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Abstract. We construct a sensor-based feedback law that provably solves the

real-time collision-free robot navigation problem in a compact convex Euclidean

subset cluttered with unknown but sufficiently separated and strongly convex

obstacles. Our algorithm introduces a novel use of separating hyperplanes for

identifying the robot’s local obstacle-free convex neighborhood, affording a reac-

tive (online-computed) piecewise smooth and continuous closed-loop vector field

whose smooth flow brings almost all configurations in the robot’s free space to a

designated goal location, with the guarantee of no collisions along the way. We

further extend these provable properties to practically motivated limited range

sensing models.
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1 Introduction

Agile navigation in dense human crowds [1,2], or in natural forests, such as now nego-
tiated by rapid flying [3,4] and legged [5,6] robots, strongly motivates the development
of sensor-based reactive motion planners. By the term reactive [7, 8] we mean that
motion is generated by a vector field arising from some closed-loop feedback policy
issuing online force or velocity commands in real time as a function of instantaneous
robot state. By the term sensor-based we mean that information about the location of
the environmental clutter to be avoided is limited to structure perceived within some
local neighborhood of the robot’s instantaneous position — its sensor footprint.

In this paper, we propose a new reactive motion planner taking the form of a feedback
law for a first-order (velocity-controlled), perfectly and relatively (to a fixed goal loca-
tion) sensed and actuated disk robot, that can be computed using only information about
the robot’s instantaneous position and structure within its sensor footprint. We assume
the a priori unknown environment is a static topological sphere world [9], whose obsta-
cles are convex and have smooth boundaries whose curvature is “reasonably” high rela-
tive to their mutual separation. Under these assumptions, the proposed vector field plan-
ner is guaranteed to bring all but a measure zero set of initial conditions to the desired
goal. To the best of our knowledge, this is the first time a sensor-based reactive motion
planner has been shown to be provably correct w.r.t. a general class of environments.

1.1 Motivation and Prior Literature on Vector Field Planners

The simple, computationally efficient artificial potential field approach to real-time ob-
stacle avoidance [10] incurs topologically necessary critical points [11], which, in prac-
tice, with no further remediation often include (topologically unnecessary) spurious



Fig. 1. Exact navigation of a disk-shaped robot using separating hyperplanes of the robot body

(red at the goal) and convex obstacles (black solid shapes). Separating hyperplanes between the

robot and obstacles define an obstacle-free convex neighborhood (the yellow region when the

robot is at the goal) of the robot, and the continuous feedback motion towards the metric projec-

tion of a given goal (red) onto this convex set asymptotically steers almost all robot configurations

(green) to the goal without collisions along the way. The grey regions represent the augmented

workspace boundary and obstacles, and the arrows show the direction of the resulting vector field.

local minima. Even in topologically simple settings such as the sphere worlds ad-
dressed here, constructions that eliminate these spurious attractors — e.g., navigation
functions [12] — have largely come at the price of complete prior information.

Extensions to navigation functions partially overcoming the necessity of global
prior knowledge of (and consequent parameter tuning for) a topologically and metri-
cally simple environment have appeared in the last decade [13, 14]. Sequential compo-
sition [15] has been used to cover complicated environments with cellular local potential
decompositions [16], but still necessitating prior global knowledge of the environment.

1.2 Contributions and Organization of the Paper

This paper abandons the smooth potential field approach to reactive planning, achiev-
ing an algorithm that is “doubly reactive” in the sense that not merely the integrated
robot trajectory, but also its generating vector field can be constructed on the fly in real
time using only local knowledge of the environment. Our piecewise smooth vector field
combines some of the ideas of sensor-based exploration [17] with those of hybrid re-
active control [16]. We use separating hyperplanes of convex bodies [18] to identify an
obstacle-free convex neighborhood of a robot configuration, and build our safe robot
navigation field by control action towards the metric projection of the designated point
destination onto this convex set.

Our construction requires no parameter tuning and requires only local knowledge of
the environment in the sense that the robot needs only locate those proximal obstacles
determining its collision-free convex neighborhood. When the obstacles are sufficiently
separated (Assumption 1 stipulates that the robot must be able to pass in between them)
and sufficiently strongly convex at their “antipode” (Assumption 2 stipulates that they
curve away from the enclosing sphere centered at the destination which just touches
their boundary at the most distant point), the proposed vector field generates a smooth
flow with a unique attractor at the specified goal along with (the topologically necessary
number of) saddles — at least one associated with each obstacle. Since all of its critical
points are nondegenerate, our vector field is guaranteed to steer almost all robot config-
urations to the goal, while avoiding collisions along the way, as illustrated in Fig. 1.



It proves most convenient to develop the theoretical properties of this construc-
tion under the assumption that the robot can identify and locate those nearby obstacles
whose associated separating hyperplanes define the robot’s obstacle-free convex neigh-
borhood (a capability termed Voronoi-adjacent9 obstacle sensing in Section 3.2), no
matter how physically distant they may be. Thus, to accommodate more physically
realistic sensors, we adapt the initial construction (and the proof) to the case of two
different limited range sensing modalities, while extending the same formal guarantees
as in the erstwhile (local but unbounded range) idealized sensor model.

