
Configuration Lattices for Planar Contact Manipulation Under Uncertainty

Michael C. Koval∗, David Hsu†, Nancy S. Pollard∗, and Siddhartha S. Srinivasa∗

mkoval@cs.cmu.edu, dyhsu@comp.nus.edu.sg, {nsp, siddh}@cs.cmu.edu
∗The Robotics Institute, Carnegie Mellon University

†Department of Computer Science, National University of Singapore

Abstract—This work addresses the challenge of a robot using
real-time feedback from contact sensors to reliably manipulate
a movable object on a cluttered tabletop. We formulate contact
manipulation as a partially observable Markov decision process
(POMDP) in the joint space of robot configurations and object
poses. The POMDP formulation enables the robot to actively
gather information and reduce the uncertainty on the object
pose. Further, it incorporates all major constraints for robot
manipulation: kinematic reachability, self-collision, and collision
with obstacles. To solve the POMDP, we apply DESPOT, a state-
of-the-art online POMDP algorithm. Our approach leverages
two key ideas for computational efficiency. First, it performs
lazy construction of a configuration-space lattice by interleaving
construction of the lattice and online POMDP planning. Second,
it combines online and offline POMDP planning by solving
relaxed POMDP offline and using the solution to guide the online
search algorithm. We evaluated the proposed approach on a
seven degree-of-freedom robot arm in simulation environments.
It significantly outperforms several existing algorithms, including
some commonly used heuristics for contact manipulation under
uncertainty.

I. INTRODUCTION

Our goal is to enable robots to use real-time feedback from
contact sensors to reliably manipulate their environment. Con-
tact sensing is an ideal source of feedback for a manipulator
because contact is intimately linked with manipulation: the
sense of touch is unaffected by occlusion and directly observes
the forces that the robot imparts on its environment.

However, contact sensors suffer from a key limitation: they
provide rich information while in contact with an object, but
little information otherwise. Fully utilizing contact sensors
requires active sensing. Consider the robot shown in fig. 1
that is trying to push a bottle into its palm. The robot is
uncertain about the initial pose of the bottle, has only an
approximate model of physics, and receives feedback from
noisy contact sensors on its fingertips. The robot executes an
information-gathering action by moving its hand laterally to
force the bottle into one of its contact sensors. Once the bottle
is localized, it moves to achieve the goal.

In this paper, our goal is to autonomously generate policies
that allow a robot to use real-time feedback from contact
sensors to reliably manipulate objects under uncertainty. We
specifically consider the problem of quasistatic tabletop ma-
nipulation via pushing [33]. The robot’s goal is to push a
movable object into a hand-relative goal region while avoiding
collision with stationary obstacles in the environment.

We formulate the planar contact manipulation problem as a
partially observable Markov decision process (POMDP) [23,

(a) Robot and Environment

(b) Hand-Relative POMDP

(c) Configuration Lattice

Fig. 1: A robot (a) uses real-time feedback from contact
sensors to manipulate an bottle on a cluttered table. (b) Our
approach uses policies from the obstacle free, hand-relative
contact manipulation problem to a search in the full state
space. (c) The configuration of the robot is represented as
a point in a state-space lattice consisting of feasible (),
infeasible (), and unevaluated () edges. The probability
distribution over the pose of the bottle is shown as a collection
of semi-transparent renders. Best viewed in color.

47] with a reward function that drives the robot towards the
goal. Prior work has successfully used an offline POMDP
solver [28] to find robust, closed-loop policies for manipu-
lating an object relative to the hand [17, 27].

Unfortunately, these hand-relative policies perform poorly
when executed on a robotic manipulator because of limited
reachability, collision with the environment, and other types
of kinematic constraints. These constraints occur frequently
during execution, but cannot be represented in a hand-relative
POMDP (Rel-POMDP). In this paper, we address this limi-
tation by planning in a POMDP that includes both the fully-
observable configuration of the manipulator and the partially-
observable pose of the object.

Finding a near-optimal policy for this POMDP is chal-
lenging for two reasons. First, a manipulator’s configuration
space is continuous and high-dimensional, typically having
at least six dimensions. Second, it is difficult to perform
pre-computation because the optimal policy may dramatically
change when an obstacle is added to, removed from, or moved
within the environment.

ar
X

iv
:1

60
5.

00
16

9v
1

 [
cs

.R
O

]
 3

0
A

pr
 2

01
6

mailto:mkoval@cs.cmu.edu
mailto:dyhsu@comp.nus.edu.sg
mailto:nsp@cs.cmu.edu
mailto:siddh@cs.cmu.edu

We leverage two key insights to overcome those challenges:
1) We define a configuration lattice PODMP (Lat-POMDP)

that models both the configuration of the robot and the
pose of the object. Lat-POMDP lazily constructs [8, 41]
a lattice in the robot’s configuration space and uses the
lattice to guarantee that the optimal policy does not take
infeasible actions (section IV).

2) We prove that the optimal value function of Rel-POMDP
is an upper bound on the optimal value function of Lat-
POMDP. We use this fact to create a heuristic that guides
DESPOT [48], a state-of-the-art online POMDP solver,
to quickly find a near-optimal policy for Lat-POMDP
with no environment-specific offline pre-computation
(section V).

We validate the efficacy of the proposed algorithm on a
simulation of HERB [49], a mobile manipulator equipped with
a 7-DOF Barrett WAM arm [45] and the BarrettHand [51] end-
effector, manipulating an object on a cluttered tabletop (fig. 1,
section VI). First, we confirm that DESPOT successfully uses
information-gathering actions to achieve good performance
in the absence of kinematic constraints. Then, we show that
the proposed algorithm outperforms five baselines in cluttered
environments.

The proposed algorithm demonstrates that it is possible for
an online POMDP planner to simultaneously reason about
object pose uncertainty and kinematic constraints in contact
manipulation. We are excited about the prospect of exploiting
the scalability of recent developments in online POMDP
solvers, like DESPOT, to solve more complex tasks in future
work (section VII).

II. RELATED WORK

Our work builds on a long history of research on enabling
robotics reliably manipulating objects under uncertainty. Early
work focused planning open-loop trajectories that can suc-
cessfully reconfigure an object despite non-deterministic un-
certainty [29] in its initial pose [5, 14]. More recently, the
same type of worst-case, non-deterministic analysis has been
used to plan robust open-loop trajectories for grasping [9, 10]
and rearrangement planning [11, 25] under the quasistatic
assumption [33, 34]. Our approach also makes the quasistatic
assumption, but differs in two important ways: it (1) considers
probabilistic uncertainty [29] and (2) produces a closed-loop
policy that uses real-time feedback from contact sensors.

