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Abstract. We consider the path planning problem for a 2-link robot
amidst polygonal obstacles. Our robot is parametrizable by the lengths
`1, `2 > 0 of its two links, the thickness τ ≥ 0 of the links, and an angle κ
that constrains the angle between the 2 links to be strictly greater than
κ. The case τ > 0 and κ ≥ 0 corresponds to “thick non-crossing” robots.
This results in a novel 4DOF configuration space R2× (T2 \∆(κ)) where
T2 is the torus and ∆(κ) the diagonal band of width κ.
We design a resolution-exact planner for this robot using the framework
of Soft Subdivision Search (SSS). First, we provide an analysis of the
space of forbidden angles, leading to a soft predicate for classifying con-
figuration boxes. We further exploit the T/R splitting technique which
was previously introduced for self-crossing thin 2-link robots.
Our open-source implementation in Core Library achieves real-time per-
formance for a suite of combinatorially non-trivial obstacle sets. Experi-
mentally, our algorithm is significantly better than any of the state-of-art
sampling algorithms we looked at, in timing and in success rate.

1 Introduction

Motion planning is one of the key topics of robotics [9,3]. The dominant ap-
proach to motion planning for the last two decades has been based on sampling,
as represented by PRM [7] or RRT [8] and their many variants. An alternative
(older) approach is based on subdivision [2,20,1]. Recently, we introduced the
notion of resolution-exactness which might be regarded1 as the well-known
idea of “resolution completeness” but with a suitable converse [16,18]. Briefly, a
planner is resolution-exact if in addition to the usual inputs of path planning,
there is an input parameter ε > 0, and there exists a K > 1 such that the
planner will output a path if there exists one with clearance Kε; it will output
NO-PATH if there does not exist one with clearance K/ε. Note that its output
is indeterminate if the optimal clearance lies between K/ε and Kε. This pro-
vides the theoretical basis for exploiting the concept of soft predicates, which

? This work is supported by NSF Grants CCF-1423228 and CCF-1564132.
1 In the theory of computation, a computability concept that has no such converse

(e.g., recursive enumerability) is said to be “partially complete”.

ar
X

iv
:1

70
4.

05
12

3v
1 

 [
cs

.C
G

] 
 1

7 
A

pr
 2

01
7



2

is roughly speaking the numerical approximation of exact predicates. Such pred-
icates avoid the hard problem of deciding zero, leading to much more practical
algorithms than exact algorithms. To support such algorithms, we introduce an
algorithmic framework [18,19] based on subdivision called Soft Subdivision
Search (SSS). The present paper studies an SSS algorithm for a 2-link robot.
Figure 1 shows a path found by this robot in a nontrivial environment.

(a) Trace of robot origin (b) Sub-sampled path (c) Subdivision boxes

Fig. 1: 100 Random Triangles Environment: non-crossing path found (κ = 115◦)

Link robots offer a compelling class of non-trivial robots for exploring path
planning (see [6, chap. 7]). In the plane, the simplest example of a non-rigid
robot is the 2-link robot, R2 = R2(`1, `2), with links of lengths `1, `2 > 0.
The two links are connected through a rotational joint A0 called the robot
origin. The 2-link robot is in the intersection of two well-known families of
link robots, chain robots and spider robots (see [11]). One limitation of
link robots is that links are unrealistically modeled by line segments. On the
other hand, a model of mechanical links involving complex details may require
algorithms that currently do not exist or have high computational complexity.
As a compromise, we introduce thick links by forming the Minkowski sum of
each link with a ball of radius τ > 0 (thin links correspond to τ = 0). To our
knowledge, no exact algorithm for thick R2 is known; for a single link R1, an
exact algorithm based on retraction follows from [14]. In this paper, we further
parametrize R2 by a “bandwidth” κ which constrains the angle between the 2
links to be greater than or equal to κ (“self-crossing” links is recovered by setting
κ < 0). Thus, our full robot model

R2(`1, `2, τ, κ)

has four parameters; our algorithms are uniform in these parameters.
To illustrate the non-crossing constraint, we use the simple “T-room” envi-

ronment in Figure 2. Suppose the robot has to move from the start configuration
α to the goal configuration β as indicated in Figure 2(a). There is an obvious
path from α to β as illustrated in Figure 2(b): the robot origin moves directly
from its start to goal positions, while the link angles simultaneously adjust to
their goal angles. However, such paths require the two links to cross each other.
To achieve a “non-crossing” solution from α to β, we need a less obvious path
such as found by our algorithm in Figure 2(c): the robot origin must first move
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(a) α (above), β (below) (b) Self-crossing path (c) Non-crossing path

Fig. 2: Path from configurations α to β in T-Room Environment

away from the goal, towards the T-junction, in order to maneuver the 2 links
into an appropriate relative order before moving toward the goal configuration.

We had chosen ε = 2 in Figure 2(b,c); also, κ is 7 for the non-crossing
instance. But if we increase either ε to 3 or κ to 8, then the non-crossing instance
would report NO-PATH. It is important to know that the NO-PATH output
from resolution-exact algorithms is not never due to exhaustion (“time-out”). It
is a principled answer, guaranteeing the non-existence of paths with clearance
> K · ε (for some K > 1 depending on the algorithm). In our view, the narrow
passage problem is, in the limit, just the halting problem for path planning:
algorithms with narrow passage problems will also have non-halting issues when
there is no path. Our experiments suggests that the “narrow passage problem”
is barely an issue for our particular 4DOF robot, but it could be a severe issue
for sampling approaches. But no amount of experimental data can truly express
the conceptual gap between the various sampling heuristics and the a priori
guaranteed methods such as ours.

