Skip to main content

Side-Channel Leakage of Alarm Signal for a Bulk-Current-Based Laser Sensor

  • Conference paper
  • First Online:
Book cover Information Security and Cryptology (Inscrypt 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12020))

Included in the following conference series:

Abstract

Laser-based fault injections (LFI) attack is a serious threat against cryptographic implementations. One of the effective countermeasures against LFI attacks is to detect the laser shot and delete the sensitive information before any leakage occurs. This paper focuses on an ASIC AES implementation protected by a laser sensor that can detect the irregular current caused by the laser shot and send the alarm signal. We experimentally show that the single-bit alarm signal generated by the laser sensor is a source of side-channel leakage that leaks the sensitive information of the AES calculation. Specifically, by adjusting the strength of the laser shot to achieve an unstable alarm signal, we demonstrate the most effective successful key recovery in our setup. Our results imply that the sensitivity of the on-chip sensor could leak the sensitive information of cryptographic calculation; thus they should be implemented with careful side-channel countermeasures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  2. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5_2

    Chapter  Google Scholar 

  3. Oswald, D., Paar, C.: Breaking Mifare DESFire MF3ICD40: power analysis and templates in the real world. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 207–222. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_14

    Chapter  Google Scholar 

  4. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

    Chapter  Google Scholar 

  5. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side—channel(s). In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_4

    Chapter  Google Scholar 

  6. Matsuda, K., et al.: A 286 \({\rm F}^{2}\)/cell distributed bulk-current sensor and secure flush code eraser against laser fault injection attack on cryptographic processor. J. Solid-State Circuits 53, 3174–3182 (2018)

    Article  Google Scholar 

  7. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  8. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN structures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45238-6_7

    Chapter  MATH  Google Scholar 

  9. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side-channel resistance validation (2011)

    Google Scholar 

  10. Skorobogatov, S.: Optically enhanced position-locked power analysis. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 61–75. Springer, Heidelberg (2006). https://doi.org/10.1007/11894063_6

    Chapter  Google Scholar 

  11. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_22

    Chapter  Google Scholar 

  12. Moradi, A., Mischke, O., Paar, C., Li, Y., Ohta, K., Sakiyama, K.: On the power of fault sensitivity analysis and collision side-channel attacks in a combined setting. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 292–311. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_20

    Chapter  Google Scholar 

  13. Schellenberg, F., Finkeldey, M., Gerhardt, N., Hofmann, M., Moradi, A., Paar, C.: Large laser spots and fault sensitivity analysis. In: Robinson, W.H., Bhunia, S., Kastner, R. (eds.) HOST 2016, pp. 203–208. IEEE Computer Society (2016)

    Google Scholar 

  14. Shamir, A.: Protecting smart cards from passive power analysis with detached power supplies. In: Koç, Ç.K., Paar, C. (eds.) CHES 2000. LNCS, vol. 1965, pp. 71–77. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44499-8_5

    Chapter  Google Scholar 

  15. Plos, T.: Evaluation of the detached power supply as side-channel analysis countermeasure for passive UHF RFID tags. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 444–458. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_30

    Chapter  Google Scholar 

  16. Schmidt, J.-M., Plos, T., Kirschbaum, M., Hutter, M., Medwed, M., Herbst, C.: Side-channel leakage across borders. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 36–48. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12510-2_4

    Chapter  Google Scholar 

  17. Gnad, D.R.E., Krautter, J., Tahoori, M.B.: Leaky noise: new side-channel attack vectors in mixed-signal IoT devices. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2019, 305–339 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP18H05289 and 19K21529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y. et al. (2020). Side-Channel Leakage of Alarm Signal for a Bulk-Current-Based Laser Sensor. In: Liu, Z., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2019. Lecture Notes in Computer Science(), vol 12020. Springer, Cham. https://doi.org/10.1007/978-3-030-42921-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42921-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42920-1

  • Online ISBN: 978-3-030-42921-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics