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Abstract. Many important geometric estimation problems naturally
take the form of synchronization over the special Euclidean group: es-
timate the values of a set of unknown poses z1,...,2, € SE(d) given
noisy measurements of a subset of their pairwise relative transforms
x; 1xj. Examples of this class include the foundational problems of pose-
graph simultaneous localization and mapping (SLAM) (in robotics) and
camera pose estimation (in computer vision), among others. This prob-
lem is typically formulated as a maximum-likelihood estimation that
requires solving a nonconvex nonlinear program, which is computation-
ally intractable in general. Nevertheless, in this paper we present an
algorithm that is able to efficiently recover certifiably globally optimal
solutions of this estimation problem in a non-adversarial noise regime.
The crux of our approach is the development of a semidefinite relaxation
of the maximum-likelihood estimation whose minimizer provides the ezx-
act MLE so long as the magnitude of the noise corrupting the avail-
able measurements falls below a certain critical threshold; furthermore,
whenever exactness obtains, it is possible to verify this fact a posteriori,
thereby certifying the optimality of the recovered estimate. We develop
a specialized optimization scheme for solving large-scale instances of this
semidefinite relaxation by exploiting its low-rank, geometric, and graph-
theoretic structure to reduce it to an equivalent optimization problem on
a low-dimensional Riemannian manifold, and then design a Riemannian
truncated-Newton trust-region method to solve this reduction efficiently.
We combine this fast optimization approach with a simple rounding pro-
cedure to produce our algorithm, SE-Sync. Experimental evaluation on
a variety of simulated and real-world pose-graph SLAM datasets shows
that SE-Sync is capable of recovering globally optimal solutions when the
available measurements are corrupted by noise up to an order of mag-
nitude greater than that typically encountered in robotics applications,
and does so at a computational cost that scales comparably with that of
direct Newton-type local search techniques.
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1 Introduction

Over the coming decades, the increasingly widespread adoption of robotic tech-
nology in areas such as transportation, medicine, and disaster response has
tremendous potential to increase productivity, alleviate suffering, and preserve
life. At the same time, however, these high-impact applications often place au-
tonomous systems in safety- and life-critical roles, where misbehavior or un-
detected failures can carry dire consequences [43]. While empirical evaluation
has traditionally been a driving force in the design and implementation of au-
tonomous systems, safety-critical applications such as these demand algorithms
that come with clearly-delineated performance guarantees. This paper presents
one such algorithm, SE-Sync, an efficient and certifiably correct method for solv-
ing the fundamental problem of pose estimation.

Formally, we consider the synchronization problem of estimating a collec-
tion of unknown posesE| based upon a set of relative measurements between
them. This estimation problem lies at the core of many fundamental percep-
tual problems in robotics; for example, simultaneous localization and mapping
(SLAM) [28] and multi-robot localization [3]. Closely-related formulations also
arise in structure from motion [23] 0] and camera network calibration [40] (in
computer vision), sensor network localization [33], and cryo-electron microscopy
[37]. These synchronization problems are typically formulated as instances of
maximum-likelihood estimation under an assumed probability distribution for
the measurement noise. This formulation is attractive from a theoretical stand-
point due to the powerful analytical framework and strong performance guaran-
tees that maximum-likelihood estimation affords [20]. However, this formal rigor
comes at the expense of computational tractability, as the maximum-likelihood
formulation leads to a nonconvex optimization problem that is difficult to solve.

Related Work. In the context of SLAM, the pose synchronization prob-
lem is commonly solved using iterative numerical optimization methods, e.g.
Gauss-Newton [26H28], gradient descent [22 B2], or trust region methods [34].
This approach is particularly attractive because the rapid convergence speed of
second-order numerical optimization methods [31], together with their ability to
exploit the measurement sparsity that typically occurs in naturalistic problem
instances [18], enables these techniques to scale efficiently to large problem sizes
while maintaining real-time operation. However, this computational expedience
comes at the expense of reliability, as their restriction to local search renders
these methods vulnerable to convergence to suboptimal critical points, even for
relatively small noise levels [14, [35]. This observation, together with the fact that
suboptimal critical points usually correspond to egregiously wrong trajectory
estimates, has motivated two general lines of research. The first addresses the
initialization problem, i.e., how to compute a suitable initial guess for iterative
refinement; examples of this effort are [12] [15], [35]. The second aims at a deeper