Literature Review. Our theory of resolution-exactness and SSS algorithms
apply to any robot system but we focus on algorithmic techniques to achieve
the best algorithms for a 2-link robot. The main competition is from sampling
approaches – see [3] for a survey. In our experiments, we compare against the
well-known PRM [7] as well as variants such as Toggle PRM [4] and lazy version
[5]. Another important family of sampling methods is the RRT with variants
such as RRT-connect [8] and retraction-RRT [12]. The latter is comparable to
Toggle PRM’s exploitation of non-free configurations, except that retraction-
RRT focuses on contact configurations. Salzman et al [13] introduce a “tiling
technique” for handling non-crossing links in sampling algorithms that is quite
different from our subdivision solution [11].

Overview of Paper. Section 2 describes our parametrization of the config-
uration space of R2, and implicitly, its free space. Section 3 analyzes the forbid-
den angles of thick links. Section 4 shows our subdivision representation of the
non-crossing configuration space. Section 5 describes our experimental results.
Section 6 concludes the paper. Omitted proofs and additional experimental data
are available as appendices in the full paper [17].
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2 Configuration Space of Non-Crossing 2-Link Robot

The configuration space of R2 is Cspace := R2 × T2 where T2 = S1 × S1 is the
torus and S1 = SO(2) is the unit circle. We represent S1 by the interval [0, 2π]
with the identification 0 = 2π. Closed angular intervals of S1 are denoted by
[s, t] where s, t ∈ [0, 2π] using the convention

[s, t] :=

{
{θ : s ≤ θ ≤ t} if s ≤ t,
[s, 2π] ∪ [0, t] if s > t.

In particular, [0, 2π] = S1 and [2π, 0] = [0, 0]. The standard Riemannian metric
d : S1×S1 → R≥0 on S1 is given by d(θ, θ′) = min {|θ − θ′|, 2π − |θ − θ′|}. Thus
0 ≤ d(θ, θ′) ≤ π.

To represent the non-crossing configuration space, we must be more specific
about interpreting the parameters in a configuration (x, y, θ1, θ2) ∈ Cspace: there
are two distinct interpretations, depending on whether R2 is viewed as a chain
robot or a spider robot. We choose the latter view: then (x, y) is the footprint
of the joint A0 at the center of the spider and θ1, θ2 are the independent angles
of the two links. This has some clear advantage over viewing R2 as a chain robot,
but we can conceive of other advantages for the chain robot view. That will be
future research. In the terminology of [11], the robot R2 has three named points
A0, A1, A2 whose footprints at configuration γ = (x, y, θ1, θ2) are given by

A0[γ] := (x, y), A1[γ] := (x, y)+`1(cos θ1, sin θ1), A2[γ] := (x, y)+`2(cos θ2, sin θ2).

The thin footprint of R2 at γ, denoted R2[γ], is defined as the union of the line
segments [A0[γ], A1[γ]] and [A0[γ], A2[γ]]. The thick footprint of R2 is given
by Fprintτ (γ) := D(0, τ) ⊕ R2[γ], the Minkowski sum ⊕ of the thin footprint
with disc D(0, τ) of radius τ centered at 0.

The non-crossing configuration space of bandwidth κ is defined to be

Cspace(κ) := R2 × (T2 \∆(κ))

where ∆(κ) is the diagonal band ∆(κ) :=
{

(θ, θ′) ∈ T2 : d(θ, θ′) ≤ κ
}
⊆ T2.

Note three special cases:

– If κ < 0 then ∆(κ) is the empty set.
– If κ = 0 then ∆(κ) is a closed curve in T2.
– If κ ≥ π then ∆(κ) = S1.

Configurations in R2×∆(0) are said to be self-crossing; all other configurations
are non-crossing. Here we focus on the case κ ≥ 0. For our subdivision below,
we will split T2\∆(0) into two connected sets: T2

< :=
{

(θ, θ′) ∈ T2 : 0 ≤ θ < θ′ < 2π
}

and T2
> :=

{
(θ, θ′) ∈ T2 : 0 ≤ θ′ < θ < 2π

}
. For κ ≥ 0, the diagonal band ∆(κ)

retracts to the closed curve ∆(0). In R2, if we omit such a set, we will get two
connected components. In contrast, that T2 \∆(κ) remains connected. CLAIM:
T2 \ ∆(κ) is topologically a cylinder with two boundary components. Thus, the
non-crossing constraint has changed the topology of the configuration space. To
see claim, consider the standard model of T2 represented by a square with oppo-
site sides identified as in Figure 3(a) (we show the case κ = 0). By rearranging
the two triangles T2

< and T2
> as in Figure 3(b), our claim is now visually obvious.



5

(b)
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Fig. 3: Paths in T2 \∆(0) from α ∈ T2
> to β ∈ T2

<

3 Forbidden Angle Analysis of Thick Links

Towards the development of a soft-predicate for thick links, we must first extend
our analysis in [11] which introduced the concept of forbidden angles for thin
links. Let L(`, τ) be a single link robot of length ` > 0 and thickness τ ≥ 0. Its
configuration space is SE(2) = R2 × S1. Given a configuration (b, θ) ∈ SE(2),
the footprint of L(`, τ) at (b, θ) is

Fprint`,τ (b, θ) := L⊕D(0, τ)

where ⊕ denotes Minkowski sum, L is the line segment [b, b + `(cos θ, sin θ)]
and D(0, τ) is the disk as above. When `, τ is understood, we simply write
“Fprint(b, θ)” instead of Fprint`,τ (b, θ).