Another line of research aims to incorporate feedback
from contact sensors into manipulator control policies. This
approach have been successfully used to optimize the quality
of a grasp [42] or servo towards a desired contact sensor
observation [30, 52]. It is also possible to directly learn a
feedback policy that is robust to uncertainty [38, 50]. These
approaches have achieved impressive real-time performance,
but require a higher-level planner to specify the goal.

One common approach is to plan a sequence of move-until-
touch actions that localize an object, then execute an open-loop
trajectory to complete the task [16, 21, 39]. Other approaches,
like our own, formulate the problem as a POMDP [23, 47]

xr

q

(a) State, a = (q, xr)

(b) Action, a = (ξ, T)

(c) Observation, o

Fig. 2: We formulate planar contact manipulation as a POMDP
with a state space (a) that contains the robot configuration
q and the pose of the movable object xr. The environment
contains one movable object (white glass) and static obstacles.
(b) action is a short joint-space trajectory ξ of duration T .
After executing an action, the robot receives feedback from
(c) binary contact sensors on its end effector.

and find a policy that only takes information-gathering actions
when they are necessary to achieve the goal [18–20].

Unfortunately, most of this work assumes that the end-
effector can move freely in the workspace and that objects
do not significantly move when touched. More recent ap-
proaches have relaxed the latter assumption by incorporating a
stochastic physics model into the POMDP [17, 27] and using
SARSOP [28], an offline point-based [40] POMDP solver, to
find a near-optimal policy for manipulating an object relative
to the hand. Unfortunately, hand-relative policies often fail
when executed on a manipulator due to kinematic constraints
or collision with obstacles. We use a hand-relative policy to
guide DESPOT [48], an online POMDP solver [44], in Lat-
POMDP, a mixed-observable model [36] that includes these
constraints.

Lat-POMDP represents the robot’s configuration space as
a state lattice [41], a concept that we borrow from mobile
robot navigation [31] and search-based planning for manipu-
lators [8]. Similar to these approaches, and many randomized
motion planners [3, 15], we use lazy evaluation to defer
collision checking until an action is queried by the planner.

III. PROBLEM FORMULATION

We formulate planar contact manipulation as a partially ob-
servable Markov decision process (POMDP) [47]. A POMDP
is a tuple (S,A,O, T,Ω, R) where S is the set of states, A is
the set of actions, O is the set of observations, T (s, a, s′) =
p(s′|s, a) is the transition model, Ω(s, a, o) = p(o|s, a) is the
observation model, and R(s, a) : S × A → R is the reward
function.

The robot does not know the true state st. Instead, the
robot tracks the belief state b(st) = p(st|a1:t, o1:t), which is
a probability distribution over the current state st conditioned
on the history of previous actions a1:t = {a1, . . . , at} and
observations o1:t = {o1, . . . , ot}. The set of all belief states is
known as belief space ∆.

Our goal is to find a policy π : ∆ → A over belief space
that optimizes the value function

V π [b] = E

[∞∑
t=0

γtR(st, at)

]
where the expectation E[·] is taken over the sequence of states
visited by π. We use V ∗ to denote the optimal value function,
the value function of an optimal policy. The discount factor
γ ∈ [0, 1) adjusts the relative value of present versus future
reward.

In our problem, state s = (q, xo) ∈ S is the configuration
of the robot q ∈ Q and the pose of the movable object
xo ∈ Xo = SE(3) (fig. 2a). An action a = (ξ, T) ∈ A
is a trajectory ξ : [0, T] → Q that starts in configuration
ξ(0) and ends configuration ξ(T) at time T (fig. 2b). We
assume that uncertainty over the pose of the object dominates
controller and proprioceptive error. Therefore, we treat q as
a fully-observable state variable and neglect the dynamics of
the manipulator; i.e. model it as being position controlled.

The robot executes a quasistatic, position controlled push if
it comes in contact with the movable object. The quasistatic
assumption states that friction is high enough to neglect the
acceleration of the object; i.e. the object stops moving as soon
as it leaves contact [34]. This approximation is accurate for
many tabletop manipulation tasks [10, 11].

We define the stochastic transition model T (s, a, s′) in
terms of a deterministic quasistatic physics model [33] by
introducing noise into the parameters [12]. We do not attempt
to refine our estimate of these parameters during execution.
After executing an action, the robot receives an observation
o ∈ {0, 1}no = O from its no binary contact sensors (fig. 2c).
We assume that a stochastic observation model Ω(s′, a, o) is
available, but make no assumptions about its form.

The robot’s goal is to push the movable object into a hand-
relative goal region Xgoal ⊆ X . We encode this in the reward
function

R(s, a) =

{
0 : [Tee(q)]

−1xo ∈ Xgoal

−1 : otherwise

where Tee : Q → SE(3) is the forward kinematics of the
end effector. The reward function penalizes states where the
movable object is outside of Xgoal. Note that the choice of −1
reward is arbitrary: any negative reward would suffice.

IV. CONFIGURATION LATTICE POMDP

Solving the POMDP formulated in section III is challenging
because the state space is continuous, the action space is
infinite dimensional, the transition model is expensive to

evaluate, and the optimal policy may perform long-horizon
information gathering.

In this section, we simplify the problem by constraining the
end effector to a fixed transformation relative to the support
surface (section IV-A) and build a lattice in configuration space
(section IV-B). Configurations in the lattice are connected
by action templates that start and end on lattice points (sec-
tion IV-C). Finally, we define a configuration lattice POMDP
that penalizes infeasible actions to insure that the optimal
policy will never take an infeasible action (section IV-E).

A. Planar Constraint

We assume that the robot’s end effector is constrained to
have a fixed transformation supTee ∈ SE(3) relative to the
support surface Tsup ∈ SE(3). A configuration q satisfies this
constraint iff

Tee(q) = Tsup
supTee Rot(θr, êz) Trans(xr, yr, 0) (1)

where (xr, yr, θr) ∈ Xr = SE(2) is the pose of the end effector
in the plane. Rot(θ, v̂) denotes a rotation about axis v̂ by angle
θ and Trans(v) denotes a translation by vector v.

We also assume that the movable object also has a fixed
transformation supTo ∈ SE(3) relative to the support surface;
i.e. that it does not tip or topple. We parameterize its pose as

xo = Tsup
supTo Trans(xo, yo, 0) Rot(θo, êz)

where (xo, yo, θo) ∈ Xo = SE(2) is its pose in the plane.

B. Configuration Lattice

We discretize the space of the end effector poses Xr by
constructing a state lattice Xr,lat ⊆ Xr with a translational
resolution of ∆xr,∆yr ∈ R+ and an angular resolution of
∆θr = 2π/nθ for some integer value of nθ ∈ N [41]. The
lattice consists of the discrete set of points

Xr,lat = {(ix∆xr, iy∆yr, iθ∆θr) : ix, iy, iθ ∈ Z}.