In prior work [19], we propose a different construction based on power diagrams
[20] for navigating among spherical obstacles using knowledge of Voronoi-adjacent9

obstacles to construct the robot’s local workspace [19, Eqn. (9)]. This paper introduces
a new construction for that set in (7) based on separating hyperplanes, permitting an
extension of the navigable obstacles to the broader class of convex bodies specified by
Assumption 2, while providing the same guarantee of almost global asymptotic con-
vergence (Theorem 3) to a given goal location. From the view of applications, the new
appeal to separating hyperplanes permits the central advance of a purely reactive con-
struction from limited range sensors (22), e.g., in the planar case from immediate line-
of-sight appearance (27), with the same global guarantees.

This paper is organized as follows. Section 2 continues with a formal statement of
the problem at hand. Section 3 briefly summarizes a separating hyperplane theorem of
convex bodies, and introduces its use for identifying collision-free robot configurations.
Section 4, comprising the central contribution of the paper, constructs and analyzes the
reactive vector field planner for safe robot navigation in a convex sphere world, and
provides its more practical extensions. Section 5 illustrates the qualitative properties
of the proposed vector field planner using numerical simulations. Section 6 concludes
with a summary of our contributions and a brief discussion of future work.

2 Problem Formulation

Consider a disk-shaped robot, of radius r ∈ R>0 centered at x ∈ W, operating in
a closed compact convex environment W in the n-dimensional Euclidean space Rn,
where n ≥ 2, punctured with m ∈ N open convex sets O := {O1, O2, . . . , Om} with
twice differentiable boundaries, representing obstacles.1 Hence, the free space F of the
robot is given by

F :=
{

x ∈ W

∣
∣
∣ B(x, r) ⊆ W \

⋃m

i=1
Oi

}

, (1)

where B(x, r) :=
{

q ∈ Rn
∣
∣∥q− x∥ < r

}

is the open ball centered at x with radius r,

and B(x, r) denotes its closure, and ∥.∥ denotes the standard Euclidean norm.

To maintain the local convexity of obstacle boundaries in the free space F, we as-
sume that our disk-shaped robot can freely fit in between (and thus freely circumnavi-
gate) any of the obstacles throughout the workspace W: 2

1 Here, N is the set of all natural numbers; R and R>0 (R≥0) denote the set of real and positive

(nonnegative) real numbers, respectively.
2 Assumption 1 is equivalent to the “isolated” obstacles assumption of [12].



Assumption 1. Obstacles are separated from each other by clearance of at least

d(Oi, Oj) > 2r for all i ̸= j, and from the boundary ∂W of the workspace W as

d(Oi, ∂W) > 2r for all i = 1 . . .m, where d(A,B) := inf
{

∥a− b∥
∣
∣ a ∈ A, b ∈ B

}

.

Before formally stating our navigation problem, it is useful to recall a known topo-
logical limitation of reactive planners: if a continuous vector field planner on a gener-
alized sphere world has a unique attractor, then it must have at least as many saddles as
obstacles [9]. In consequence, the robot navigation problem that we seek to solve is:

Reactive Navigation Problem. Assuming the first-order (completely actuated single-

integrator) robot dynamics,

ẋ = u(x) , (2)

find a Lipschitz continuous vector field controller, u : F → Rn, that leaves the robot’s

free space F positively invariant and asymptotically steers almost all robot configura-

tions in F to any given goal location x∗ ∈ F.

3 Encoding Collisions via Separating Hyperplanes

3.1 Separating Hyperplane Theorem

A fundamental theorem of convex sets states that any two nonintersecting convex sets
can be separated by a hyperplane such that they lie on opposite sides of this hyperplane:

Theorem 1 ([18, 21]). For any two disjoint convex sets A,B ∈ Rn (i.e., A ∩B = ∅),

there exists a∈Rn and b∈R such that aTx ≥ b for all x∈A and aTx ≤ b for all x∈B.

For example, a usual choice of such a hyperplane is [18]:

Definition 1. The maximum margin separating hyperplane of any two disjoint convex

sets A,B ⊂ Rn, with d(A,B) > 0, is defined to be

H(A,B) :=
{

x ∈ Rn
∣
∣
∣∥x−a∥ = ∥x−b∥, ∥a−b∥ = d(A,B), a ∈ A, b ∈ B

}

, (3)

where d(x, H(A,B)) ≥ d(A,B)
2 for all x ∈ A ∪B .

Another useful tool for finding separating hyperplanes is metric projection:

Theorem 2 ([21]). Let A ⊂ Rn be a closed convex set and x ∈ Rn. Then there exists a

unique point a∗ ∈ A such that

a∗ = ΠA(x) := arg min
a∈A

∥a− x∥, (4)

and one has (x−ΠA(x))
T(ΠA(x)− a) ≥ 0 for all a ∈ A .

The map ΠA(x) is called the metric projection of x onto set A .

Lemma 1. The maximum margin separating hyperplane of a convex set A ⊂ Rn and
the ball B(x, r) of radius r∈R>0 centered at x∈Rn, satisfying d(x, A) ≥ r, is given by

H(A,B(x, r)) =
{

y ∈ Rn
∣
∣
∣

∥
∥
∥y−(Π

B(x,r)◦ΠA)(x)
∥
∥
∥ = ∥y−ΠA(x)∥

}

, (5)

where (Π
B(x,r) ◦ΠA)(x) = x− r

x−Π
A
(x)

∥x−Π
A
(x)∥

.