Let S, T ⊆ R2 be closed sets. An angle θ is forbidden for (S, T ) if there
exists s ∈ S such that Fprint(s, θ) ∩ T is non-empty. If t ∈ Fprint(s, θ) ∩ T ,
then the pair (s, t) ∈ S × T is a witness for the forbidden-ness of θ for (S, T ).
The set of forbidden angles of (S, T ) is called the forbidden zone of S, T and
denoted Forb`,τ (S, T ). Clearly, θ ∈ Forb`,τ (S, T ) iff there exists a witness pair
(s, t) ∈ S×T . Moreover, we call (s, t) a minimum witness of θ if the Euclidean
norm ‖s−t‖ is minimum among all witnesses of θ. If (s, t) is a minimum witness,
then clearly s ∈ ∂S and t ∈ ∂T .

Lemma 1. For any sets S, T ⊆ R2, we have

Forb`,τ (S, T ) = π + Forb`,τ (T, S).

Proof. For any pair (s, t) and any angle α, we see that

t ∈ Fprint(s, α) iff s ∈ Fprint(t, π + α).

Thus, there is a witness (s, t) for α in Forb`,τ (S, T ) iff there is a witness (t, s)
for π + α in Forb`,τ (T, S). The lemma follows. Q.E.D.

¶1. The Forbidden Zone of two points Consider the forbidden zone
Forb`,τ (V,C) defined by two points V,C ∈ R2 with d = ‖V −C‖. (The notation
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V suggests a vertex of a translational box Bt and C suggests a corner of the
obstacle set.) In our previous paper [11] on thin links (i.e., τ = 0), this case
is not discussed for reasons of triviality. When τ > 0, the set Forb`,τ (V,C) is
more interesting. Clearly, Forb`,τ (V,C) is empty iff d > `+ τ (and a singleton if
d = `+ τ). Also Forb`,τ (V,C) = S1 iff d ≤ τ . Henceforth, we may assume

τ < d < `+ τ. (1)

The forbidden zone of V,C can be written in the form

Forb`,τ (V,C) := [ν − δ, ν + δ]

for some ν, δ. Call ν the nominal angle and δ the correction angle. By the
symmetry of the footprint, ν is equal to θ(V,C) (see Figure 4).

V

C

V

U

(a) (b)

ν

U ′

C

ν

U

d

δ

`

δ

τ

d

`τ

Fig. 4: Forb`,τ (V,C)

It remains to determine δ. Consider the configuration (V, θ) ∈ SE(2) of our
link L(`, τ) where link origin is at V and the link makes an angle θ with the
positive x-axis. The angle δ is determined when the point C lies on the boundary
of Fprint(V, θ). The two cases are illustrated in Figure 4 where θ = ν + δ and
other endpoint of the link is U ; thus ‖V U‖ = ` and ‖V C‖ = d, and δ = ∠(CV U).
Under the constraint (1), there are two ranges for d:

(a) d is short: d2 ≤ τ2 + `2. In this case, the point C lies on the straight portion
of the boundary of the footprint, as in Figure 4(a). From the right-angle
triangle CU ′V , we see that δ = arcsin(τ/d).

(b) d is long: d2 > τ2 + `2. In this case, the point C lies on the circular portion
of the boundary of the footprint, as in Figure 4(b). Consider the triangle
CUV with side lengths of d, `, τ . By the cosine law, τ2 = d2 + `2 − 2d` cos δ
and thus

δ = arccos

(
`2 + d2 − τ2

2d`

)
.
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This proves:

Lemma 2. Assume ‖V C‖ = d satisfies (1). Then

Forb`,τ (V,C) = [ν − δ, ν + δ]

where ν = θ(V,C) and

δ = δ(V,C) =

{
arcsin(τ/d) if d2 ≤ τ2 + `2,

arccos
(
`2+d2−τ2

2d`

)
if d2 > τ2 + `2.

(2)

¶2. The Forbidden Zone of a Vertex and a Wall Recall that the
boundary of a box Bt is divided into four sides, and two adjacent sides share
a common endpoint which we call a vertex. We now determine Forb`,τ (V,W )
where V is a vertex and W a wall feature. Choose the coordinate axes such that
W lies on the x-axis, and V = (0,−σ) lies on the negative y-axis, for some σ > 0.
Let the two corners of W be C,C ′ with C ′ lying to the left of C. See Figure 5.

C ′ x
τ

Xmax

X∗

VV

` + τ
`

OX∗
x

y

X∗

τ

Xmax
X∗Xmax

(a) (b)

CC ′

C

` + τ
`

y

O

Fig. 5: Stop Analysis for Forb`,τ (V,W ) (assuming σ > τ)

We first show that the interesting case is when

τ < σ < `+ τ. (3)

If σ ≥ `+ τ then Forb`,τ (V,W ) is either a singleton (σ = `+ τ) or else is empty
(σ > ` + τ). Likewise, the following lemma shows that when σ ≤ τ , we are to
point-point case of Lemma 2:

Lemma 3. Assume σ ≤ τ . We have

Forb`,τ (V,W ) =

{
S1 if D(V, τ) ∩W 6= ∅,
Forb`,τ (V, c) else

where c = C or C ′.



