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Abstract. This paper investigates real-time control strategies yoadhical sys-
tems that involve frictional contact interactions. Hylméds and underactuation
are key characteristics of these systems that complicateleékign of feedback
controllers. In this research, we examine and test a noeebfack controller de-
sign on a planar pushing system, where the purpose is tootdinér motion of a
sliding object on a flat surface using a point robotic pushie pusher-slider is
a simple dynamical system that retains many of the challetigs are typical of
robotic manipulation tasks.

Our results show that a model predictive control approadd us tandem
with integer programming offers a powerful solution to eaptthe dynamic con-
straints associated with the friction cone as well as theitlytature of the con-
tact. In order to achieve real-time control, simplificasare proposed to speed
up the integer program. The conceptraimily of Modes (FOM) is introduced to
solve an online convex optimization problem by selectingtao$ contact mode
schedules that spans a large set of dynamic behaviors thatccar during the
prediction horizon. The controller design is applied tddize the motion of a
sliding object about a nominal trajectory, and to re-plarridjectory in real-time
to follow a moving target. We validate the controller destgrough numerical
simulations and experimental results on an industrial ABB [L.20 robotic arm.

1 INTRODUCTION

Humans manipulate objects within their hands with impresagility and ease. While
doing so, they also make many and frequent mistakes fromhathiey recover seam-
lessly. The mechanical complexity of the human hand alorty its array of sensors
sure play an important role. However, despite recent adsimcthe design of complex
robotic hands [1-3] and sensory equipment (tactile sensimisn markers, proximity
sensors, etc. [4,5]), autonomous robotic manipulatioraiamfar from human skill at
manipulating with their hands or teleoperating robotieifdaces.

We argue that this gap in performance can largely be at&ribtd robots’ inability
to use sensor information for real-time control purposebeWas humans effectively
process and react to information from tactile and visiorssey) robot manipulators are
most often programmed in an open-loop fashion, incapabkdapting or correcting
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their motion. With the recent development of sensing eqgeiptythe question remains:
how should robots use sensed information?

This work is concerned with the challenges involved in aigsihe loop through
contact in robotic manipulation. To the knowledge of thehaus, a general feedback
controller design methodology is still lacking in the fielidobotic manipulation, which
is essential for robots to be aware and reactive to contathis article, we focus our
attention on dexterous manipulation tasks, where the réatgd object moves relative
to the robot’s end effector.

In this article we examine and test a feedback controllergdefor the pusher-
slider system, where the purpose is to control the motion glfidéng object on a flat
surface using a point pusher. The pusher-slider systenirgdesdynamical system that
incorporates several of the challenges that are typicallmbtic manipulation tasks. In
particular, we are concerned with two main challenges:

1. Itis ahybrid dynamical system that exhibits different contact modes between the
pusher and slider (e.g. separation, sticking, sliding ap, gliding down). Transi-
tions between these modes result in discontinuities in yin@hics, which compli-
cate controller design.

2. Itis anunderactuated system where the contact forces from the pusher acting on
the sliding object are constrained to remain inside thdidticcone. These con-
straints on the control inputs lead to a dynamical systenrevtie velocity control
of the pusher is not sufficient to produce an arbitrary acaétan of the slider. Ul-
timately, the controller must reason about finite horiza@jectories and not just
instantaneous actuation.

The purpose of this article is to develop a feedback comtraksign that can handle
both challenges described above. Our results show that alrpoetictive control ap-
proach used in tandem with integer programming offers a plolveolution to capture
the dynamic constraints associated with the friction canavell as the hybrid nature
of contact. In order to achieve real-time control, simpéifions are proposed to speed
up the integer program. The conceptFaimily of Modes (FOM) is proposed to solve
an online convex optimization problem by simulating the ayical system forward
using a set (i.e., family) of mode schedules that are idedtiis being key. Numerical
simulations and experimental results, performed usingédnstrial robotic manipula-
tor to push the sliding object and a Vicon system to track asep show that the FOM
methodology yields a feedback controller design that caimipéemented in real-time
and stabilize the motion of a slider through a single corpaatt about a nominal tra-
jectory.