L' A pose is a position and orientation in d-dimensional Euclidean space; this is an
element of the special Fuclidean group SE(d) = R? x SO(d).



understanding of the global structure of the pose synchronization problem (e.g.
number of local minima, convergence basin), see for example [24] [25] [44].
Contribution. In our previous work [I3] [I4, [I6], we demonstrated that La-
grangian duality provides an effective means of certifying the optimality of an
in-hand solution for the pose synchronization problem, and could in principle
be used to directly compute such certifiably optimal solutions by solving a La-
grangian relaxation. However, this relaxation turns out to be a semidefinite pro-
gram (SDP), and while there do exist mature general-purpose SDP solvers, their
high per-iteration computational cost limits their practical utility to instances
of this relaxation involving only a few hundred posesEI whereas real-world pose
synchronization problems are typically one to two orders of magnitude larger.
The main contribution of the present paper is the development of a spe-
cialized structure-exploiting optimization procedure that is capable of efficiently
solving large-scale instances of the semidefinite relaxation in practice. This pro-
cedure provides a means of recovering certifiably globally optimal solutions of
the pose synchronization problem from the semidefinite relaxation within a non-
adversarial noise regime in which minimizers of the latter correspond to exact so-
lutions of the former. Our overall pose synchronization method, SE-Sync, is thus
a certifiably correct algorithm [4], meaning that it is able to efficiently recover
globally optimal solutions of generally intractable problems within a restricted
range of operation, and certify the optimality of the solutions so obtained. Ex-
perimental evaluation on a variety of simulated and real-world pose-graph SLAM
datasets shows that our relaxation remains exact when the available measure-
ments are corrupted by noise up to an order of magnitude greater than that
typically encountered in application, and that within this regime, SE-Sync is
able to recover globally optimal solutions from this relaxation at a computa-
tional cost comparable with that of direct Newton-type local search techniques.

2 Problem formulation

The SE(d) synchronization problem consists of estimating the values of a set of
n unknown poses x1,...,z, € SE(d) given noisy measurements of m of their
pairwise relative transforms z;; £ x; '2; (i # j). We model the set of available
measurements using an undirected graph G = (V, £) in which the nodes i € V are
in one-to-one correspondence with the unknown poses x; and the edges {i,j} € £
are in one-to-one correspondence with the set of available measurements, and we
assume without loss of generality that G is connected We let 8 = (v, ?) be
a directed graph obtained from G by fixing an orientation for each of its edges,

2 This encompasses the most commonly-used interior-point-based SDP software li-
braries, including SDPA, SeDuMi, SDPT3, CSDP, and DSDP.

3 If G is not connected, then the problem of estimating the unknown poses 1, ..., T
decomposes into a set of independent estimation problems that are in one-to-one
correspondence with the connected components of GG; thus, the general case is always
reducible to the case of connected graphs.



and assume that a noisy measurement ;; of each relative pose x;; = (t;;, Ri;)
is obtained by sampling from the following probabilistic generative model:

tij =ty + 5, ts ~ N (0,751 ),
o " ( J ) Vi e €. ()
Ri; = Rij R}, R;; ~ Langevin (Ig, %i5) ,

Here z;; = (tij, Ri;) is the true (latent) value of z;;, N'(u,Y) denotes the
standard multivariate Gaussian distribution with mean p € R% and covariance
Y > 0, and Langevin(M, k) denotes the isotropic Langevin distribution on SO(d)
with mode M € SO(d) and concentration parameter x > 0 (this is the distribu-
tion on SO(d) whose probability density function is given by:

1 T
p(R; M,k) = ——exp (ktr(M R 2
(R M) = s exp (six(MTR) 2)
with respect to the Haar measure [17]) Finally, we define & ;; = :%i_jl, Kji = Kij,
Tji é Tijy and Rji é R;I; for all (Z,j) S
Given a set of noisy measurements Z;; sampled from the generative model
(1), a straightforward computation shows that a maximum-likelihood estimate

ZmLE € SE(d)™ for the poses x1,...,x, is obtained as a minimizer of:

Problem 1 (Mazimum-likelihood estimation for SE(d) synchronization,).