8

Proof. Recall that we have chosen the coordinate system so that W lies on the
x-axes and V = (0,−σ). It is easy to see that Forb`,τ (V,W ) = S1 iff the disc
D(V, τ) intersects W . So assume otherwise. In that case, the closest point in W
to V is c, one of the two corners of W . The lemma is proved if we show that

Forb`,τ (V,W ) = Forb`,τ (V, c).

It suffices to show Forb`,τ (V,W ) ⊆ Forb`,τ (V, c). Suppose θ ∈ Forb`,τ (V,W ).
So it has a witness (V, c′) for some c′ ∈ W . However, we see that the minimal
witness for this case is (V, c). This proves that θ ∈ Forb`,τ (V, c). Q.E.D.

In addition to (3), we may also assume the wall lies within the annulus of
radii (τ, τ + `) centered at V :

‖V C‖, ‖V C ′‖ ∈ (τ, `+ τ) (4)

Using the fact that V = (0,−σ) and W lies in the x-axis, we have:

Lemma 4. Assume (3) and (4).
Then Forb`,τ (V,W ) is a non-empty connected interval of S1,

Forb`,τ (V,W ) = [α, β] ⊆ (0, π).

Our next goal is to determine the angles α, β in this lemma. Consider the foot-
prints of the link at the extreme configurations (V, α), (V, β) ∈ SE(2). Clearly,
W intersects the boundary (but not interior) of these footprints, Fprint(V, α)
and Fprint(V, β). Except for some special configurations, these intersections
are singleton sets. Regardless, pick any A ∈ W ∩ Fprint(V, α) and B ∈ W ∩
Fprint(V, β). Since α is an endpoint of Forb`,τ (V,W ), we see that A ∈ (∂W ) ∩
∂(Fprint(V, α)). We call A a left stop for the pair (V,W ) because2 for any
δ′ > 0 small enough, A ∈ Fprint(V, α+ δ′) while W ∩ (V, α− δ′) = ∅. Similarly
the point B is called a right stop for the pair (V,W ). Clearly, we can write

α = θ(V,A)− δ(V,A), β = θ(V,B) + δ(V,B)

where δ(V, ·) is given by Lemma 2. We have thus reduced the determination of
angles α and β to the computation of the left A and right B stops.

We might initially guess that the left stop of (V,W ) is C, and right stop
of (V,W ) is C ′. But the truth is a bit more subtle. Define the following points
X∗, Xmax on the positive x-axis using the equation:

‖OX∗‖ =
√

(`+ τ)2 − σ2,

‖OXmax‖ =
√
`2 − (σ − τ)2.

These two points are illustrated in Figure 5. Also, let X∗ and Xmax be mirror
reflections of X∗ and Xmax across the y-axis. The points X∗, X∗ are the two

2 Intuitively: At configuration (V, α), the single-link robot can rotate about V to the
right, but if it tries to rotate to the left, it is “stopped” by A.
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points at distance ` + τ from V . The points Xmax, Xmax are the left and right
stops in we replace W by the infinite line through W (i.e., the x-axis).

With the natural ordering of points on the x-axis, we can show that

X∗ < Xmax < O < Xmax < X∗

where O is the origin. Since ‖V C‖ and ‖V C ′‖ lie in (τ, τ + `), it follows that

X∗ < C ′ < C < X∗.

Two situations are shown in Figure 5. The next lemma is essentially routine,
once the points Xmax, Xmax have defined:

Lemma 5. Assume (3) and (4).
The left stop of (V,W ) isC ′ if Xmax ≤ C ′ (L1)

Xmax if C ′ < Xmax < C (L2)
C if C ≤ Xmax (L3)

The right stop of (V,W ) is
C if C ≤ Xmax (R1)
Xmax if C ′ < Xmax < C (R2)
C ′ if Xmax ≤ C ′ (R3)

The cases (L1-3) and (R1-3) in this lemma suggests 9 combinations, but 3 are
logically impossible: (L1-R1), (L1-R2), (L2-R1). The remaining 6 possibilities for
left and right stops are summarized in the following table:

(R1) (R2) (R3)

(L1) * * (C′, C′)

(L2) * (Xmax, Xmax) (Xmax, C
′)

(L3) (C,C) (C,Xmax) (C,C′)

Observe the extreme situations (L1-R3) or (L3-R1) where the the left and
right stops are equal to the same corner, and we are reduced to the point-point
analysis. Once we know the left and right stops for (V,W ), then we can use
Lemma 2 to calculate the angles α and β.

¶3. The Forbidden Zone of a Side and a Corner We now consider
the forbidden zone Forb`,τ (S,C) where S is a side and C a corner feature. Note
that is complementary to the previous case of Forb`,τ (V,W ) since C and V are
points and S and W are line segments. We can exploit the principle of reflection
symmetry of Lemma 1:

Forb`,τ (S,C) = π + Forb`,τ (C, S)

where Forb`,τ (C, S) is provided by previous Lemma (with C, S instead of V,W ).
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¶4. Cone Decomposition We have now provided formulas for computing
sets of the form Forb`,τ (V,W ) or Forb`,τ (S,C); such sets are called cones. We
now address the problem of computing Forb`,τ (Bt,W ) where Bt ⊆ R2 is a
(translational) box. We show that this set of forbidden angles can be written as
the union of at most 3 cones, generalizes a similar result in [11]. Towards such
a cone decomposition, we first classify the disposition of a wall W relative to a
box Bt. There is a preliminary case: if W intersects Bt ⊕D(0, τ), then we have

Forb`(B
t,W ) = S1.

Call this Case (0). Assuming W does not intersect Bt⊕D(0, τ), there are three
other possibilities, Cases (I-III) illustrated Figure 6.