Each lattice point xr ∈ Xr,lat may be reachable from
multiple configurations. We assume that we have access to
an inverse kinematics function qlat(xr) that returns a single
solution {q} that satisfies Tee(q) = xr or ∅ if no such solution
exists. A solution may not exist if xr is not reachable, the
end effector is in collision, or the robot collides with the
environment in all possible inverse kinematic solutions.

Instead of planning in S, we restrict ourselves to the state
space Slat = Qlat × Xo where Qlat =

⋃
xr∈Xr,lat

qlat(xr) is the
discrete set of configurations returned by qlat(·) on all lattice
points. Note that, despite the structure of the Cartesian lattice,
planning occurs in configuration space Q, not the task space
Xr.

C. Action Templates

Most actions do not transition between states in the lattice
Slat. Therefore, we restrict ourselves to action that are instan-
tiated from one of a finite set Alat of action templates. An
action template alat = (ξlat, T) ∈ Alat is a Cartesian trajectory
ξlat : [0, T] → SE(3) that specifies the relative motion of the

end effector. The template starts at the origin ξlat(0) = I and
ends at some lattice point ξlat(T) ∈ Xr,lat. It is acceptable for
multiple actions templates in Alat to end at the same lattice
point or have different durations.

An action a = (ξ, T) ∈ A satisfies template alat at lattice
point xr ∈ Xr,lat if it satisfies three conditions:

1) starts in configuration ξ(0) = qlat(xr)
2) ends in configuration ξ(T) = qlat(xrξlat(T))
3) satisfies Tee(ξ(τ)) = xrξlat(τ) for all 0 ≤ τ ≤ T .

These conditions are satisfied if ξ moves between two config-
urations in Qlat and produces the same end effector motion as
the Cartesian trajectory ξlat.

We define the function Proj(xr, a) 7→ alat to map an
action a to the template alat it instantiates. The pre-image
Proj−1(xr, alat) contains the set of all possible instantiations
of action template alat at xr. We assume that we have access
to a local planner φ(q, alat) that returns a singleton action
{a} ⊆ Proj−1(q, alat) from this set or ∅ to indicate failure.
The local planner may fail due to kinematic constraints, end
effector collision, or robot collisions.

D. Lattice POMDP

We use the lattice to define a configuration lattice POMDP,
Lat-POMDP, (Slat, Alat, O, Tlat,Ωlat, Rlat) with state space
Slat = Xr,lat ×Xo. The structure of the lattice guarantees that
that all instantiations Proj−1(q, alat) of the action template alat
execute the same Cartesian motion ξlat of the end effector. This
motion is independent of the starting pose of the end effector
xr and configuration qlat(xr) of the robot.

If the movable object only contacts the end effector—not
other parts of the robot or the environment—then the motion
of the object is also independent of these variables. We refer
to a violation of this assumption as un-modelled contact.
The lattice transition model Tlat(slat, alat, s

′
lat) is identical to

T (s, a, s′) when alat is feasible and no un-modelled contact oc-
curs. If either condition is violated, the robot deterministically
transitions to an absorbing state sinvalid. Similarly, the lattice
observation model Ωlat(slat, alat, o) is identical to Ω(s, a, o) for
valid states and is uniform over O for slat = sinvalid.

We penalize invalid states, infeasible actions, and un-
modelled contact in the reward function

Rlat(slat, alat) =


−1 : slat = sinvalid

−1 : φ(qlat(xr), alat) = ∅
−1 : xo 6∈ Xg

0 : otherwise

by assigning mins∈S,a∈AR(s, a) = −1 reward to them.

E. Optimal Policy Feasibility

Our formulation of Lat-POMDP guarantees that an optimal
policy π∗lat will never take an infeasible action:

Theorem 1. An optimal policy π∗lat of Lat-POMDP will not
execute an infeasible action in belief b if V ∗lat[b] >

−1
1−γ .

Proof: Suppose V ∗lat[b] >
−1
1−γ and an optimal policy πlat

executes the invalid action in belief state b. The robot receives

a reward of −1 and transitions to sinvalid. For all time after that,
regardless of the actions that πlat takes, the robot receives a
reward of Rlat(sinvalid, ·) = −1 at each timestep. This yields
a total reward of V πlat

lat = −1
1−γ , which is the minimum reward

possible to achieve.
The value function of the optimal policy satisfies the

Bellman equation V ∗lat[b] = arg maxalat∈Alat
Q∗[b, alat], where

Q∗[b, a] denotes the value of taking action a in belief state b,
then following the optimal policy for all time. This contradicts
the fact that V ∗lat[b] >

−1
1−γ and V πlat

lat [b] = −1
1−γ . Therefore, πlat

must not be the optimal policy.
We can strengthen our claim if (1) we guarantee that every

lattice point reachable from the q0 has at least one feasible
action and (2) it is possible to achieve the goal with non-zero
probability. Under those assumptions we know that V ∗lat[b] >
−1
1−γ and theorem 1 guarantees that π∗lat will never take an
infeasible action. One simple way to satisfy condition (1) is
to require that all actions are reversible; i.e. make the lattice
an undirected graph.

V. ONLINE POMDP PLANNER

Lat-POMDP has a reward function that changes whenever
obstacles are added to, removed from, or moved within the
environment. An offline POMDP solver, like point-based value
iteration [40] or SARSOP [28] would require re-computing the
optimal policy for each problem instance.

Instead, we use DESPOT, a state-of-the-art online POMDP
solver that uses regularization to balance the size of the policy
against its quality [48]. DESPOT incrementally explores the
action-observation tree rooted at b(s0) by performing a series
of trials. Each trial starts at the root node, descends the tree,
and terminates by adding a new leaf node to the tree.

In each step, DESPOT chooses the action that maximizes
the upper bound V̄ [b] and the observation that maximizes
weighted excess uncertainty, a regularized version of the gap
V̄ [b]−V[b] between the upper and lower bounds. This search
strategy heuristically focuses exploration on the optimally
reachable belief space [28]. Finally, DESPOT backs up the
upper and lower bounds of all nodes visited by the trial.
There are key two challenges in solving Lat-POMDP:

First, we must construct the configuration lattice. We use
lazy evaluation to interleave lattice construction with planning.
By doing so, we only evaluate the parts of the lattice that are
visited by DESPOT (section V-A).

Second, we must provide DESPOT with upper and lower
bounds on the optimal value function to guide its search. We
derive these bounds from a relaxed version of the problem that
ignores obstacles by only considering the pose of the movable
object relative to the hand (sections V-B to V-D).

A. Lattice Construction

DESPOT uses upper and lower bounds to focus its search on
belief states that are likely to be visited by the optimal policy.
We exploit this fact to avoid constructing the entire lattice.
Instead, we interleave lattice construction with planning and

(a) Full Lattice (b) Visited Lattice

Fig. 3: Comparison of the (a) full lattice to the (b) subset
visited by DESPOT, with feasible (), infeasible () and
unevaluated () edges. We interleave planning with lattice
construction to construct only the subset of the lattice visited
by the search. This figure is best viewed in color.

only instantiate the lattice edges visited by the search, similar
to the concept lazy evaluation used in motion planning [3, 15].