* : > n 2
PyvLE = mer}i E "finRj - RiRij”% + Tij Hti —ti — Ritii”z ()
t;€
R;€50(d) (iJ)€E

Unfortunately, Problem [I] is a high-dimensional, nonconvex nonlinear pro-
gram, and is therefore computationally hard to solve in general. Consequently,
our strategy in this paper will be to approzimate this problem using a (con-
vex) semidefinite relazation [42], and then exploit this relaxation to search for
solutions of the original (hard) problem.

3 Forming the semidefinite relaxation

In this section we develop the semidefinite relaxation that we will solve in place of
the maximum-likelihood estimation Problem To that end, our first step will
be to rewrite Problem [I] in a simpler and more compact form that emphasizes
the structural correspondences between the optimization problem and several
simple graph-theoretic objects that can be constructed from the set of available
measurements &;; and the graphs G' and 8

4 We use a directed graph to model the measurements Zi; sampled from because
the distribution of the noise corrupting the latent values z;; is not invariant under
SE(d)’s group inverse operation. Consequently, we must keep track of which state x;
was the “base frame” for each measurement.

5 Due to space limitations, we omit all derivations and proofs; please see the extended
version of this paper [36] for detailed derivations and additional results.



We define the translational weight graph W™ = (V, E,{;;}) to be the weighted
undirected graph with node set V, edge set £, and edge weights 7;; for {i,j} € €.
The Laplacian L(W7) of W7 is then:

Z{i,k}eg Tiks =17,
L(WT)ij = _Tij7 {27.7} € gv (4)
0, {i,j} ¢¢.

Similarly, let L(G?) denote the connection Laplacian for the rotational syn-
chronization problem determined by the measurements R;; and measurement

weights k;; for (i,7) € ?; this is the symmetric (d x d)-block-structured matrix
determined by (cf. [38, 45]):

L(G") € Sym(dn)

3 (Z{z‘,k}es ”ik) la, i=7], (5)
A ~
L(Gp)ij = —Iiinij, {Z,j} S g,
Odxds {i,j} ¢ €.

We also define a fewgnatrices constructed from the set of translational obser-
vations #;;. We let V € R™ 4" he the (1 x d)-block-structured matrix with
(i, 7)-blocks determined by:

T .

N 2 heviGpedy Tktins 1= 0y

Vig = — it (4,1) € ?, (6)
O1xd; otherwise,

T € R™%9" denote the (1 x d)-block-structured matrix with rows and columns

indexed by e € £ and k € V, respectively, and whose (e, k)-block is given by:

7,2 1t e=(kj) e
01xq, otherwise,

(7)

and 2 = Diag(7e,,...,Te,,) € Sym(m) denote the diagonal matrix indexed
by the directed edges e € ?, and whose eth element gives the precision of
the translational measurement fij corresponding to that edge. Finally, we also
aggregate the rotational and translational state estimates into the block matrices
R2 (R1 Rn) € SO(d)” Cc R¥d" and t & (t1 tn) € R,

With these definitions in hand, let us return to Problem [I} We observe that
for a fized value of the rotational states Ry, ..., R,, this problem reduces to the
unconstrained minimization of a quadratic form in the translational variables
t1,...,t, € R%, for which we can find a closed-form solution using a generalized
Schur complement [2T, Proposition 4.2]. This observation enables us to ana-
lytically eliminate the translational states from the optimization problem ,
thereby obtaining the simplified but equivalent maximum-likelihood estimation:



Problem 2 (Simplified mazimum-likelihood estimation).

* _ : t AT
PMLE Regg?d)n r(QR R) (8a)
Q=LG)+T 212> T. (8b)

Furthermore, given any minimizer R* of Problem[2] we can recover a correspond-
ing optimal value t* for ¢t according to:

= —vec (R*VTL(WT)T) . (9)

In IT € R™*™ is the matrix of the orthogonal projection operator onto
ker(A(a)Q%) C R™*™ where A(a) € R™™ is the incidence matriz of the
directed graph 8 Although [T is generically dense, by exploiting the fact that

it is derived from a sparse graph, we have been able to show that it admits the
sparse decomposition:

=1, QYAG) L TLAG) 04 (10)

where 1_4(8)(2% = L@ is a thin LQ decomposition of 4(8)9% and A(a) is
the reduced incidence matrix of 8 Note that expression requires only the
sparse lower-triangular factor L, which can be easily and efficiently obtained in
practice. Decomposition will play a critical role in the implementation of
our efficient optimization.

