysis.

6.1 Description of the Proposed Protocol

To enable the new protocol, we make use of a key-homomorphic pseudorandom
function Prf [3]. Given Prf(k1,m) and Prf(k2,m), anybody can compute Prf(k1+
k2,m) = Prf(k1,m) ⊕ Prf(k2,m). We describe the two phases in Figures 5 and
6, respectively. As before, λ is the security parameter.
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User i RecSys
Paillier : (PKi, SKi) Jxj · θ + yjKpki
SWHE : (PK′i, SK

′
i) (1 ≤ j ≤M)

Reduction

for each
1 ≤ j ≤M

rj1
$← {0, 1}λ

rj2
$← [0, θ)

∆j = Jxj · θ + yjKpki 	 (rj1 · θ − rj2)
= J(xj − rj1) · θ + yj + rj2Kpki

∆j←−−

αj = Dec(∆j , SKi)
= (xj − rj1) · θ + yj + rj2

βj =
αj−(αj mod θ)

θ
= xj − rj1 + εj

rj3
$← {0, 1}2λ

If item unrated :
γj = rj3 + βj

= xj − rj1 + εj + rj3
If item rated :
γj = rj3

γj−−→
γj = γj + rj1

Fig. 5. Reduction Phase

Similar to the case shown in Figure 4, in the reduction phase, the RecSys and
user i interactively round off the yj part in the predictions for every j. The main
difference (and simplification) is that, at the end of the protocol, the RecSys
possesses γj = xj +εj +rj3 if item j has been rated and γj = rj3 +rj1 otherwise,
while user i possesses the random number rj3.

User i Proxy RecSys
rj3(1 ≤ j ≤M) γj(1 ≤ j ≤M)

Rj ,PMj(1 ≤ j ≤M) Rj ,PMj(1 ≤ j ≤M)
PM,H PM,H

Kj(1 ≤ j ≤M)← {0, 1}3λ
Υj = Prf(Kj − rj3, Rj) Θj = Prf(γj , Rj)
(1 ≤ j ≤M) (1 ≤ j ≤M)

PM{(Υ1,··· ,ΥM )}
−−−−−−−−−−−−→

PM{(Θ1,··· ,ΘM )}
←−−−−−−−−−−−−−

Ξ
Ωx,j = H(Prf(Kj + Vx, Rj))
(1 ≤ x ≤ T, 1 ≤ j ≤M)
Ω∗,j = PMj{(Ω1,j , · · · , ΩT,j)}

PM{(Ω∗,1,··· ,Ω∗,M )}
−−−−−−−−−−−−−−−→

S
S←−

Fig. 6. Evaluation Phase (w.r.t. {V1, · · ·VT })

The evaluation phase, shown in Figure 6, proceeds as follows.
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1. User i first establishes M random messages Rj(1 ≤ j ≤ M), random per-
mutation functions PM and PMj(1 ≤ j ≤ M), and a hash function H with
the RecSys. Given a vector of M elements, PM randomly permutes the or-
der of the elements. Similarly, given a vector of T elements, PMj randomly
permutes the order of the elements.

2. User i chooses M random keys Kj(1 ≤ j ≤M) for Prf and evaluates Prf for
Rj with the key Kj − rj3 to obtain Υj , for every 1 ≤ j ≤ M . At the same
time, the RecSys evaluates Prf for Rj with the key γj to obtain Θj , for every
1 ≤ j ≤M .

3. After receiving the permuted values from user i and the RecSys, the proxy
computes

Ξ = PM{(Υ1, · · · , ΥM )} ⊕ PM{(Θ1, · · · , ΘM}},

where ⊕ is performed element wise. It is easy to check that if the item j is
unrated

Υj ⊕Θj = Prf(Kj + xj + εj , Rj), and otherwise

Υj ⊕Θj = Prf(Kj + rj1, Rj).

4. User i first computes Ωx,j = H(Prf(Kj + Vx, Rj)) for every 1 ≤ x ≤
T, 1 ≤ j ≤ M , and then computes a randomized check value vector Ω∗,j =
PMj{(Ω1,j , · · · , ΩT,j)} for every item j. It permutes a vector, formed by indi-
vidual check value vectors of all items, and sends the result PM{(Ω∗,1, · · · , Ω∗,M )}
to the RecSys.

5. After receiving PM{(Ω∗,1, · · · , Ω∗,M )} from the user, the proxy can compute
S, which is a new set generated based on Ξ: for every element in Ξ, if
its hash value with respect to H appears in the corresponding element in
PM{Ω∗,j(1 ≤ j ≤ M)} then the corresponding element in S is set to be 1
otherwise it is set to be 0.

6. With S and PM, user i can identify the unrated items whose approximated
predictions fall into the set {V1, · · ·VT }.

6.2 Security and Performance Analysis

With encryption, the reduction phase leaks no information to either party. In
the evaluation phase, the Recsys does not learn anything because it receives
nothing from others, while user i only learns which items are recommended.
Regarding the information leakage to the proxy, we only need to discuss an item
j for any 1 ≤ j ≤ M , because different K and R are used for different items.
For any j, due to the fact that Kj , rj3, rj1 are chosen independently and at
random, the Υj , Θj are random values in the view of the proxy. With H being
modelled as a random oracle, Ω∗,j leaks no information if item j has been rated,
and it only tells whether Prf(Kj + xj + εj,Rj) is a match and nothing else. The
random permutations PM hides which items have been recommended to the user
i, while PMj(1 ≤ j ≤M) hide the predicted rating values for the recommended
items. With respect to the security model from Section 2.1, the solution leaks
the number of recommended items to the proxy, while in the security model it is
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required that there should be no leakage. To reduce the leakage, we can replace
Step 4-6 with a privacy-preserving set interaction protocol. We leave a detailed
investigation of this issue as a future work.

We summarize the asymptotic complexity in Table 3. Based on the reference
codes by the authors of [3] 5, the Prf.Evaluate and Prf.Hadd takes about 1.04 ms
and 10 µs. W.r.t. the MovieLens 1M Dataset and T = 2, we compute the real-
world running time and put it in the last column of Table 3. It is clear that the
existence of Proxy greatly improves the efficiency without seriously downgrading
the privacy guarantee.

Paillier.Dec Paillier.⊕ Prf.Evaluate Prf.Hadd Time
User M M(1 + T ) 63.52 s

RecSys M M 4.16 s
Proxy M 40 ms

Table 3. Computational Complexities

7 Conclusion

In this paper, we have demonstrated how to construct privacy-preserving col-
laborative filtering recommenders by separately addressing the privacy issues
in the model training and prediction computation stages. We argued that the
expert-based approach (e.g. [29]) provides more scalable solution to the model
training stage, while the efficiency of existing cryptographic solutions (e.g. [21]
and [16]) remains as a challenge particularly with the need to support robustness
attack detection. By leveraging homomorphic encryption and key-homomorphic
pseudorandom functions, we show that the proposed privacy-preserving predic-
tion computing protocols are much more efficient than standard solutions. The
current paper leaves several interesting research questions. One is to investigate
the performances of cryptographic solutions when they are extended to support
robustness attack detection and also improve their efficiency. Another research
question is to formally study the privacy advantage of the privacy by design
approach in providing recommendations to end users, and potentially link it to
differential privacy. Yet another research question is to investigate the perfor-
mances (e.g. recommendation accuracy) of the two privacy-preserving protocols
for the prediction computing stage based on other widely-used datasets such as
Netflix.
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