Proof. See Appendix I-A in Supplementary Material. !

A common application of separating hyperplanes of a set of convex bodies is to dis-
cover their organizational structure. For instance, to model its topological structure, we
define the generalized Voronoi diagrams V = {V1, V2, . . . , Vm} of a convex environ-
ment W in Rn populated with disjoint convex obstacles O = {O1, O2, . . . , Om} (i.e.,
d(Oi, Oj)>0 for all i ̸=j), based on maximum margin separating hyperplanes, to be3 4

Vi :=
{

q∈W

∣
∣
∣∥q−pi∥ ≤ ∥q−pj∥, ∥pi−pj∥=d(Oi, Oj), pi∈Oi, pj ∈Oj ∀j ̸= i

}

, (6)

which yields a convex cell decomposition of a subset of W such that, by construction,
each obstacle is contained in its Voronoi cell, i.e., Oi ⊂ Vi, see Fig. 2. Note that for
point obstacles, say Oi = {pi} for some pi ∈ Rn, the generalized Voronoi diagram of
W in (6) simplifies back to the standard Voronoi diagram of W, generated by points
{p1, . . . , pm}, i.e., Vi=

{

q∈W
∣
∣∥q−pi∥≤∥q−pj∥, ∀j ̸= i

}

[27].

3.2 The Safe Neighborhood of a Disk-Shaped Robot

Throughout the sequel, we consider a disk-shaped robot, centered at x ∈ W with radius
r ∈ R>0, moving in a closed compact convex environment W ⊆ Rn populated with
open convex obstacles, O = {O1, O2, . . . , Om}, satisfying Assumption 1. Since the
workspace, obstacles, and the robot radius are fixed, we suppress all mention of the
associated terms wherever convenient, in order to simplify the notation.

Using the robot body and obstacles as generators of a generalized Voronoi diagram
of W, we define the robot’s local workspace, LW(x), illustrated in Fig. 2(left), as,5

LW(x) :=

{

q ∈ W

∣
∣
∣
∣

∥
∥
∥
∥
q− x + r

x−Π
Oi

(x)
∥

∥

∥
x−Π

Oi
(x)

∥

∥

∥

∥
∥
∥
∥
≤

∥
∥q−ΠOi

(x)
∥
∥, ∀i

}

. (7)

Note that we here take the advantage of having a disk-shaped robot and construct the
maximum margin separating hyperplane between the robot and each obstacle using the
robot’s centroid (Lemma 1).

A critical property of the local workspace LW is:

Proposition 1. A robot placement x ∈ W \
⋃m

i=1 Oi is collision free, i.e., x ∈ F, if and

only if the robot body is contained in its local workspace LW(x), i.e., 6

x ∈ F ⇐⇒ B(x, r) ⊆ LW(x) . (8)

Proof. See Supplementary Material Appendix I-B. !

3 Generalized Voronoi diagrams and cell decomposition methods are traditionally encountered

in the design of roadmap methods [8,17,22]. A major distinction between our construction and

these roadmap algorithms is that the latter typically seek a global, one-dimensional graphical

representation of a robot’s environment (independent of any specific configuration), whereas

our approach uses the local open interior cells of the robot-centric Voronoi diagram to deter-

mine a locally safe neighborhood of a given free configuration.
4 It seems worth noting that our use of generalized Voronoi diagrams is motivated by application

of Voronoi diagrams in robotics for coverage control of distributed sensor networks [23–26].
5 Here, to solve the indeterminacy, we set x

∥x∥ = 0 whenever x = 0.
6 Note that F " W \

⋃m

i=1 Oi for a disk-shaped robot of radius r > 0.



Fig. 2. Local workspace LW (yellow) and local free space LF (green) of a disk-shaped robot

(blue) for different sensing modalities: (left) Voronoi-adjacent9 obstacle sensing, (middle) a fixed

radius sensory footprint (red), (right) a limited range line-of-sight sensor (red). The boundary of

each generalized Voronoi cell is defined by the maximum margin separating hyperplanes of the

robot body (blue) and obstacles (black).

Accordingly, we define the robot’s local free space, LF(x), by eroding LW(x),
removing the volume swept along its boundary, ∂LW(x), by the robot body radius,
illustrated on the left in Fig. 2, as [28] 7

LF(x) := LW(x) \
(

∂LW(x)⊕B(0, r)
)

=
{

q ∈ LW(x)
∣
∣
∣B(q, r) ⊆ LW(x)

}

. (9)

Note that, for any x ∈ F, LF(x) is a nonempty closed convex set, because x ∈ LF(x)
and the erosion of a closed convex set by an open ball is a closed convex set.8

An immediate consequence of Proposition 1 is:

Corollary 1. Any robot placement in the local free space LF(x) of a collision free

robot location x ∈ F is also collision free, i.e., LF(x) ⊆ F for all x ∈ F.

Finally, it is useful to emphasize that to construct its local workspace, the robot re-
quires only local knowledge of the environment in the sense that the robot only needs
to locate proximal obstacles — those whose Voronoi cells are adjacent9 to the robot’s
(local workspace). This can be achieved by assuming an adjustable radius sensory foot-
print and gradually increasing its sensing range until the set of obstacles in the sensing
range satisfies a certain geometric criterion guaranteeing that the detected obstacles ex-
actly define the robot’s local workspace [23]. We will refer to this sensing model as
Voronoi-adjacent obstacle sensing.