Now we derive the semidefinite relaxation of Problem [2] that we will solve in
practice, exploiting the simplified form . We begin by relaxing the condition
R € SO(d)™ to R € O(d)". The advantage of this latter version is that O(d) is
defined by a set of (quadratic) orthonormality constraints, so the orthogonally-
relaxed version of Problem [2|is a quadratically constrained quadratic program;
consequently, its Lagrangian dual relaxation is a semidefinite program [29]:

Problem 3 (Semidefinite relazation for SE(d) synchronization,).

tr(Q2)

min
0=<Z€Sym(dn) (11)
s.t. BlockDiag,, ,(Z) = Diag(I4,...,14)

ES
Pspp =

At this point it is instructive to compare the semidefinite relaxation
with the simplified maximum-likelihood estimation (). For any R € SO(d)",
the product Z = RTR is positive semidefinite and has identity matrices along
its (d x d)-block-diagonal, and so is a feasible point of (L1)); in other words,
can be regarded as a relaxation of the maximum-likelihood estimation obtained
by expanding ’s feasible set. This immediately implies that pipp < PyE-
Furthermore, if it happens that a minimizer Z* of Problem [3|admits a decompo-
sition of the form Z* = R*T R* for some R* € SO(d)", then it is straightforward
to verify that this B* is also a minimizer of Problem[2] and so provides a globally



optimal solution of the maximum-likelihood estimation Problem (1| via @D The
crucial fact that justifies our interest in Problem [3|is that (as demonstrated em-
pirically in our prior work [14] and investigated in a simpler setting in [5]) this
problem has a unigque minimizer of just this form so long as the noise corrupting
the available measurements Z;; is not too large. More precisely, we proveﬂ

Proposition 1. Let Q be the matriz of the form constructed using the true
(latent) relative transforms z;; in (I). There ezists a constant B = B3(Q) > 0
(depending upon Q) such that, if ||Q —Qll2 < B, then:

(i) The semidefinite relaxation Problem @ has a unique solution Z*, and
(ii) Z* = R*TR*, where R* € SO(d)" is a minimizer of the mazimum-likelihood
estimation Problem [2.

4 The SE-Sync algorithm

4.1 Solving the semidefinite relaxation

As a semidefinite program, Problem [3| can in principle be solved in polynomial-
time using interior-point methods [39] 42]. In practice, however, the high compu-
tational cost of general-purpose semidefinite programming algorithms prevents
these methods from scaling effectively to problems in which the dimension of the
decision variable Z is greater than a few thousand [39]. Unfortunately, typical
instances of Problem [3|that are encountered in robotics and computer vision ap-
plications are one to two orders of magnitude larger than this maximum effective
problem size, and are therefore well beyond the reach of these general-purpose
methods. Consequently, in this subsection we develop a specialized optimization
procedure for solving large-scale instances of Problem [3] efficiently.

Simplifying Problem The dominant computational cost when applying
general-purpose semidefinite programming methods to solve Problem [3] is the
need to store and manipulate expressions involving the (large, dense) matrix
variable Z. However, in the typical case that exactness holds, we know that the
actual solution Z* of Problem [3] that we seek has a very concise description in
the factored form Z* = R*TR* for R* € SO(d)™. More generally, even in those
cases where exactness fails, minimizers Z* of Problem [3| generically have a rank
r not much greater than d, and therefore admit a symmetric rank decomposition
Z* =Y*TY* for Y* € R with r < dn.

In a pair of papers, Burer and Monteiro [I0] [TT] proposed an elegant general
approach to exploit the fact that large-scale semidefinite programs often admit
such low-rank solutions: simply replace every instance of the decision variable Z
with a rank-r product of the form YTY to produce a rank-restricted version of
the original problem. This substitution has the two-fold effect of (i) dramatically

5 Please see the extended version of this paper [36] for the proof.



reducing the size of the search space and (ii) rendering the positive semidefinite-
ness constraint redundant, since Y'Y > 0 for any choice of Y. The resulting
rank-restricted form of the problem is thus a low-dimensional nonlinear pro-
gram, rather than a semidefinite program.