2 RELATED WORK

Historically, grasping and in-hand dexterous maniputatiave been two main focuses
of robotic manipulation research. In grasping, convergiaontrol approaches first
search for the location of grasp contact points that yiefdestorm of geometric closure
on the object [6], then close the gripper either blindly othaforce control, and finally
treat the object as a rigid extension of the robotic arm.dneéhdexterous manipulation



was first explored by Salisbury and Craig [7] for dynamic amt motion. The con-
troller design techniques presented in the in-hand deuteliterature typically apply
to complex robotic hands and rely on the gripper and the nudattipd objects to stick
together at the contact points.

Dafle et al. [8, 9] demonstrated that simple robotic handsheansed to perform
fast and effective regrasp strategies by using the robuoticaamd the environment as an
external source of actuation. When performing these rpgtiategies, the contact in-
teractions are not limited to sticking contact but also ssa&ly exploit sliding motion.
The control actions proposed by [8, 9] require offline trageg planning and rely on
accurate contact models.

Recently, Posa et al. [10] proposed to apply trajectorynoigtition tools to deter-
mine the motion of the robot and the manipulated object blugling contact reaction
forces along with motions as decision variables in a largeropation program. This
method has been shown to be effective for path planning df Hegree of freedom
systems undergoing contact interactions. This paper shiagemotivation of including
contact forces as decision variables as part of an optifnizatogram.

The application of feedback control strategies to diseartus contact dynamical
systems is a relatively unexplored field of research. Tasdah[11,12] have achieved
remarkable simulation results by using smoothed contadefsan an optimal control
framework, and a similar approach has been proposed by Gtané Anitescu [13].
These methods contrast to the approach explored in this,papere hybridness of
contact is considered explicitly.

With regard to the pusher-slider system, Mason [14] preskah early study of the
mechanics of planar pushing. This theory has been appligtetdesign of controllers
that achieve stable pushing [15], which offers the advantd@perating without sensor
feedback by acting as an effective grasp. In [16], this théeexpanded to a tactile
feedback based controller for the case of a point pusheerstiystem.

3 CHALLENGESOF CONTROL THROUGH CONTACT

The aim of this work is to accurately control the motion ofexdif through contact. Two
major difficulties are typical of these systems: hybridreess$ underactuation.

3.1 Hybridness

When in contact, object and manipulator can interact iredéfiit manners. For exam-
ple, the object can slip within the fingers of the gripper, thiper can throw the
object in the air or perform pick and place maneuvers, eteséhmanipulation ac-
tions correspond to different contact interaction modasaely sliding, separation, and
sticking. The hybridness associated with the transiticete’ben modes can result in a
non-smooth dynamical system. This complicates the dedifgedback controllers as
the vast majority of standard control techniques rely onameess of the dynamical
model.
In many applications involving hybrid dynamical systentss tdifficulty is over-

come by setting the mode scheduling of the controller offinesing on-board sensing



to detect mode transitions. For example, in the locomot@mnmunity, it is common to
transition between two feedback controllers as the robdtkes from a stance phase
to an aerial phase [17], as in Fify. For robotic manipulation tasks, the mode schedul-

Stance Phase Acrial Phase Stance Phase

Fig. 1: Human running gait adapted from Decker et al. [18]. The phcioature of human gait
permits to use control strategies that rely on offline modedaling.

ing is often not known a priori and can be challenging to pedn such cases, we
must rely on the controller to decide during execution whégriaction mode is most
beneficial to the task. Figur2illustrates the example of picking a book from a shelf.
The hand interacts with the book in a complex manner. It fgcdilt to say when fingers
and palm stick or slide, but those transitions not only happat are necessary to pick
the book. Likely the hand initially sticks to the book andgdt backwards exploiting
friction. Then, the thumb and fingers swiftly slide to regrése book. Finally, the book
is retrieved from the shelf using a stable grasp. For suchipntation tasks where the
motion is not periodic, determining a fixed mode sequendiragegy is not obvious and
likely impractical. Errors during execution will surelyqeire that the mode sequencing
be altered.

I
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Fig. 2: Animation of a simple manipulation task that exploits nplkicontact modalities. First,
the hand sticks to the book and drags it backwards explditiagon. Second, thumb and fingers
slide to perform a regrasp maneuver. Finally, the book isenatd from the shelf using a stable

grasp.