4 Robot Navigation via Separating Hyperplanes

In this section, first assuming Voronoi-adjacent obstacle sensing, we introduce a new
provably correct vector field controller for safe robot navigation in a convex sphere world,
and list its important qualitative properties. Then we present its extensions for two more
realistic sensor models (illustrated, respectively, in the middle and the right panels of
Fig. 2): a fixed radius sensory footprint and a limited range line-of-sight sensor.

7 Here, 0 is a vector of all zeros with the appropriate size, and A ⊕ B denotes the Minkowski

sum of sets A and B defined as A⊕B = {a+ b | a ∈ A, b ∈ B}.
8 The erosion of a closed half-space by an open ball is a closed half-space, and a closed convex

set can be defined as (possibly infinite) intersection of closed half-spaces [18]. Thus, since the

erosion operation is distributed over set intersection [28], and an arbitrary intersection of closed

sets is closed [29], the erosion of a closed convex set by an open ball is a closed convex set.
9 A pair of Voronoi cells in Rn is said to be adjacent if they share a n− 1 dimensional face.



4.1 Feedback Robot Motion Planner

Assuming the fully-actuated single-integrator robot dynamics in (2), for a choice of a
desired goal location x∗ ∈ F, we propose a robot navigation strategy, called the “move-

to-projected-goal” law, u : F → Rn that steers the robot at location x ∈ F towards the
global goal x∗ through the “projected goal”, ΠLF(x)(x

∗), as follows: 10

u(x) = −k
(

x−ΠLF(x)(x
∗)
)

, (10)

where k ∈ R>0 is a fixed control gain and ΠA (4) is the metric projection onto a closed
convex set A ⊂ Rn, and LF(x) is continuously updated using the Voronoi-adjacent
obstacle sensing and its relation with LW(x) in (9).

4.2 Qualitative Properties

Proposition 2. The “move-to-projected-goal” law in (10) is piecewise continuously

differentiable.

Proof. An important property of generalized Voronoi diagrams in (6) inherited from the
standard Voronoi diagrams of point generators is that the boundary of each Voronoi cell
is a piecewise continuously differentiable function of generator locations [31, 32]. In
particular, for any x ∈ F, the boundary of the robot’s local workspace LW(x) is piece-
wise continuously differentiable since it is defined by the boundary of the workspace
and separating hyperplanes between the robot and obstacles, parametrized by x and
ΠOi

(x), and metric projections onto convex cells are piecewise continuously differ-
entiable [33]. Hence, the boundary of the local free space LF(x) is also piecewise
continuously differentiable, because LF(x) is the nonempty erosion of LW(x) by a
fixed open ball. Therefore, one can conclude using the sensitivity analysis of metric
projections onto moving convex sets [34, 35] that the “move-to-projected-goal” law is
Lipschitz continuous and piecewise continuously differentiable. !

Proposition 3. The robot’s free space F in (1) is positively invariant under the “move-

to-projected” law (10).

Proof. Since x and ΠLF(x)(x
∗) are both in LF(x) for any x ∈ F, and LF(x) is an ob-

stacle free convex neighborhood of x (Corollary 1), the line segment joining x and
ΠLF(x)(x

∗) is free of collisions. Hence, at the boundary of F, the robot under the
“move-to-projected-goal” law either stays on the boundary or moves towards the in-
terior of F, but never crosses the boundary, and so the result follows. !

Proposition 4. For any initial x ∈ F, the “move-to-projected-goal” law (10) has a

unique continuously differentiable flow in F (1) defined for all future time.

10 In general, the metric projection of a point onto a convex set can be efficiently computed using

an off-the-shelf convex programming solver [18]. If W is a convex polytope, then the robot’s

local free space LF(x) is also a convex polytope and can be written as a finite intersection of

half-spaces. Thus, the metric projection onto a convex polytope can be recast as quadratic

programming and can be solved in polynomial time [30]. In the case of a convex polygo-

nal environment, LF(x) is a convex polygon and the metric projection onto it can be solved

analytically since the solution lies on one of its edges, unless the input point is inside LF(x).



Proof. The existence, uniqueness and continuous differentiability of its flow follow
from the Lipschitz continuity of the “move-to-projected-goal” law in its compact do-
main F, because a piecewise continuously differentiable function is locally Lipschitz on
its domain [36], and a locally Lipschitz function on a compact set is globally Lipschitz
on that set [37]. !

Proposition 5. The set of stationary points of the “move-to-projected-goal” law (10)

is {x∗} ∪
⋃m

i=1 Si, where

Si :=

{

x ∈ F

∣
∣
∣
∣
d(x, Oi) = r,

(x−Π
Oi

(x))T(x−x∗)

∥x−Π
Oi

(x)∥∥x−x∗∥ = 1

}

. (11)

Proof. It follows from (4) and x∗∈LF(x∗) that the goal x∗ is a stationary point of (10).
In fact, for any x ∈ F, one has ΠLF(x)(x

∗) = x∗ whenever x∗ ∈LF(x). Hence, in the
sequel of the proof, we only consider the set of robot locations satisfying x∗ ̸∈LF(x).