Furthermore, following Boumal [6] we observe that after replacing Z in Prob-
lem 3| with YTY for Y = (Y1 e Yn) € R™*4"_the block-diagonal constraints in
our specific problem of interest are equivalent to Y;'Y; = I, for all i € [n],
i.e., the columns of each block Y; € R"*¢ form an orthonormal frame. In general,
the set of all orthonormal k-frames in RP (k < n):

St(k,p) £2{Y e RP** | YTY = [;,} (12)

forms a smooth compact matrix manifold, called the Stiefel manifold, which can
be equipped with a Riemannian metric induced by its embedding into the ambi-
ent space RP** [2 Sec. 3.3.2]. Together, these observations enable us to reduce
Problem [3] to an equivalent unconstrained Riemannian optimization problem
defined on a product of Stiefel manifolds:

Problem 4 (Rank-restricted semidefinite relaxation, Riemannian optimization form).

PSDPLR = Yegtl(igr)n tr(QYTY). (13)

This is the optimization problem that we will actually solve in practice.

Ensuring optimality While the reduction from Problem [3| to Problem [ dra-
matically reduces the size of the optimization problem that needs to be solved, it
comes at the expense of (re)introducing the quadratic orthonormality constraints
. It may therefore not be clear whether anything has really been gained by
relaxing Problem [2[ to Problem 4] since it appears that we may have simply re-
placed one difficult nonconvex optimization problem with another. The following
remarkable result (adapted from Boumal et al. [9]) justifies this approach:

Proposition 2 (A sufficient condition for global optimality in Problem
E[). If Y € St(d,r)"™ is a (row) rank-deficient second-order critical poinﬂ of
Problem |er then Y is a global minimizer of Problem |Z| and Z* = Y'Y is a
solution of the dual semidefinite relazation Problem[3

Proposition 2] immediately suggests a procedure for obtaining solutions Z* of
Problem 3| by applying a Riemannian optimization method to search successively
higher levels of the rank-restricted hierarchy of relaxations until a rank-
deficient second-order critical point is obtainedﬁ This algorithm is referred to
as the Riemannian Staircase [0} [9].

" That is, a point satisfying grad F(Y) = 0 and Hess F(Y) = 0 (cf. (T4)-(17)).
8 Note that since every Y € St(d, )" is row rank-deficient for > dn, this procedure
is guaranteed to recover an optimal solution after searching at most dn + 1 levels of

the hierarchy .



A Riemannian optimization method for Problem [4] Proposition 2] pro-
vides a means of obtaining global minimizers of Problem [3] by locally searching
for second-order critical points of Problem [4] To that end, in this subsection we
design a Riemannian optimization method that will enable us to rapidly identify
these critical points in practice.

Equations and provide an efficient means of computing products
with @ by performing a sequence of sparse matrix multiplications and sparse
triangular solves (i.e., without the need to form the dense matrix Q directly).
These operations are sufficient to evaluate the objective appearing in Problem
[] as well as the corresponding gradient and Hessian-vector products when con-
sidered as a function on the ambient Euclidean space R”*%":

FY)2u(QY'Y), VF(Y)=2YQ, V?F(Y)[Y]=2YQ. (14)

Furthermore, there are simple relations between the ambient Euclidean gradient
and Hessian-vector products in and their corresponding Riemannian coun-
terparts when F(-) is viewed as a function restricted to St(d, )™ C R"*4". With
reference to the orthogonal projection operator [19, eq. (2.3)]:

Projy : Ty (R™*") — Ty (St(d,r)")

15
Projy (X) = X — Y SymBlockDiag,, ,(Y " X) (15)

the Riemannian gradient grad F(Y') is simply the orthogonal projection of the
ambient Euclidean gradient VF(Y) (cf. [2] eq. (3.37))):

grad F(Y) = Projy VF(Y). (16)

Similarly, the Riemannian Hessian-vector product Hess F'(Y')[Y] can be obtained
as the orthogonal projection of the ambient directional derivative of the gradient
vector field grad F(Y) in the direction of Y (cf. [2) eq. (5.15)]). A straightforward
computation shows that this is given by:

Hess F(Y)[Y] = Projy (V2F(Y)[Y] — Y SymBlockDiag,, ,(YTVF(Y))). (17)

Together, equations 7 , and 7 provide an efficient means of
computing F(Y), grad F(Y), and Hess F(Y)[Y]. Consequently, we propose to

employ the truncated-Newton Riemannian Trust-Region (RTR) method [I, ]
to efficiently compute high-precision estimates of second-order critical points of
Problem [ in practice.