V S

Corner (C)
S ′

S

S ′

W

V

S ′

V ′V

H(S)

C ′

Wall (W )
C

H(S) ∩H(S ′)

W

W

W

C ′ C

W

C C

C

C ′

S

S

KEY:

Side (S)

vertex (V )

H(S) Halfspace (H(S))

S

V ′

V ′

H(S) S

(III)

(IIb)

(IIa)(Ia)

(Ib)

V ′V V

Fig. 6: Cases (I-III) of Forb`,τ (Bt,W )

We first need a notation: if S ⊆ ∂(Bt) is a side of the box Bt, let H(S)
denote the open half-space which is disjoint from Bt and is bounded by the line
through S. Then we have these three cases:

(I) W ⊆ H(S) for some side s of box Bt.
(II) W ⊆ H(S) ∩H(S′) for two adjacent sides S, S′ of box Bt.

(III) None of the above. This implies that W ⊆ H(S)∪H(S′) for two adjacent
sides S, S′ of box Bt.

Theorem 1. Forb`,τ (Bt,W ) is the union of at most three thick cones.

Sketch proof: we try to reduce the argument to the case τ = 0 which is given in
[11]. In that case, we could write

Forb`(B
t,W ) = C1 ∪ C2 ∪ C3

where each Ci is a thin cone or an empty set. In the non-empty case, the cone
Ci has the form Forb`(Si, Ti) where Si ⊆ ∂Bt, Ti ⊆ W . The basic idea is that
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we now “transpose” Forb`(Si, Ti) to the thick version C ′i := Forb`,τ (Si, Ti). In
case Ci is empty, C ′i remains empty. Thus we would like to claim that

Forb`(B
t,W ) = C ′1 ∪ C ′2 ∪ C ′3.

This is almost correct, except for one issue. It is possible that some Ci is empty,
and yet its transpose C ′i is non empty. See proof in the full paper [17]. In case of
thin cones, the Ci’s are non-overlapping (i.e., they may only share endpoints).
But for thick cone decomposition, the cones will in general overlap.

4 Subdivision for Thick Non-Crossing 2-Link Robot

A resolution-exact planner for a thin self-crossing 2-link robot was described in
[11]. We now extend that planner to the thick non-crossing case.

We will briefly review the ideas of the algorithm for the thin self-crossing
2-link robot. We begin with a box B0 ⊆ R2 and it is in the subspace B0 × T2 ⊆
Cspace where our planning problem takes place. We are also given a polygonal
obstacle set Ω ⊆ R2; we may decompose its boundary ∂Ω into a disjoint union of
corners (=points) and edges (=open line segments) which are called (boundary)
features. Let B ⊆ Cspace be a box; there is an exact classification of B as
C(B) ∈ {FREE, STUCK, MIXED} relative to Ω. But we want a soft classification

C̃(B) which is correct whenever C̃(B) 6= MIXED, and which is equal to C(B)

when the width of B is small enough. Our method of computing C̃(B) is based
on computing a set φ(B) of features that are relevant to B. A box B ⊆ Cspace
may be written as a Cartesian product B = Bt ×Br of its translational subbox
Bt ⊆ R2 and rotational subbox Br ⊆ T2. In the T/R splitting method (simple
version), we split Bt until the width of Bt is ≤ ε. Then we do a single split
of the rotational subbox Br into all the subboxes obtained by removing all the
forbidden angles determined by the walls and corners in φ̃(Bt). This “rotational
split” of Br is determined by obstacles, unlike the “translational splits” of Bt.

¶5. Boxes for Non-Crossing Robot. Our basic idea for representing
boxes in the non-crossing configuration space Cspace(κ) is to write it as a pair
(B, XT) where XT ∈ {LT, GT}, and B ⊆ Cspace. The pair (B, XT) represents the set
B∩ (R2×T2

XT) (with the identification T2
LT = T2

< and T2
GT = T2

>). It is convenient
to call (B, XT) an X-box since they are no longer “boxes” in the usual sense.

An angular interval Θ ⊆ S1 that3 contains a open neighborhood of 0 = 2π
is said to be wrapping. Also, call Br = Θ1 × Θ2 wrapping if either Θ1 or Θ2

is wrapping. Given any Br, we can decompose the set Br ∩ (T2 \∆(κ)) into the
union of two subsets BrLT and BrGT, where BrXT denote the set Br ∩ T2

XT. In case
Br is non-wrapping, this decomposition has the nice property that each subset
BrXT is connected. For this reason, we prefer to work with non-wrapping boxes.
Initially, the box Br = T2 is wrapping. The initial split of T2 should be done

3 Wrapping intervals are either equal to S1 or has the form [s, t] where 2π > s > t > 0.
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in such a way that the children are all non-wrapping: the “natural” (quadtree-
like) way to split T2 into four congruent children has4 this property. Thereafter,
subsequent splitting of these non-wrapping boxes will remain non-wrapping.

Of course, BrXT might be empty, and this is easily checked: say Θi = [si, ti]
(i = 1, 2). Then Br< is empty iff t2 ≤ s1. and Br> is empty iff s2 ≥ t1. Moreover,
these two conditions are mutually exclusive.

We now modify the algorithm of [11] as follows: as long as we are just splitting
boxes in the translational dimensions, there is no difference. When we decide to
split the rotational dimensions, we use the T/R splitting method of [11], but
each child is further split into two X-boxes annotated by LT or GT (they are
filtered out if empty). We build the connectivity graph G (see Appendix A) with
these X-boxes as nodes. This ensures that we only find non-crossing paths. Our
algorithm inherits resolution-exactness from the original self-crossing algorithm.