Let x ∈ F such that x∗ ̸∈ LF(x). Recall from (7) and (9) that LW(x) is determined
by the maximum margin separating hyperplanes of the robot body and obstacles, and
LF(x) is obtained by eroding LW(x) by an open ball of radius r. Hence, x lies in the
interior of LF(x) if and only if d(x, Oi) > r for all i. As a result, since x∗ ̸∈ LF(x),
one has x = ΠLF(x)(x

∗) only if d(x, Oi) = r for some i.
Note that if d(x, Oi) = r, then, since d(Oi, Oj) > 2r (Assumption 1), d(x, Oj) >

r for all j ̸= i. Therefore, there can be only one obstacle index i such that x =
ΠLW(x)(x

∗) and d(x, Oi) = r. Further, given d(x, Oi) = r, since ΠLF(x)(x
∗) is the

unique closest point of the closed convex set LF(x) to the goal x∗ (Theorem 2), its op-
timality [18] implies that one has x = ΠLW(x)(x

∗) if and only if the maximum margin
separating hyperplane between the robot and obstacle Oi is tangent to the level curve of
the squared Euclidean distance to the goal, ∥x− x∗∥2, at ΠOi

(x), and separates x and
x∗, i.e.,

(x− ΠOi
(x))T(x− x∗)

∥x− ΠOi
(x)∥∥x− x∗∥

= 1. (12)

Thus, one can locate the stationary points of the “move-to-projected-goal” law in
(10) associated with obstacle Oi as in (11), and so the result follows. !

Note that, for any equilibrium point si ∈ Si associated with obstacle Oi, one has
that the equilibrium si, its projection ΠOi

(si) and the goal x∗ are all collinear.

Lemma 2. The “move-to-projected-goal” law (10) in a small neighborhood of the goal

x∗ is given by

u(x) = −k(x− x∗), ∀ x ∈ B(x∗, ϵ) , (13)

for some ϵ > 0; and around any stationary point si ∈ Si (11), associated with obstacle
Oi, it is given by

u(x) = −k

(

x− x∗ +

(

x−ΠOi
(x)
)T

(x∗ − hi)
∥

∥x−ΠOi
(x)
∥

∥2

(

x− ΠOi
(x)
)

)

, (14)

for all x∈B(si, ε) and some ε>0, where

hi :=
x + ΠOi

(x)

2
+

r

2

x− ΠOi
(x)

∥

∥x− ΠOi
(x)
∥

∥

. (15)



Proof. See Supplementary Material Appendix I-C. !

Since our “move-to-projected-goal” law strictly decreases the Euclidean distance to
the goal x∗ away from its stationary points (Proposition 7), to guarantee the existence of
a unique stable attractor at x∗, we require the following assumption11, whose geometric
interpretation is discussed in detail in Appendix II in Supplementary Material.

Assumption 2. (Curvature Condition) The Jacobian matrix JΠ
Oi

(si) of the metric pro-

jection of any stationary point si ∈ Si onto the associated obstacle Oi satisfies12

JΠ
Oi

(si) ≺

∥
∥x∗−ΠOi

(si)
∥
∥

r +
∥
∥x∗−ΠOi

(si)
∥
∥
I ∀i, (16)

where I is the identity matrix of appropriate size.

Proposition 6. If Assumption 2 holds for the goal x∗ and for all obstacles, then x∗ is the
only locally stable equilibrium of the “move-to-projected-goal” law (10), and all sta-

tionary points, si∈Si (11), associated with obstacles, Oi, are nondegenerate saddles.

Proof. It follows from (13) that the goal x∗ is a locally stable point of the “move-to-
projected-goal” law, because its Jacobian matrix, Ju(x∗), at x∗ is equal to −k I.

To determine the type of any stationary point si ∈ Si associated with obstacle Oi,
define

g(x) :=

(

x∗ −ΠOi
(x)

)T(
x−ΠOi

(x)
)

∥
∥x−ΠOi

(x)
∥
∥2

−
r

2
∥
∥x−ΠOi

(x)
∥
∥
−

1

2
, (17)

and so the “move-to-projected-goal” law in a small neighborhood of si in (14) can be
rewritten as

u(x) = −k
(

x− x∗ + g(x)
(

x−ΠOi
(x)

)
)

. (18)

Hence, using
∥
∥si−ΠOi

(si)
∥
∥ = r, one can verify that its Jacobian matrix at si is given by

Ju(si) = −kg(si)

( ∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

r+
∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

Q− JΠ
Oi

(si)

)

− k
2 (I−Q) , (19)

where g(si) = −

∥

∥

∥
x∗−Π

Oi
(si)

∥

∥

∥

r
− 1 < −2, and

Q = I−

(

si −ΠOi
(si)

)(

si −ΠOi
(si)

)T

∥
∥si −ΠOi

(si)
∥
∥2

. (20)

Note that JΠ
Oi

(x)
(

x−ΠOi
(x)

)

= 0 for all x ∈ Rn \ Oi [39, 40]. Hence, if Assump-

tion 2 holds, then one can conclude from g(si) < −2 and (19) that the only negative
eigenvalue of Ju(si) and the associated eigenvector are −k

2 and
(

si −ΠOi
(si)

)

, re-
spectively; and all other eigenvalues of Ju(si) are positive. Thus, si is a nondegenerate
saddle point of the “move-to-projected-goal” law associated with Oi. !