4.2 Rounding the solution

In the previous subsection, we described an efficient algorithmic approach for
computing minimizers Y* € St(d, )™ of Problem [4| that correspond to solutions
Z* =Y*"'Y* of Problem However, our ultimate goal is to extract an optimal
solution of Problem [2| from Z* whenever exactness holds, and a feasible approz-
imate solution otherwise. In this subsection, we develop a rounding procedure
satisfying these criteria.



Algorithm 1 Rounding procedure for solutions of Problem []
Input: An optimal solution Y* € St(d,r)"™ of Problem
Output: A feasible point R € SO(d)".
1: function ROUNDSOLUTION(Y ™)
2: Compute a rank-d truncated singular value decomposition Ug=qV, for Y*
and assign R« 24V

3 Set Ny « |[{R: | det(R;) > 0}.

4: if Ny < [%] then

5: R + Diag(1,...,1,—-1)R.

6: end if

7 fori=1,...,ndo

8: Set R; < NEARESTROTATION(R;). > See e.g. [4]]
9: end for A

10: return R
11: end function

To begin, let us consider the (typical) case in which exactness obtains; here
Y*TYy* = Z* = R*TR* for some optimal solution R* € SO(d)™ of Problem
Since rank(R*) = d, this implies that rank(Y™*) = d as well. Consequently,
letting Y* = UdEdVdT denote a (rank-d) thin singular value decomposition of
Y*, and defining Y £ 5,V € R4 it follows that YTY = Z* = R*T R*. This
last equality implies that the d x d block-diagonal of YTY satisfies Y;'Y; = I
for all i € [n], i.e. Y € O(d)". Similarly, comparing the elements of the first
block rows of YTY and R*TR* shows that Y'Y; = RYR; for all j € [n]. Left-
multiplying this set of equalities by Y; and letting A = Y] R} shows Y = AR* for
some A € O(d). Since any product of the form AR* with A € SO(d) is also an
optimal solution of Problem (by gauge symmetry), this shows that Y is optimal
provided that Y € SO(d) specifically. Furthermore, if this is not the case, we can
always make it so by left-multiplying Y by any orientation-reversing element
of O(d), for example Diag(l,...,1,—1). This argument provides a means of
recovering an optimal solution of Problem [2| from Y™* whenever exactness holds.
Moreover, this procedure straightforwardly generalizes to the case that exactness
fails, thereby producing a convenient rounding scheme (Algorithm .

4.3 The complete algorithm

Combining the efficient optimization approach of Section with the rounding
procedure of Section produces SE-Sync (Algorithm , our proposed algo-
rithm for synchronization over the special Euclidean group. When applied to an
instance of SE(d) synchronization, SE-Sync returns a feasible point & € SE(d)™
for the maximum-likelihood estimation Problem [I]together with the lower bound
Pipp < PyrE on Problem s optimal value. Furthermore, in the typical case that
Problem [3| is exact, the returned estimate & = (7, ]:2) attains this lower bound
(i.e. F(QRTR) = pépp), which thus serves as a computational certificate of &’s
correctness.



Algorithm 2 The SE-Sync algorithm

Input: An initial point Y € St(d,r0)", 7o > d + 1.

Output: A feasible estimate & € SE(d)" for the maximum-likelihood estimation Prob-

lem [1} and a lower bound ppp < pyrg for Problem s optimal value.

1: function SE-SyNc(Y)
2:  Set Y* < RIEMANNIANSTAIRCASE(Y). b Solve Problems [3] &
3 Set pipp — F(QY*TY™). >Z*=Y*TY*
4:  Set R + ROUNDSOLUTION(Y ™).

5: Recover the optimal translational estimates ¢ corresponding to R via @[)

6.

7

8:

Set & « (i, R).
return {pSpp, &}
end function

5 Experimental results

In this section, we evaluate SE-Sync’s performance on a variety of simulated and
real-world 3D pose-graph SLAM datasets; specifically, we rerun the experiments
considered in our previous work on solution verification [I4] in order to establish
a meaningful baseline with previously published results. We use a MATLAB im-
plementation of SE-Sync that takes advantage of the truncated-Newton RTR [I]
method supplied by Manopt [7]. Furthermore, for the purposes of these experi-
ments, we fix r = 5 in the Riemannian Staircaseﬂ and initialize SE-Sync using
a randomly sampled point on St(3,5)™.