We begin with no pre-computation and run DESPOT until
it queries the transition model Tlat, observation model Ωlat, or
reward function Rlat for a state-action pair (xr, alat) that has not
yet been evaluated. When this occurs, we pause the search and
check the feasibility of the action by running the local planner
φ(xr, alat). We use the outcome of the local planner to update
the Lat-POMDP model and resume the search.

Figure 3 shows the (a) full lattice and (b) subset evaluated
by DESPOT. Feasible action templates are shown as green,
infeasible action templates are shown as red, and unevalu-
ated action templates are shown as gray. Note that DESPOT
evaluates only a small number of state-action pairs, obviating
the need for performing computationally expensive collision
checks on much of the lattice.

Note that it is also possible to use a hybrid approach by
evaluating some parts of the lattice offline and deferring others
to be computed online. For example, we may compute inverse
kinematics solutions, kinematic feasibility checks, and self-
collision checks in an offline pre-computation step. These
values are fixed for a given support surface and, thus, can
be used across multiple problem instances. Other feasibility
tests, e.g. collision with obstacles in the environment, are lazily
evaluated online.

B. Hand-Relative POMDP

Recall from section IV that the motion of the end ef-
fector and the object is independent of the pose of the
end effector xr or the robot configuration q. We use
this insight to define a hand-relative POMDP Rel-POMDP
(Srel, Alat, O, Trel,Ωrel, Rrel) with a state space that only in-
cludes the pose xo,rel = x−1r xo ∈ Srel of the movable object
relative to the hand. The hand-relative transition model Trel,
observation model Ωrel, and reward function Rrel are identical
to the original model when no un-modelled contact occurs.
Rel-POMDP is identical to the hand-relative POMDP models
used in prior work [17, 26, 27] and is equivalent to assuming

that environment is empty and the robot is a lone end effector
actuated by an incorporeal planar joint.

C. Lat-POMDP Upper Bound

Rel-POMDP is a relaxation of Lat-POMDP that treats all
actions as feasible. As such:

Theorem 2. The optimal value function V ∗rel of Rel-POMDP
is an upper bound on the optimal value function V ∗lat of Lat-
POMDP: V ∗rel[b] ≥ V ∗lat[b] for all b ∈ ∆.

Proof: We define a scenario ψ = (s0, ψ1, ψ2, . . .) as
an abstract simulation trajectory that captures all uncertainty
in our POMDP model [35, 48]. A scenario is generated by
drawing the initial state so ∼ b(s0) from the initial belief
state and each random number ψ1 ∼ uniform[0, 1] uniformly
from the unit interval. Given a scenario ψ, we assume that the
outcome of executing a sequence of actions is deterministic;
i.e. all stochasticity is captured in the initial state s0 and the
sequence of random numbers ψ1, ψ2,

Suppose we have a policy π for Rel-POMDP that executes
the sequence of actions alat,1, alat,2, . . . in scenario ψ. The
policy visits the sequence of states srel,1, srel,2, . . . and receives
the sequence of rewards R1, R2,

Now consider executing π in the same scenario ψ on Lat-
POMDP. Without loss of generality, assume that π first takes
an infeasible action or makes un-modelled contact with the
environment at timestep H . The policy receives the same
sequence of rewards R1, R2, . . . , R2, . . . , RH−1,−1,−1, . . .
as it did on Rel-POMDP until timestep H . Then, it receives
−1 reward for taking an infeasible action, transitions to the
absorbing state sinvalid, and receives −1 reward for all time.

Policy π achieves value V πrel,ψ =
∑∞
t=0 γ

tRt on Rel-

POMDP and V πlat,ψ =
∑H−1
t=0 γtRt − γH

1−γ on Lat-POMDP in
scenario ψ. Since Rt ≥ −1, we know that V πrel,ψ ≥ V πlat,ψ . The
value of a policy V π = Eψ[V πψ] is the expected value of π
over all scenarios.

Consider the optimal policy π∗lat of Lat-POMDP. There
exists some Rel-POMDP policy πmimic that executes the same
sequence of actions as π∗lat in all scenarios. From the reasoning
above, we know that V πmimic

rel ≥ V ∗lat. We also know that
V ∗rel ≥ V

πmimic
rel because the value of any policy is a lower bound

on the optimal value function.
Therefore, V ∗rel ≥ V πmimic

rel ≥ V ∗lat; i.e. the optimal value
function V ∗rel of Rel-POMDP is an upper bound on the optimal
value function V ∗lat of Lat-POMDP.

This result implies that any upper bound V̄rel is an upper
bound on the value of the optimal value function V̄rel ≥ V ∗rel ≥
V ∗lat. Therefore, we may also use V̄rel as an upper bound on
Lat-POMDP. The key advantage of doing so is that the V̄rel
may be pre-computed once per hand-object pair. In contrast,
the same upper bound on V̄lat must be re-computed for each
problem instance.

D. Lower Bound

We also use Rel-POMDP as a convenient method of con-
structing a lower bound Vlat for Lat-POMDP. As explained

above, the value of any policy is a lower bound on the optimal
value function. We use offline pre-computation to compute
a rollout policy on πrollout for Rel-POMDP once per hand-
object pair. For example, we could use MDP value iteration to
compute a QMDP policy [32] or a point-based method [28, 40]
to find a near-optimal policy.

Given an arbitrary policy πrollout computed in this way,
we construct an approximate lower bound Vlat for Lat-
POMDP by estimating the value V πrollout

lat of executing πrollout
on Lat-POMDP using rollouts. Approximating a lower bound
with a rollout policy is commonly used in POMCP [46],
DESPOT [48], and other online POMDP solvers.

VI. EXPERIMENTAL RESULTS

We validated the efficacy of the proposed algorithm by
running simulation experiments on a robot equipped with a
7-DOF Barrett WAM arm [45] and the BarrettHand [51] end-
effector. The robot attempts to push a bottle into the center of
its palm on a table littered with obstacles.

A. Problem Definition

The state space of the problem consists of the configuration
space Q = R7 of the robot and the pose of the object Xo
relative to the end effector. The robot begins in a known initial
configuration q0 and the initial pose of the bottle xo is drawn
from a Gaussian distribution centered in front of the palm with
a covariance matrix of Σ1/2 = diag[5 mm, 10 cm]. At each
timestep, the robot chooses an action alat that moves 1 cm
at a constant Cartesian velocity in the xy-plane, receives an
observation o from its no = 2 fingertip contact sensors, and
receives a reward R.