11 A similar obstacle curvature condition is necessarily made in the design of navigation functions

for spaces with convex obstacles in [38].
12 For any two symmetric matrices A,B ∈ RN×N , A ≺ B (and A " B) means that B−A is

positive definite (positive semidefinite, respectively).



Proposition 7. Given that the goal location x∗ and all obstacles satisfy Assumption

2, the goal x∗ is an asymptotically stable equilibrium of the “move-to-projected-goal”

law (10), whose basin of attraction includes F, except a set of measure zero.

Proof. Consider the squared Euclidean distance to the goal as a smooth Lyapunov func-
tion candidate, i.e., V (x) := ∥x− x∗∥2, and it follows from (4) and (10) that

V̇ (x) = −k 2(x− x∗)T
(

x−ΠLF(x)(x
∗)
)

︸ ︷︷ ︸

≥∥x−ΠLF(x)(x
∗)∥2

since x∈LF(x) and ∥x−x∗∥2≥∥ΠLF(x)(x
∗)−x∗∥2

≤ −k
∥
∥x−ΠLF(x)(x

∗)
∥
∥2 ≤ 0 , (21)

which is zero iff x is a stationary point. Hence, we have from LaSalle’s Invariance
Principle [37] that all robot configurations in F asymptotically reach the set of equilibria
of (10). Therefore, the result follows from Proposition 2 and Proposition 6, because,
under Assumption 2, x∗ is the only stable stationary point of the piecewise continuous
“move-to-projected-goal” law (10), and all other stationary points are nondegenerate
saddles whose stable manifolds have empty interiors [41]. !

Finally, we find it useful to summarize important qualitative properties of the “move-
to-projected-goal” law as:

Theorem 3. The piecewise continuously differentiable “move-to-projected-goal” law

in (10) leaves the robot’s free space F (1) positively invariant; and if Assumption 2

holds, then its unique continuously differentiable flow, starting at almost any configu-

ration x ∈ F, asymptotically reaches the goal location x∗, while strictly decreasing the

squared Euclidean distance to the goal, ∥x− x∗∥2, along the way.

4.3 Extensions for Limited Range Sensing Modalities

Navigation using a Fixed Radius Sensory Footprint. A crucial property of the “move-
to-projected-goal” law (10) is that it only requires the knowledge of the robot’s Voronoi-
adjacent9 obstacles to determine the robot’s local workspace and so the robot’s local free
space. We now exploit that property to relax our construction so that it can be put to
practical use with commonly available sensors that have bounded radius footprint.13 We
will present two specific instances, pointing out along the way how they nevertheless
preserve the sufficient conditions for the qualitative properties listed in Section 4.2.

Suppose the robot is equipped with a sensor with a fixed sensing range, R ∈ R>0,
whose sensory output, denoted by SR(x) := {S1, S2, . . . , Sm}, at a location, x ∈ W,
returns some computationally effective dense representation of the perceptible portion,
Si := Oi ∩ B(x, R), of each obstacle, Oi, in its sensory footprint, B(x, R). Note that
Si is always open and might possibly be empty (if Oi is outside the robot’s sensing
range), see Fig. 2(middle); and we assume that the robot’s sensing range is greater than
the robot body radius, i.e., R > r.

13 This extension results from the construction of the robot’s local workspace (7) in terms of the

maximum margin separating hyperplanes of convex sets. In consequence, because the inter-

section of convex sets is a convex set [18], perceived obstacles in the robot’s (convex) sensory

footprint are, in turn, themselves always convex.



As in (7), using the maximum margin separating hyperplanes of the robot and
sensed obstacles, we define the robot’s sensed local workspace, see Fig. 2(middle), as,

LWS(x):=
{

q∈W∩B
(

x, r+R
2

)
∣
∣
∣

∥
∥
∥q−x+r

x−Π
Si
(x)

∥x−Π
Si
(x)∥

∥
∥
∥≤

∥
∥q−ΠSi

(x)
∥
∥, ∀i s.t. Si ̸=∅

}

.(22)

Note that B
(

x, r+R
2

)

is equal to the intersection of the closed half spaces containing
the robot body and defined by the maximum margin separating hyperplanes of the robot
body,B(x, r), and all individual points, q ∈ Rn\B(x, R), outside its sensory footprint.

An important observation revealing a critical connection between the robot’s local
workspace LW in (7) and its sensed local workspace LWS in (22) is:

Proposition 8. LWS(x) = LW(x) ∩B
(

x, r+R
2

)

for all x∈W.

Proof. See Appendix I-D in Supplementary Material. !

In accordance with its local free space LF(x) in (9), we define the robot’s sensed

local free space LFS(x) by eroding LWS(x) by the robot body, illustrated in Fig.
2(middle), as,

LFS(x) :=
{

q ∈ LWS(x)
∣
∣
∣B(q, r) ⊆ LWS(x)

}

= LF(x) ∩B
(

x, R−r
2

)

, (23)

where the latter follows from Proposition 8 and that the erosion operation is distributed
over set intersection [28]. Note that, for any x ∈ F, LFS(x) is a nonempty closed
convex set containing x as is LF(x).