The predicate isBoxEmpty(Br, κ, XT) which returns true iff (BrXT)∩(T2\∆(κ))
is empty is useful in implementation. It has a simple expression when restricted
to non-wrapping translational box Br:

Lemma 6.
Let Br = [a, b]× [a′, b′] be a non-wrapping box.
(a) isBoxEmpty(Br, κ, LT) = true iff κ ≥ b′ − a or 2π − κ ≤ a′ − b.
(b) isBoxEmpty(Br, κ, GT) = true iff κ ≥ b− a′ or 2π − κ ≤ a− b′.

5 Implementation and Experiments

We implemented our thick non-crossing 2-link planner in C++ and OpenGL on
the Qt platform. A preliminary heuristic version appeared [11,10]. Our code,
data and experiments are distributed5 with our open source Core Library. To
evaluate our planner, we compare it with several sampling algorithms in the open
source OMPL [15]. Besides, based on a referee’s suggestion, we also implemented
the 2-link (crossing and non-crossing) versions of Toggle PRM and Lazy Toggle
PRM (in lieu of publicly available code). We benefited greatly from the advice of
Prof. Denny in our best effort implementation. The machine we use is a MacBook
Pro with 2.5 GHz Intel Core i7 and 16GB DDR3-1600 MHz RAM.

Tables 1 and 2 summarize the results of two groups of experiments, which we
call Narrow Passages and Easy Passages. Each row in the tables represents
an experiment, each column represents a planner. There are 8 planners: 3 versions
of SSS, 3 versions of PRM and 2 versions of RRT. Only Table 1 is listed in
the paper; Table 2 (as well as other experimental results) are relegated to an
appendix. We extract two bar charts from Table 1 in Figure 7 for visualization
to show the average times and success rates of the planners in Narrow Passages.

4 This is not a vacuous remark – the quadtree-like split is determined by the choice
of a “center” for splitting. To ensure non-wrapping children, this center is neces-
sarily (0, 0) or equivalently (2π, 2π). Furthermore, our T/R splitting method (to be
introduced) does not follow the conventional quadtree-like subdivision at all.

5 http://cs.nyu.edu/exact/core/download/.
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Timing is in milliseconds on a Log10 scale. E.g., the bar chart Figure 7(a) for
Narrow Passages shows that the average time for the SSS(I) planner in the T-
Room experiment is about 2.9. This represents 102.9 ' 800 milliseconds; indeed
the actual value is 815.9 as seen in Table 1. On this bar chart, each unit represents
a power of 10. E.g., if one bar is at least k units shorter than another bar, we
say the former is “k orders of magnitude” faster (i.e., at least 10k times faster).
Conclusion: (1) SSS is at least an order of magnitude faster than each sampling
method, and (2) success rates of RRT-connect and Toggle PRM are usually (but
not always) best among sampling methods, but both are inferior to SSS.

Fig. 7: Bar Charts of Average Times and Success Rates

Two general remarks are in order. First, as in our previous work, we im-
plemented several search strategies in SSS. But for simplicity, we only use the
Greedy Best First (GBF) strategy in all the SSS experiments; GBF is typically
our best strategy. Next, OMPL does not natively support articulated robots such
as R2. So in the experiments of Tables 1 and 2, we artificially set `2 = 0 for all
the sampling algorithms (so that they are effectively one-link thick robots). This
is a suboptimal experimental scenario, but it only reinforces any exhibited su-
periority of our SSS methods. In the SSS versions, we set `2 = 0 for SSS(I) but
SSS(II) and SSS(III) represent (resp.) crossing and non-crossing 2-link robots
where `2 has the values shown in the column 4 header of Table 1.

(a) Maze (b) Hole-in-Wall (c) 8-Way Corridor (d) Bugtrap2

Fig. 8: More environments in our experiments

Reading the Tables: Each experiment (i.e., row) corresponds to a fixed
environment, robot parameters, initial and goal configurations. Figure 8 depicts
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these environments (save for the T-Room and 100 triangles from the introduc-
tion). We name the experiments after the environment. E.g., column 1 for the
Maze experiment, tells us that `1 = 16, τ = 10. The last two experiments use
the “double bugtrap” environment, but the robot parameters for one of them
ensures NO-PATH. For each experiment, we perform 40 runs of the following
planners: SSS(I-III), PRM, RRT, RRT-connect (all from OMPL), Toggle PRM
and Lazy Toggle PRM (our implementation). Each planner produces 4 statistics:

Average Time / Best Time / Standard Deviation / Success Rate,

abbreviated as Avg/Best/STD/Success, respectively. Success Rate is the frac-
tion of the 40 runs for which the planner finds a path (assuming there is one)
out of 40 runs. But if there is no path, our SSS planner will always discover
this, so its Success is 1; simultaneously, the sampling methods will time out
and hence their Success is 0. All timing is in milliseconds (msec). Column 2
contains the Record Statistics, i.e., the row optimum for these 4 statistics.
E.g., the Record Statistics for the T-Room experiment is 815.9/743.6/21.9/1.
This tells us the row optimum for Avg is 815.9 ms, for Best is 743.6 ms, for
STD is 21.9 ms, and for Success is 1. “Optimum” for the first three (resp.,
last) statistics means minimum (resp., maximum) value. The four optimal val-
ues may be achieved by different planners. In the rest part of the Table, we
have one column for each Planner, showing the ratio of the planner’s statistics
relative to the Record Statistics. The best performance is always indicated by
the ratio of 1. E.g., for T-Room experiment, the row maximum for Success is
1, and it is achieved by all SSS planners and RRT-Connect. The row minimum
for Avg, Best and STD are achieved by SSS(I), RRT-Connect and SSS(II),
resp. We regard the achievement of row optimum for Success and Avg (in that
order) to be the main indicator of superiority. Table 1 (and Table 2) show that
our planner is consistently superior to sampling planners. E.g., Table 1 shows
that in the T-Room experiment, the record average time of 815.9 milliseconds is
achieved by SSS(I). But SSS(III) is only 1.5 times slower, and the best sampling
method is RRT-Connect which is 3.6 times slower. For the Maze experiment,
again SSS(I) achieves the record average time of 1193.2 milliseconds, SSS(III) is
1.8 times slower, but none of the sampling methods succeeded in 40 trials.

In the Appendix, we have Table 2 which is basically the same as Table 1
except that we decrease the thickness τ in order to improve the success rates
of the sampling methods. Our planner needs an ε parameter, which is set to
1 in Table 1 and 2 in Table 2 (this is reasonable in view of narrow passage
demands). Sampling methods have many more tuning parameters; but we choose
the defaults in OMPL because we saw no systematic improvements in our partial
attempts to enhance their performance. In Toggle PRM, we use small k for k-
nearest neighbors in the obstacle graph and the similar default k as in OMPL
in the free graph. We set the time-out to be 30 seconds; with this cutoff, it takes
18 hours to produce the data of Table 1. In the appendix, we mention some
experiments to allow the sampling algorithm up to 0.5 hour.
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Table 1: Narrow Passages

6 Conclusion and Limitations

We have introduced a novel and efficient planner for thick non-crossing 2-link
robots. Our work contributes to the development of practical and theoretically
sound subdivision planners [16,18]. It is reasonable to expect a tradeoff between
the stronger guarantees of our resolution-exact approach versus a faster running
time for sampling approaches. But our experiments suggest no such tradeoffs at
all: SSS is consistently superior to sampling. We ought to say that although we
have been unable to improve the sampling planners by tuning their parameters,
it is possible that sampling experts might do a better job than us. But to actually
exceed our performance, their improvement would have to be dramatic. SSS has
no tuning, except in the choice of a search strategy (Greedy Best First), and a
value for ε. But we do not view ε as a tuning parameter, but a value determined
by the needs of the application.

Conventional wisdom maintains that subdivision will not scale to higher
DOF’s, and our current experience have been limited to at most 4DOF. We
interpret this wisdom as telling us that new subdivision techniques (such as
the T/R splitting idea) are needed to make higher DOF’s robots perform in
real-time. This is a worthy challenge for SSS which we plan to take up.
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APPENDIX A: Elements of Soft Subdivision Search

We review the the notion of soft predicates and how it is used in the SSS Frame-
work. See [16,18,11] for more details.

¶6. Soft Predicates. The concept of a “soft predicate” is relative to some
exact predicate. Define the exact predicate C : Cspace → {0,+1,−1} where
C(x) = 0/ + 1/− 1 (resp.) if configuration x is semi-free/free/stuck. The semi-
free configurations are those on the boundary of Cfree. Call +1 and −1 the
definite values, and 0 the indefinite value. Extend the definition to any
set B ⊆ Cspace: for a definite value v, define C(B) = v iff C(x) = v for all
x. Otherwise, C(B) = 0. Let (Cspace) denote the set of d-dimensional boxes

in Cspace. A predicate C̃ : (Cspace) → {0,+1,−1} is a soft version of C

if it is conservative and convergent. Conservative means that if C̃(B) is a

definite value, then C̃(B) = C(B). Convergent means that if for any sequence

(B1, B2, . . .) of boxes, if Bi → p ∈ Cspace as i → ∞, then C̃(Bi) = C(p)

for i large enough. To achieve resolution-exact algorithms, we must ensure C̃
converges quickly in this sense: say C̃ is effective if there is a constant σ > 1
such if C(B) is definite, then C̃(B/σ) is definite.

¶7. The Soft Subdivision Search Framework. An SSS algorithm main-
tains a subdivision tree T = T (B0) rooted at a given box B0. Each tree node
is a subbox of B0. We assume a procedure Split(B) that subdivides a given leaf
box B into a bounded number of subboxes which becomes the children of B
in T . Thus B is “expanded” and no longer a leaf. For example, Split(B) might
create 2d congruent subboxes as children. Initially T has just the root B0; we
grow T by repeatedly expanding its leaves. The set of leaves of T at any moment
constitute a subdivision of B0. Each node B ∈ T is classified using a soft predi-
cate C̃ as C̃(B) ∈ {MIXED, FREE, STUCK/} = {0,+1,−1}. Only MIXED leaves with
radius ≥ ε are candidates for expansion. We need to maintain three auxiliary
data structures:

– A priority queue Q which contains all candidate boxes. Let Q.GetNext()
remove the box of highest priority from Q. The tree T grows by splitting
Q.GetNext().

– A connectivity graph G whose nodes are the FREE leaves in T , and whose
edges connect pairs of boxes that are adjacent, i.e., that share a (d−1)-face.

– A Union-Find data structure for connected components of G. After each
Split(B), we update G and insert new FREE boxes into the Union-Find data
structure and perform unions of new pairs of adjacent FREE boxes.