The goal is to push the object into the 4 cm× 6 cm goal
region Xgoal centered in front of the palm. We evaluate the
performance of the policy by: (1) computing the probability
that the object is in the goal region at each timestep and (2)
computing the discounted sum of reward with γ = 0.99. If the
robot takes an infeasible action, the simulation immediately
terminates and the robot receives −1 reward for all remaining
timesteps

1) Transition Model: The motion of the object is assumed
to be quasistatic [33] and is simulated using the Box2D
physics simulator [7]. We simulate uncertainty in the model by
sampling the hand-object friction coefficient and center of the
object-table pressure distribution from Gaussian distributions
at each timestep [12, 26].

2) Observation Model: After each timestep the robot re-
ceives a binary observation from a contact sensor on each of its
fingertips. We assume that the sensors perfectly discriminate
between contact and no-contact [26, 27], but provide no
additional information about where contact occurred on the
sensor. The robot must take information-gathering actions, by
moving side-to-side, to localize the object relative to the hand.

3) Rel-POMDP Discretization: We discretize Srel with a
1 cm resolution over a region of size 20 cm× 44 cm centered
around the palm. We compute a transition model, observation
model, and reward function for Rel-POMDP by taking the

expectation over the continuous models by assuming that
each discrete state represents a uniform distribution over the
corresponding area of the continuous state space. We use these
discrete models in both our Rel-POMDP and Lat-POMDP
experiments.

States that leave the discretized region around the hand are
treated as un-modelled contact. As in prior work [17, 27],
discretization is necessary to speed up evaluation of the model
and to enable calculation of the QMDP and SARSOP baseline
policies described below.

B. State Lattice Construction

The robot’s actions tessellate Xr into a lattice centered at
Tee(q0) with a resolution of ∆xr = ∆yr = 1 cm. First,
we select a configuration qlat(xr) using an iterative inverse
kinematics solver initialized with the solution of an adjacent
lattice point. Then, we use a Cartesian motion planner to
find a trajectory that connects adjacent points while satisfying
the constraints imposed by the action templates. In most
configurations, the 1 cm lattice is sufficiently dense to simply
connect adjacent lattice points with a straight-line trajectory in
configuration space. Forward kinematics, inverse kinematics,
and collision detection is provided by the Dynamic Animation
and Robotics Toolkit (DART) [1].

As described in section V-A, the kinematic structure of the
lattice is computed offline for the height of the support surface,
but no collision checking is performed. Collision checks are
deferred to runtime when the planner queries the feasibility
of an action template. At that point, the edge is checked for
collision against the environment using the Flexible Collision
Library (FCL) [37].

C. Policies

We compare the quality of the policy produced by the
proposed algorithm (Lat-DESPOT) against several policies:

1) Rel-QMDP: Choose the action at each timestep that
greedily optimizes the single-step Q-value of the MDP value
function associated from Rel-POMDP [32]. QMDP is optimal
if all uncertainty disappears after executing one action and,
as a result, does not perform multi-step information-gathering
actions. QMDP is commonly used in robotic applications due
to its speed, simplicity, and good performance in domains
where information is easily gathered [13, 22].

2) Rel-SARSOP: Compute a near-optimal policy for Rel-
POMDP using SARSOP, an offline point-based method [28].
Rel-SARSOP serves as a baseline to demonstrate that
information-gathering is beneficial and to verify that DESPOT
is capable of finding a near-optimal solution. SARSOP has
been shown to perform well on Rel-POMDP in prior work [17,
27]. As in that work, we used the implementation of SARSOP
provided by the APPL toolkit and allowed it to run for
10 minutes.

3) Rel-DESPOT: Use DESPOT to find a near-optimal pol-
icy for Rel-POMDP [48]. The solver uses Rel-QMDP as an
upper bound and rollouts of Rel-QMDP as a lower bound
(see section V-D for an explanation of a rollout policy). We

RM RS RD

-20

-40

-60

V 0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

p
t

Fig. 4: Performance of the Rel-QMDP (RM), Rel-
SARSOP (RS), and Rel-DESPOT (RD) policies
on Rel-POMDP. (Left) Value Vrel achieved by each policy
computed over 100 timesteps. Note that the y-axis is inverted;
lower (less negative) is better. (Right) Probability that the
movable object is in Xgoal as a function of timestep. Error
bars denote a 95% confidence interval. Best viewed in color.

use the implementation of DESPOT provided by the APPL
toolkit and tuned the number of trials, number of scenarios,
regularization constant, and gap constant on a set of training
problem instances that are distinct from the results presented
in this section.

4) Lift-QMDP and Lift-SARSOP: Use the state lattice to
evaluate the feasibility of the action returned by Rel-QMDP
and Rel-SARSOP, respectively, before executing it. If the
desired action is infeasible, instead execute the action with the
highest estimated Q-value. This represents a heuristic solution
for modifying a Rel-POMDP policy to avoid taking infeasible
actions.

5) Lat-DESPOT: The proposed algorithm described in sec-
tion V. We run DESPOT [48] on Lat-POMDP using Rel-
QMDP as the upper bound and rollouts of Lift-QMDP as
the lower bound (see section V-D for an explanation of
a rollout policy). Just as with Rel-DESPOT, we used the
implementation of DESPOT provided by the APPL toolkit and
tuned all parameters on a set of training problem instances.

D. Rel-POMDP Experiments

We begin with a preliminary experiment on Rel-POMDP.
Our goal is to: (1) validate that discretizing Rel-POMDP
does not harm the performance of the optimal policy on the
underlying continuous problem, (2) confirm that information-
gathering is necessary, (3) verify that Rel-DESPOT does not
perform worse than Rel-SARSOP, and (4) estimate V ∗rel[b0].

1) Discretization Validation: Figure 4 shows simulation re-
sults averaged over 500 instances of the experiment described
above. Figure 4-Left shows the value of each policy achieved
in 100 timesteps on simulated on the discretized Rel-POMDP
problem described in section VI-A3. Figure 4-Right shows
the probability that the movable object is in Xgoal at each
timestep when simulated using the continuous model. The
close agreement between the results suggests that discretizing
the state space does not harm the performance of the policy
on the underlying continuous problem.

2) Necessity of Information-Gathering: Rel-QMDP ()
performs poorly on this problem, achieving < 30% success
probability, because it pushes straight and does not attempt
to localize the object. Rel-SARSOP () and Rel-DESPOT
() execute information-gathering action by moving the
hand laterally to drive the movable object into one of the
fingertip contact sensors. Once the object has been localized,
the policy successfully pushes it into the goal region. These
results are consistent with prior work [17, 27] and confirm
that information-gathering is necessary to perform well on this
problem.