To safely steer a single-integrator disk-shaped robot towards a given goal location
x∗ ∈ F using a fixed radius sensory footprint, we propose the following “move-to-
projected-goal” law,

u(x) = −k
(

x−ΠLFS(x)(x
∗)
)

, (24)

where k > 0 is a fixed control gain, and ΠLFS(x) (4) is the metric projection onto
the robot’s sensed local free space LFS(x), and LFS(x) is assumed to be continuously
updated.

Due to the nice relations between the robot’s different local neighborhoods in Propo-
sition 8 and (23), the revised “move-to-projected-goal” law for a fixed radius sensory
footprint inherits all qualitative properties of the original one presented in Section 4.2.

Proposition 9. The “move-to-projected-goal” law of a disk-shaped robot equipped

with a fixed radius sensory footprint in (24) is piecewise continuously differentiable;

and if Assumption 2 holds, then its unique continuously differentiable flow asymptoti-

cally steers almost all configurations in its positively invariant domain F towards any

given goal location x∗ ∈ F, while strictly decreasing the (squared) Euclidean distance

to the goal along the way.

Proof. The proof of the result follows patterns similar to those of Proposition 2 - Propo-
sition 7, because of the relations between the robot’s local neighborhoods in Proposition
8 and (23), and so it is omitted for the sake of brevity. !



Navigation using a 2D LIDAR Range Scanner. We now present another practical
extension of the “move-to-projected-goal” law for safe robot navigation using a 2D
LIDAR range scanner in an unknown convex planar environment W ⊆ R2 populated
with convex obstacles O = {O1, O2, . . . , Om}, satisfying Assumption 1. Assuming an
angular scanning range of 360 degrees and a fixed radial range of R ∈ R>0, we model
the sensory measurement of the LIDAR scanner at location x∈W by a polar curve [42]
ρx : (−π,π]→ [0, R], defined as,

ρx(θ) := min

⎛

⎜

⎜

⎝

R,

min
{

∥p− x∥
∣

∣

∣
p ∈ ∂W, atan2(p− x) = θ

}

,

min
i

{

∥p− x∥
∣

∣

∣
p ∈ Oi, atan2(p− x) = θ

}

⎞

⎟

⎟

⎠

. (25)

Here, the LIDAR sensing rangeR is asummed to be greater than the robot body radius r.
Suppose ρi : (θli , θui

) → [0, R] is a convex curve segment of the LIDAR scan ρx
(25) at location x ∈ W (please refer to Appendix V in Supplementary Material for the
notion of convexity in polar coordinates which we use to identify convex polar curve
segments in a LIDAR scan, corresponding to the obstacle and workspace boundary),
then we define the associated line-of-sight obstacle as the open epigraph of ρi whose
pole is located at x [42], 7 14

Li := {x}⊕ e̊piρi = {x}⊕
{

(ϱ cos θ, ϱ sin θ)
∣
∣
∣θ ∈ (θli , θui

), ϱ > ρi(θ)
}

, (26)

which is an open convex set. Accordingly, we assume the availability of a sensor model
LR(x) := {L1, L2, . . . , Lt} that returns the list of convex line-of-sight obstacles de-
tected by the LIDAR scanner at location x, where t denotes the number of detected
obstacles and changes as a function of robot location.

Following the lines of (7) and (9), we define the robot’s line-of-sight local workspace

and line-of-sight local free space, illustrated in Fig. 2(right), respectively, as

LWL(x):=
{

q ∈ Lft(x)∩B
(

x, r+R
2

)
∣
∣
∣

∥
∥
∥q−x+r

x−Π
Li
(x)

∥x−Π
Li

(x)∥

∥
∥
∥≤

∥
∥q−ΠLi

(x)
∥
∥, ∀i

}

.(27)

LFL(x):=
{

q ∈ LWL(x)
∣
∣
∣B(q, r)⊆LWL(x)

}

, (28)

where Lft(x) denotes the LIDAR sensory footprint at x, given by the hypograph of the
LIDAR scan ρx (25) at x, i.e.,

Lft(x) := {x}⊕ hypρx = {x}⊕
{

(ϱ cos θ, ϱ sin θ)
∣
∣
∣θ∈(−π,π], 0≤ ϱ ≤ ρx(θ)

}

. (29)

Similar to Proposition 1 and Corollary 1, we have:

Proposition 10. For any x ∈ F, LWL(x) is an obstacle free closed convex subset of W

and contains the robot body B(x, r). Therefore, LFL(x) is a nonempty closed convex

subset of F and contains x.

Proof. See Appendix I-E in Supplementary Material. !

14 Here, Å denotes the interior of a set A.



Accordingly, to navigate a fully-actuated single-integrator robot using a LIDAR
scanner towards a desired goal location x∗ ∈ F, with the guarantee of no collisions
along the way, we propose the following “move-to-projected-goal” law

u(x) = −k
(

x−ΠLFL(x)(x
∗)
)

, (30)

where k > 0 is fixed, and ΠLFL(x) (4) is the metric projection onto the robot’s line-of-
sight free space LFL(x) (28), which is assumed to be continuously updated.