Let BoxT (α) denote the leaf box containing α (similarly for BoxT (α)). The
SSS Algorithm has three WHILE-loops. The first WHILE-loop will keep splitting
BoxT (α) until it becomes FREE, or declare NO-PATH when BoxT (α) has radius
less than ε. The second WHILE-loop does the same for BoxT (β). The third
WHILE-loop is the main one: it will keep splitting Q.GetNext() until a path is
detected or Q is empty. If Q is empty, it returns NO-PATH. Paths are detected
when the Union-Find data structure tells us that BoxT (α) and BoxT (β) are in
the same connected component. It is then easy to construct a path. Thus we get:
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SSS Framework:
Input: Configurations α, β, tolerance ε > 0, box B0 ∈ Cspace.

Initialize a subdivision tree T with root B0.
Initialize Q,G and union-find data structure.

1. While (BoxT (α) 6= FREE)
If radius of BoxT (α)) is < ε, Return(NO-PATH)
Else Split(BoxT (α))

2. While (BoxT (β) 6= FREE)
If radius of BoxT (β)) is < ε, Return(NO-PATH)
Else Split(BoxT (β))

. MAIN LOOP:
3. While (Find(BoxT (α)) 6= Find(BoxT (β)))

If QT is empty, Return(NO-PATH)
B ← QT .GetNext()
Split(B)

4. Generate and return a path from α to β using G.

The correctness of our algorithm does not depend on how the priority of Q
is designed. See [18] for the correctness of this framework under fairly general
conditions.

APPENDIX B: Detail of Experimental Results

Table 2 follows the same statistic notations as Table 1. From Table 2, we have
concluded that Toggle PRM and RRT-Connect usually have best success rates
among sampling methods. Moreover, Toggle PRM and Lazy Toggle PRM have
a chance to find the path in a short time. But, in the double bug trap sce-
nario, RRT-Connect cannot find a path in 40 runs; in the maze scenario, both
Toggle PRM and Lazy Toggle PRM cannot find a path in 40 runs. With the
relaxed thickness τ , SSS(I) still outperforms other sampling methods. Further-
more, even SSS(III) with non-crossing constraint is almost consistently superior
to the sampling based planners with two exceptions: in the 100 random trian-
gles scenario, PRM is about 1.36 times faster than SSS(III) and RRT-Connect
is approximately 1.07 times faster than SSS(III). But these comparisons may
be misleading: SSS(III) plans for a 2-link robot while the sampling planners
are for 1-link robots (as there were no articulated robots native to OMPL).
RRT-Connect uses bidirectional search while SSS(III) is unidirectional. We are
planning to introduce bidirectional search into SSS.

Before comparing SSS with Toggle PRM and Lazy Toggle PRM in Tables 3
and 4, we first show a sample output of Toggle PRM in the Hole-in-Wall scenario
(Figure 9). The figure shows free graph in green and obstacle graph in red. Free
graph means the nodes are in free configuration space and its edges indicate that
there exists a path in free space connecting endpoints. Obstacle graph means that
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Table 2: Easy Passages

Fig. 9: One Example Result of Toggle PRM: subfigures from left to right are its
trace, free graph, obstacle graph, and mixed graph result.

the nodes are not in free configuration space and its edges indicate that there
exists a path in the obstacle configuration space.

Table 3 are experiments in Narrow Passages. While, Table 4 are in Easy
Passages. For our SSS planner, ε is equal to 1 for Table 3 and ε is equal to 2 for
Table 4. In these Tables, we time out a planner in 30 seconds. In Table 3, most
sampling planners reach the time limitation. On the other hand, SSS planner
always produces a path or no-path within 4 seconds. The worst average time
of SSS is 3.646 seconds when solving double bug trap environment with non-
crossing 2-link robots. The best average time of SSS is 0.312 seconds when solving
100 random triangles environment with crossing 2-link robots.

In Table 4, we decrease thickness τ to make it easier for Toggle PRM and
Lazy Toggle PRM to find a path. In some situations, Toggle PRM and Lazy
Toggle PRM may find the path almost as quickly as SSS. For example, in their
best cases for the T-Room and 8-Way Corridor scenarios, Toggle PRM is about
1.6 and 1.4 times slower than SSS and Lazy Toggle PRM is approximately as fast
as SSS. But, on average, SSS outperforms Toggle PRM and Lazy Toggle PRM
by at least an order of magnitude. In conclusion, based on Tables 3 and 4, our
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Table 3: Narrow Passages Result with Crossing and Non-crossing 2-link Robots

SSS planners is superior to Toggle PRM and Lazy Toggle PRM with crossing
and non-crossing 2-link robots.

We have conducted an exhaustive experiment using 30 minutes timeout for
Tables 3 and 4. These results are recorded in Tables 3* and 4*. However, we only
do a single run of each environment. By comparing it with our SSS planner and
previous Toggle PRM results, giving more time does improve the success rates.
For example, in the Narrow Passages scenario (Table 3*), by taking more time,
Toggle PRM can find a path in the T-Room, 100 Random Triangles, and Double
Bug Trap environment in a single run with crossing 2-link robots. From Table 4*,
not only in the T-Room, 8 Way Corridors, Hole-in-Wall, and Double Bug Trap
environment with crossing 2-link robots but also in the T-Room, 100 Random
Triangles, and 8 Way Corridors with non-crossing 2-link robots, it can make
obvious improvement. In another point of view, if sampling methods like Toggle
PRM are likely to find a path, there is a trade-off between timeout limitation and
success rates. On the other hand, in our SSS planner, there is no such trade-off.
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