3) Rel-DESPOT Policy: Our intuition is that it is more
difficult to solve Lat-POMDP than Rel-POMDP. Therefore,
it is important that we verify that DESPOT can successfully
solve Rel-POMDP before applying it to Lat-POMDP. Our
results confirm this is true: Rel-DESPOT () achieves
comparable value and success probability to Rel-SARSOP (

).

E. Lat-POMDP Experiments

We evaluate the proposed approach (Lat-DESPOT) on Lat-
POMDP in four different environments: (a) an empty table,
(b) obstacles on the right, (c) obstacles on the left, and (d) more
complex obstacles on the right. Note that kinematic constraints
are present in all four environments, even the empty table,
in the form of reachability limits, self-collision, and collision
between the arm and the table. Scenes (b), (c), and (d) are
constructed out of objects selected from the YCB dataset [6].

Figure 5 shows results for each scene averaged over
500 instances of the problem. Just as in the Rel-POMDP
experiments, Figure 5-Top shows the value Vlat achieved by
each policy when evaluated on the discretized version of
Lat-POMDP. Figure 5-Middle shows the probability that the
movable object is in Xgoal at each timestep, treating instances
that have terminated as zero probability. Figure 5-Bottom
shows the proportion of Rel-QMDP, Rel-SARSOP, and Rel-
DESPOT policies that are active at each timestep; i.e. have not
yet terminated by taking an infeasible action. Note that all six
policies—even Rel-MDP, Rel-SARSOP, and Rel-DESPOT—
are subject to kinematic constraints during execution.

1) Baseline Policies: Rel-QMDP (RM) and Lift-
QMDP (LM) to perform poorly across all environments,
achieving < 30% success probability, because they do not
take multi-step information-gathering actions. Figure 5 con-
firms this: both QMDP policies perform poorly on all four
environments.

Rel-SARSOP (RS) and Rel-DESPOT (RD)
perform well on environments (a) and (b) because they hit
obstacles late in execution. The converse is true on environ-
ments (c) and (d): both policies hit obstacles so quickly that
they perform worse than Rel-QMDP!

Lift-SARSOP (LS) performs near-optimally on envi-
ronments (a) and (b) because it: (1) does not take infeasible
actions and (2) gathers information. However, it performs no
better than Rel-QMDP on problem (d). This occurs because
Lift-SARSOP myopically considers obstacles in a one-step

RM RS RD LM LS LD
0

-20

-40

-60

V

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

p
t

0 20 40 60 80

0.2

0.4

0.6

0.8

1.0

pf
t

(a) Empty Table

RM RS RD LM LS LD
0

-20

-40

-60

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

(b) Right Obstacles

RM RS RD LM LS LD
0

-20

-40

-60

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

(c) Left Obstacles

RM RS RD LM LS LD
0

-20

-40

-60

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

0 20 40 60 80
0.0

0.2

0.4

0.6

0.8

1.0

t

(d) Complex Obstacles

Fig. 5: Performance of the Rel-QMDP (RM), Rel-SARSOP (RS), Rel-DESPOT (RD), Lift-QMDP (LM
), Lift-SARSOP (LS), and Lat-DESPOT (LD) policies on Lat-POMDP on four environments. (Top) Value

achieved by each policy after 100 timesteps. Note that the y-axis is inverted; lower (less negative) is better. (Middle) Probability
p = Pr(st ∈ Xgoal) that the movable object is in the goal region at each timestep. (Bottom) Probability that the execution is
feasible as a function of time. Lift-QMDP, Lift-SARSOP, and Lat-DESPOT are omitted because they do not take infeasible
actions. In all cases, error bars denote a 95% confidence interval. Best viewed in color.

lookahead and may oscillate when blocked. Small changes in
the environment are sufficient to induce this behavior: the key
difference between environments (b) and (d) is the introduction
of a red box that creates a cul-de-sac in the lattice.

2) Lat-DESPOT Policy: Our proposed approach, Lat-
DESPOT (), avoids myopic behavior by considering
action feasibility during planning. Lat-DESPOT performs no
worse than Lift-SARSOP on environments (a) and (b) and
outperforms it on environments (c) and (d). Unlike Rel-
SARSOP, Lat-DESPOT identifies the cul-de-sac in (d) during
planning and avoids becoming trapped in it. In summary, Lat-
DESPOT is the only policy that performs near-optimally on
all four environments.

Our unoptimized implementation of Lat-DESPOT took be-
tween 200 µs and 2.4 s to select an action (a 1 cm motion of
the end-effector) on a single core of a 4 GHz Intel Core i7
CPU. The policy was slowest to evaluate early in execution,
when information-gathering is necessary, and fastest once the
movable object is localized; i.e. once the upper and lower
bounds become tight. The QMDP and SARSOP policies,
which perform no planning online, took an average of 1.6 µs
and 218 µs respectively. We are optimistic about achieving
real-time performance from Lat-DESPOT by parallelizing sce-
nario rollouts, optimizing our implementation of the algorithm,

and leveraging the loose coupling between the optimal pre-
and post-contact policies [27].

3) Upper Bound Validation: Finally, we combine the data
in fig. 4-Left and fig. 5-Top to empirically verify the bound
we proved in theorem 2; i.e. the optimal value function V ∗rel of
Rel-POMDP is an upper bound on the optimal value function
V ∗lat of Lat-POMDP. Note that the value of Rel-SARSOP (

) and Rel-DESPOT () on Rel-POMDP (fig. 4-Left)
are greater (i.e. less negative) than the value of all policies
we evaluated on Lat-POMDP (fig. 5-Top). The data supports
our theory: the optimal value achieved on Rel-POMDP is
no worse than the highest value achieved on Lat-POMDP in
environment (a) and greater than the highest value achieved
in environments (b), (c), and (d).

VII. DISCUSSION

In this paper, we formulated the problem of planar contact
manipulation under uncertainty as a POMDP in the joint
space of robot configurations and poses of the movable object
(section I). We simplify the problem by constructing a lattice
in the robot’s configuration space and prove that, under mild
assumptions, the optimal policy of Lat-POMDP will never take
an infeasible action (section IV). We find a near-optimal policy
for Lat-POMDP using DESPOT [48], a state-of-the-art online

POMDP solver, guided by upper and lower bounds derived
from Rel-POMDP (section V).

Our simulation results show that Lat-DESPOT outperforms
five baseline algorithms on cluttered environments: it achieves
a > 90% success rate on all environments, compared to
the best baseline (Lift-SARSOP) that achieves only a 20%
success rate on difficult problems. They also highlight the
importance of reasoning about both object pose uncertainty
and kinematic constraints during planning. Lat-DESPOT is a
promising first step towards using recent advances in online
POMDP solvers, like DESPOT [48], to achieve that goal.
However, Lat-DESPOT has several limitations that we plan
to address in future work:

First, our approach assumes that the robot has perfect
proprioception and operates in an environment with known
obstacles. In practice, robots often have imperfect propriocep-
tion [4, 24] and uncertainty about the pose of all objects in the
environment. We hope to relax both of these assumptions by
replacing the deterministic transition model for robot config-
uration with a stochastic model that considers the probability
of hitting an obstacle.