We summarize important properties of the “move-to-projected-goal” law for navi-
gation using a LIDAR scanner as:

Proposition 11. The “move-to-projected-goal” law of a LIDAR-equipped disk-shaped

robot in (30) leaves the robot’s free space F (1) positively invariant; and if Assumption

2 holds, then its unique, continuous and piecewise differentiable flow asymptotically

brings all but a mesure zero set of initial configurations in F to any designated goal

location x∗ ∈ F, while strictly decreasing the (squared) Euclidean distance to the goal
along the way.

Proof. See Appendix I-F in Supplementary Material. !

As a final remark, it is useful to note that the “move-to-projected-goal” law in (30)
might have discontinuities because of possible occlusions between obstacles. If there is
no occlusion between obstacles in the LIDAR’s sensing range, then the LIDAR scanner
provides exactly the same information about obstacles as does the fixed radius sensory
footprint of Section 4.3, and so the “move-to-projected-goal” law in (30) is piecewise
continuously differentiable as is its version in (24). In this regard, one can avoid occlu-
sions between obstacles by properly selecting the LIDAR’s sensing range: for example,
since d(x, Oi) ≥ r for any x ∈ F and d(Oi, Oj) > 2r for any i ̸= j (Assumption 1), a
conservative choice of R that prevents occlusions between obstacles is r < R ≤ 3r.

5 Numerical Simulations

To demonstrate the motion pattern generated by our “move-to-projected-goal” law a-
round and far away from the goal, we consider a 10×10 and a 50×10 environment clut-
tered with convex obstacles and a desired goal located at around the upper right corner,
as illustrated in Fig. 3 and Fig. 4, respectively.15 We present in these figures example
navigation trajectories of the “move-to-projected-goal” law for different sensing and
actuation modalities. We observe a significant consistency between the resulting trajec-
tories of the “move-to-projected-goal” law and the boundary of the Voronoi diagram of
the environment, where the robot balances its distance to all proximal obstacles while
navigating towards its destination — a desired autonomous behaviour for many practi-
cal settings instead of following the obstacle boundary tightly. In our simulations, we

15 For all simulations we set r = 0.5, R = 2 and k = 1, and all simulations are obtained through

numerical integration of the associated “move-to-projected-goal” law using the ode45 func-

tion of MATLAB. Please refer to Appendix VII in Supplementary Material and see the accom-

panying video submission for additional figures illustrating the navigation pattern far away

from the goal for different sensing and actuation models.



(a) (b) (c) (d)

Fig. 3. (a) The Euclidean distance,
∥

∥ΠLF(x)(x
∗)− x∗

∥

∥, between the projected goal, ΠLF(x)(x
∗),

and the global goal, x∗, for Voronoi-adjacent9 obstacle sensing. (b-d) Example navigation trajec-

tories of the “move-to-projected-goal” law starting at a set of initial configurations (green) to-

wards a designated point goal (red) for different sensing models: (c) Voronoi-adjacent9 obstacle

sensing, (d) a fixed radius sensory footprint, (e) a limited range LIDAR sensor.

avoid occlusions between obstacles by properly selecting the LIDAR’s sensing range,
and in so doing both limited range sensing models provide the same information about
the environment away from the workspace boundary and the associated “move-to-
projected-goal” laws yield almost the same navigation paths. It is also useful to note that
the “move-to-projected-goal” law decreases not only the Euclidean distance, ∥x− x∗∥,
to the goal, but also the Euclidean distance,

∥
∥ΠLF(x)(x

∗)− x∗
∥
∥, between the projected

goal, ΠLF(x)(x
∗), and the global goal, x∗, illustrated in Fig. 3(a).

6 Conclusions

In this paper we construct a sensor-based feedback law that solves the real-time collision-
free robot navigation problem in a domain cluttered with unknown but sufficiently sepa-
rated and strongly convex obstacles. Our algorithm introduces a novel use of separating
hyperplanes for identifying the robot’s local obstacle free convex neighborhood, afford-
ing a piecewise smooth velocity command instantaneously pointing toward the metric
projection of the designated goal location onto this convex set. Given sufficiently sep-
arated (Assumption 1) and appropriately “strongly” convex (Assumption 2) obstacles,
we show that the resulting vector field has a smooth flow with a unique attractor at the
goal location (along with the topologically inevitable saddles — at least one for each ob-
stacle). Since all of its critical points are nondegenerate, our vector field asymptotically
steers almost all configurations in the robot’s free space to the goal, with the guarantee
of no collisions along the way. We also present its practical extensions for two lim-
ited range sensing models. We illustrate the effectiveness of the proposed navigation
algorithm in numerical simulations.

Fig. 4. Example navigation trajectories of the “move-to-projected-goal” law in (10) starting at a

set of initial positions (green) far away from the goal (red).15



Work now in progress targets a fully smoothed version of the move-to-projected-
goal law (by recourse to reference governors [43]), permitting its lift to more compli-
cated dynamical models such as force-controlled (second-order) and underactuated sys-
tems [44]. This will enable its empirical demonstration for safe, high-speed navigation
in a forest-like environments [45] and in human crowds. We are also investigating the
extension of these ideas for coordinated, decentralized feedback control of multirobot
swarms. More generally, we seek to identify fundamental limits on navigable environ-
ments for a memoryless greedy robotic agent with a limited range sensing capability.
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