As a basis for comparison, we also consider the performance of two Gauss-
Newton-based alternatives: one initialized using the common odometric initial-
ization (“GN-odom”), and another using the (state-of-the-art) chordal initializa-
tion [I5 B0] (“GN-chord”). Additionally, since the goal of this project is to pro-
duce a certifiably correct algorithm for SE(d) synchronization, we also track the
cost of applying the a posteriori solution verification method V2 from our pre-
vious work [I4] to verify the estimates recovered by the Gauss-Newton method
with chordal initialization (“GN-chord-v2”).

5.1 Cube experiments

In this first set of experiments, we simulate a robot traveling along a 3D grid
world consisting of s2 poses arranged in a cubical lattice. Random loop closures
are added between nearby nonsequential poses on the trajectory with probability
prLc, and relative measurements are obtained by contaminating translational ob-
servations with zero-mean isotropic Gaussian noise with a standard deviation of
or and rotational observations with the exponential of an element of so(3) sam-
pled from a mean-zero isotropic Gaussian with standard deviation og. Statistics
are computed over 30 runs, varying each of the parameters s, prc, or, and o
individually. Results for these experiments are shown in Figs. [TH4]

9 We have found empirically that this is sufficient to enable the recovery of an opti-
mal solution whenever exactness holds, and that when exactness fails, the rounded
approximate solutions R obtained by continuing up the staircase are not ultimately
appreciably better than those obtained by terminating at r = 5.
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Overall, these results indicate that SE-Sync is capable of converging to a
certifiably globally optimal solution from a random starting point in a time that
is comparable to (or in these cases, even faster than) a standard implementation
of a purely local search technique initialized with a state-of-the-art method. This
speed differential is particularly pronounced when comparing our (natively cer-
tifiably correct) algorithm against the Gauss-Newton method with verification.
Furthermore, this remains true across a wide variety of operationally-relevant
conditions. The one exception to this general rule appears to be in the high-
rotational-noise regime (Fig. , where the exactness of the relaxation breaks
down (consistent with our earlier findings in [14]) and SE-Sync is unable to re-
cover a good solution. Interestingly, the chordal initialization + Gauss-Newton
method appears to perform remarkably well in this regime, although here it is
no longer possible to certify the correctness of its results (as the certification
procedure depends upon the same semidefinite relaxation as does SE-Sync).

5.2 Large-scale SLAM datasets

Next, we apply SE-Sync to the large-scale SLAM datasets considered in our
previous work [I4]. We are interested in both the quality of the solutions that
SE-Sync obtains, as well as its computational speed when applied to challenging
large-scale instances of the SLAM problem. Results are summarized in Table

# Nodes|# Meas.|| fan odom.| fgn init. | fsg_syne ||[SE-Sync time|SE-Sync optimal?
sphere 2500 4949 |[ 5.802- 107 | 5.760 - 10% | 5.759 - 102 6.95 v
sphere-al| 2200 8647 [ 3.041-10° [ 1.249-10° | 1.249 - 10° 3.61 v
torus 5000 9048 |[ 2.767-10% | 1.211-10% [ 1.211- 107 24.50 v
cube 8000 22236 || 2.747-10° | 4.216 - 107 | 4.216 - 107 132.44 v
garage || 1661 6275 [/6.300 - 10~ 1[6.300- 10~ 1[6.299 - 10~ ! 203.30 v
cubicle 5750 16869 || 6.248 - 107 | 6.248 - 102 | 6.248 - 10° 181.12 v

Table 1. Summary of results for large-scale real-world datasets.

These results confirm that the Riemannian optimization scheme developed in
Section enables SE-Sync to scale effectively to large problem sizes, and that
the semidefinite relaxation Problem [3| remains exact even in these challenging
real-world examples.

6 Conclusion

In this paper we developed SE-Sync, a certifiably correct algorithm for syn-
chronization over the special Euclidean group. This method exploits the same
semidefinite relaxation used in our procedure [I4] to verify in-hand optimal solu-
tions, but improves upon this prior work by enabling the efficient direct computa-
tion of such solutions through the use of a specialized, structure-exploiting low-
dimensional Riemannian optimization approach. Experimental evaluation shows
that SE-Sync is capable of recovering certifiably optimal solutions of pose-graph
SLAM problems in challenging large-scale examples, and does so at a computa-
tional cost comparable with that of direct Newton-type local search techniques.
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