Second, we are excited to scale our approach up a larger
repertoire of action templates (including non-planar motion),
solving more complex tasks, and planning in environments that
contain multiple movable objects. Solving these more complex
problems will require more informative heuristics. We are
optimistic that more sophisticated Rel-POMDP policies, e.g.
those computed by a point-based method [43] or Monte Carlo
Value Iteration [2], could be used to guide the search.

Third, our approach commits to a single inverse kinematics
solution qlat(xr) for each lattice point. This prevents robots
like HERB, which has a seven degree-of-freedom manipulator,
from using redundancy to avoid kinematic constraints. We
plan to relax this assumption in future work by generating
multiple inverse kinematic solutions for each lattice point and
instantiating an action template for each. Our intuition is that
many solutions share the same connectivity and, thus, may be
treated identically during planning.

Finally, we plan to implement Lat-DESPOT on a real
robotic manipulator and evaluate the performance of our
approach on real-world manipulation tasks.

ACKNOWLEDGEMENTS

This work was supported by a NASA Space Technology
Research Fellowship (award NNX13AL62H), the National
Science Foundation (awards IIS-1218182 and IIS-1409003),
the U.S. Office of Naval Research, and the Toyota Motor
Corporation. We would like to thank Rachel Holladay, Shervin
Javdani, Jennifer King, Stefanos Nikolaidis, and the members
of the Personal Robotics Lab for their helpful input. We would
also like to thank Nan Ye for assistance with the APPL toolkit.

REFERENCES

[1] Dynamic Animation and Robotics Toolkit. http://dartsim.
github.io, 2013.

[2] H. Bai, D. Hsu, W.S. Lee, and V.A. Ngo. Monte
Carlo value iteration for continuous-state POMDPs. In
Workshop on the Algorithmic Foundations of Robotics,
2011.

[3] R. Bohlin and L.E. Kavraki. Path planning using lazy
PRM. In IEEE International Conference on Robotics
and Automation, pages 521–528, 2000.

[4] B. Boots, A. Byravan, and D. Fox. Learning predictive
models of a depth camera & manipulator from raw
execution traces. In IEEE International Conference on
Robotics and Automation, 2014.

[5] M. Brokowski, M. Peshkin, and K. Goldberg. Curved
fences for part alignment. In IEEE International Confer-
ence on Robotics and Automation, 1993. doi: 10.1109/
ROBOT.1993.292216.

[6] B. Calli, A. Singh, A. Walsman, S.S. Srinivasa, P. Abbeel,
and A.M. Dollar. The YCB object and model set:
Towards common benchmarks for manipulation research.
In International Conference on Advanced Robotics, 2015.

[7] E. Catto. Box2D. http://box2d.org, 2010.
[8] B. Cohen, S. Chitta, and M. Likhachev. Single-and dual-

arm motion planning with heuristic search. International
Journal of Robotics Research, 2013.

[9] M. Dogar, K. Hsiao, M. Ciocarlie, and S.S. Srini-
vasa. Physics-based grasp planning through clutter. In
Robotics: Science and Systems, 2012.

[10] M.R. Dogar and S.S. Srinivasa. Push-grasping with
dexterous hands: Mechanics and a method. In IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, 2010. doi: 10.1109/IROS.2010.5652970.

[11] M.R. Dogar and S.S. Srinivasa. A planning framework
for non-prehensile manipulation under clutter and uncer-
tainty. Autonomous Robots, 33(3):217–236, 2012. doi:
10.1007/s10514-012-9306-z.

[12] D.J. Duff, J. Wyatt, and R. Stolkin. Motion estima-
tion using physical simulation. In IEEE International
Conference on Robotics and Automation, 2010. doi:
10.1109/ROBOT.2010.5509590.

[13] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially observable
stochastic games with common payoffs. In Autonomous
Agents and Multiagent Systems, 2004.

[14] M.A. Erdmann and M.T. Mason. An exploration of
sensorless manipulation. IEEE Journal of Robotics and
Automation, 1988. doi: 10.1109/56.800.

[15] K. Hauser. Lazy collision checking in asymptotically-
optimal motion planning. In IEEE International Confer-
ence on Robotics and Automation, 2015.

[16] P. Hebert, T. Howard, N. Hudson, J. Ma, and J.W.
Burdick. The next best touch for model-based localiza-
tion. In IEEE International Conference on Robotics and
Automation, 2013. doi: 10.1109/ICRA.2013.6630562.

http://dartsim.github.io
http://dartsim.github.io
http://box2d.org

[17] M. Horowitz and J. Burdick. Interactive non-prehensile
manipulation for grasping via POMDPs. In IEEE Inter-
national Conference on Robotics and Automation, 2013.
doi: 10.1109/ICRA.2013.6631031.

[18] K. Hsiao. Relatively robust grasping. PhD thesis,
Massachusetts Institute of Technology, 2009.

[19] K. Hsiao, L.P. Kaelbling, and T. Lozano-Pèrez. Grasp-
ing POMDPs. In IEEE International Conference on
Robotics and Automation, 2007. doi: 10.1109/ROBOT.
2007.364201.

[20] K. Hsiao, T. Lozano-Pérez, and L.P. Kaelbling. Robust
belief-based execution of manipulation programs. In
Workshop on the Algorithmic Foundations of Robotics,
2008.

[21] S. Javdani, M. Klingensmith, J.A. Bagnell, N.S. Pol-
lard, and S.S. Srinivasa. Efficient touch based local-
ization through submodularity. In IEEE International
Conference on Robotics and Automation, 2013. doi:
10.1109/ICRA.2013.6630818.

[22] S. Javdani, J.A. Bagnell, and S.S. Srinivasa. Shared au-
tonomy via hindsight optimization. In Robotics: Science
and Systems, 2015.

[23] L.P. Kaelbling, M.L. Littman, and A.R. Cassandra. Plan-
ning and acting in partially observable stochastic do-
mains. Artificial Intelligence, 1998. doi: 10.1016/
S0004-3702(98)00023-X.

[24] M. Klingensmith, T. Galluzzo, C. Dellin, M. Kazemi,
J.A. Bagnell, and N. Pollard. Closed-loop servoing
using real-time markerless arm tracking. In IEEE In-
ternational Conference on Robotics and AutomationHu-
manoids Workshop, 2013.

[25] M.C. Koval, J.E. King, N.S. Pollard, and S.S. Srinivasa.
Robust trajectory selection for rearrangement planning as
a multi-armed bandit problem. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2015.

[26] M.C. Koval, N.S. Pollard, and S.S. Srinivasa. Pose
estimation for planar contact manipulation with man-
ifold particle filters. International Journal of
Robotics Research, 34(7):922–945, 2015. doi: 10.1177/
0278364915571007.

[27] M.C. Koval, N.S. Pollard, and S.S. Srinivasa. Pre-
and post-contact policy decomposition for planar con-
tact manipulation under uncertainty. International
Journal of Robotics Research, 2015. doi: 10.1177/
0278364915594474. In press.

[28] H. Kurniawati, D. Hsu, and W.S. Lee. SARSOP: Ef-
ficient point-based POMDP planning by approximating
optimally reachable belief spaces. In Robotics: Science
and Systems, 2008.

[29] S.M. LaValle and S.A. Hutchinson. An objective-
based framework for motion planning under sensing and
control uncertainties. International Journal of Robotics
Research, 1998. doi: 10.1177/027836499801700104.

[30] Q. Li, C. Schürmann, R. Haschke, and H. Ritter. A
control framework for tactile servoing. In Robotics:
Science and Systems, 2013.

[31] M. Likhachev and D. Ferguson. Planning long dy-
namically feasible maneuvers for autonomous vehicles.
International Journal of Robotics Research, 28(8):933–
945, 2009.

[32] M.L. Littman, A.R. Cassandra, and L.P. Kaelbling.
Learning policies for partially observable environments:
Scaling up. International Conference on Machine Learn-
ing, 1995.

[33] K.M. Lynch, H. Maekawa, and K. Tanie. Manipulation
and active sensing by pushing using tactile feedback. In
IEEE/RSJ International Conference on Intelligent Robots
and Systems, 1992. doi: 10.1109/IROS.1992.587370.

[34] M.T. Mason. Mechanics and planning of manip-
ulator pushing operations. International Journal of
Robotics Research, 5(3):53–71, 1986. doi: 10.1177/
027836498600500303.

[35] A.Y. Ng and M. Jordan. PEGASUS: A policy search
method for large MDPs and POMDPs. In Conference on
Uncertainty in Artificial Intelligence, 2000.

[36] S.C.W. Ong, S.W. Png, D. Hsu, and W.S. Lee. POMDPs
for robotic tasks with mixed observability. In Robotics:
Science and Systems, June 2009.

[37] Jia Pan, Sachin Chitta, and Dinesh Manocha. FCL:
A general purpose library for collision and proximity
queries. In IEEE International Conference on Robotics
and Automation, pages 3859–3866, 2012.

[38] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal.
Online movement adaptation based on previous sensor
experiences. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2011. doi: 10.1109/
IROS.2011.6095059.

[39] A. Petrovskaya and O. Khatib. Global localization of
objects via touch. IEEE Transactions on Robotics, 27
(3):569–585, 2011. doi: 10.1109/TRO.2011.2138450.

[40] J. Pineau, G. Gordon, and S. Thrun. Point-based value
iteration: An anytime algorithm for POMDPs. In Interna-
tional Joint Conference on Artificial Intelligence, 2003.

[41] M. Pivtoraiko and A. Kelly. Efficient constrained path
planning via search in state lattices. In International
Symposium on Artificial Intelligence, Robotics, and Au-
tomation in Space, 2005.

[42] R. Platt, A.H. Fagg, and R.A. Grupen. Nullspace grasp
control: theory and experiments. IEEE Transactions on
Robotics, 26(2):282–295, 2010. doi: 10.1109/TRO.2010.
2042754.

[43] J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart.
Point-based value iteration for continuous POMDPs.
Journal of Machine Learning Research, 7:2329–2367,
2006.

[44] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa. Online
planning algorithms for POMDPs. Journal of Artificial
Intelligence Research, 2008. doi: 10.1613/jair.2567.

[45] K. Salisbury, W. Townsend, B. Eberman, and D. DiPi-
etro. Preliminary design of a whole-arm manipulation
system (WAMS). In IEEE International Conference on
Robotics and Automation, 1988. doi: 10.1109/ROBOT.

1988.12057.
[46] D. Silver and J. Veness. Monte-Carlo planning in large

POMDPs. In Advances in Neural Information Processing
Systems, 2010.

[47] R.D. Smallwood and E.J. Sondik. The optimal control
of partially observable Markov processes over a finite
horizon. Operations Research, 21(5):1071–1088, 1973.
doi: 10.1287/opre.21.5.1071.

[48] A. Somani, N. Ye, D. Hsu, and W.S. Lee. DESPOT: On-
line POMDP planning with regularization. In Advances
in Neural Information Processing Systems, 2013.

[49] S.S. Srinivasa, D. Berenson, M. Cakmak, A. Collet,
M.R. Dogar, A.D. Dragan, R.A. Knepper, T. Niemueller,
K. Strabala, and M. Vande Weghe. HERB 2.0: Lessons
learned from developing a mobile manipulator for the
home. Proceedings of the IEEE, 100(8):1–19, 2012.

[50] F. Stulp, E. Theodorou, J. Buchli, and S. Schaal. Learning
to grasp under uncertainty. In IEEE International Con-
ference on Robotics and Automation, pages 5703–5708,
2011. doi: 10.1109/ICRA.2011.5979644.

[51] W. Townsend. The BarrettHand grasper–programmably
flexible part handling and assembly. Industrial Robot:
An International Journal, 27(3):181–188, 2000. doi: 10.
1108/01439910010371597.

[52] H. Zhang and N.N. Chen. Control of contact via tactile
sensing. IEEE Transactions on Robotics and Automation,
16(5):482–495, 2000. doi: 10.1109/70.880799.

	I Introduction
	II Related Work
	III Problem Formulation
	IV Configuration Lattice POMDP
	IV-A Planar Constraint
	IV-B Configuration Lattice
	IV-C Action Templates
	IV-D Lattice POMDP
	IV-E Optimal Policy Feasibility

	V Online POMDP Planner
	V-A Lattice Construction
	V-B Hand-Relative POMDP
	V-C Lat-POMDP Upper Bound
	V-D Lower Bound

	VI Experimental Results
	VI-A Problem Definition
	VI-A1 Transition Model
	VI-A2 Observation Model
	VI-A3 Rel-POMDP Discretization

	VI-B State Lattice Construction
	VI-C Policies
	VI-C1 Rel-QMDP
	VI-C2 Rel-SARSOP
	VI-C3 Rel-DESPOT
	VI-C4 Lift-QMDP and Lift-SARSOP
	VI-C5 Lat-DESPOT

	VI-D Rel-POMDP Experiments
	VI-D1 Discretization Validation
	VI-D2 Necessity of Information-Gathering
	VI-D3 Rel-DESPOT Policy

	VI-E Lat-POMDP Experiments
	VI-E1 Baseline Policies
	VI-E2 Lat-DESPOT Policy
	VI-E3 Upper Bound Validation

	VII Discussion