3.2 Underactuation

Underactuation is due to the fact that contact interactaarsonly transmit a limited
set of forces and torques to the object. As such, the coatnailist reason only among
the forces that can physically be realized. For examplentiimal forces commanded
should be positive, as contact interactions can only “pastd cannot “pull.” In order
to achieve this, it is required to explicitly integrate theypical constraints associated
with contact interactions in the controller design. A setonportant consequence of
underactuation is that the controller must be capable cor@iag about future not just
instantaneous actuation since the forces required to tiraveask in the direction of the
goal might not be feasible at the current instant. The cdletrmust reason on a finite
horizon.

4 PUSHER-SLIDER SYSTEM

In this article, we study the pusher-slider system, a simplgrehensile manipulation
task where the goal is to control the motion of a sliding obfsfider) through a single
frictional contact point (pusher). The pusher-slider systs a useful test case dynami-
cal system for controller design where actuation arise® firiction.

4.1 Kinematics

Consider the systemin Fig. The pose of the
sliderisq, = [z y O}T wherez andy denote

the cartesian coordinates of the center of mass
of the slider and’ its orientation relative to

the inertial reference framg&,. The position  a,
of the pusher relative to pointresolved inF;

isr?” = [p, p, ] . Figure3 shows the kine-

matics of the slider subject to contact inter- ¢ Qs
actions with a single point of contact robotic
pusher. Fig. 3: Kinematics of a slider subject to

contact interactions with a single point of
contact robotic pusher.
4.2 Quasi-Static Approximation

During contact interactions, two external forces are eckeadn the slider: the general-
ized frictional force applied by the pusher on the slidem@tedf”’) and the general-
ized frictional force applied by the ground on the slidingeaih (denoted®). Applying
Newton’s second law in th&, - a,, plane yields the motion equations

HG, = ¢ + 17, 1)

whereH denotes the inertia matrix of the system. The quasi-statiaraption suggests
that at low velocities, frictional contact forces dominatel inertial forces do not have
a decisive role in determining the motion of the slider. Unitiés assumption, the ap-
plied frictional force by the pusher is of equal magnitudd apposite direction to the



ground planar frictional force (i.ef” = —f). This quasi-static assumption leads to
a simplified analysis of the motion of a sliding object usingirgle point of contact
robotic pusher. Note that including the tekhd; does not complicate the controller de-
sign and could easily be integrated into the control forrofepresented in Sectidn
The resulting controller from a dynamic analysis yields gpiag between the motion
of the slider to the reaction forces applied on the objectdntrast, the quasi-static
assumption leads to a direct mapping between the motioredilitier and the motion
of the pusher. This proved desirable from an experimentplémentation standpoint
using a position controlled robotic manipulator.

The motion equations of the pusher-slider system are fatadlin [16] assuming a
quasi-static formulation with a uniform pressure disttibn. Prior to presenting these
motion equations, it is necessary to review two importancepts of frictional contact
interactions: the limit surface and the motion cone.

4.3 Limit Surface

The limit surface is a useful geometric representation tvhimder the quasi-static as-
sumption, maps the applied frictional force on an objectsaésulting velocity. First
introduced in [19], the limit surface is defined as a convefeme which bounds the set
of all possible frictional forces and moments that can béasusd by frictional inter-
face. In this paper, we use the ellipsoidal approximatiahédimit surface [20], where
the semi-principal axes are given By,az, fmaz, aNdmp,q, defined byfpq. = pgmg
andmmq. = 252 [, ||7>dmbH dA, wherep, is the coefficient of friction between the
object and the grounaly is the mass of the objegt,is the gravitational acceleratiod,
is the surface area of the object exposed to friction, @i ® denotes the position of

dm relative to the origin ofF;.

4.4 Motion Cone

Depending on the direction of motion of the pusher,
different contact interaction modes can arise between?
the pusher and the slider. The motion cone [14], shown
in Fig. 4, is useful to determine if a given velocity of
the pusher will result in sticking or sliding behavior
between the pusher and the slider. Each boundary o
the motion cone is constructed by mapping the resul
ing velocity of the slider at the contact pointwhen
subject to a frictional force that lies on a boundary "=~ ,
of the friction cone. It can be shown using the ellip- T
soidal approximation to the Iimi_t surface, that_ for fla'gig'4: Motion cone (MC) at
faced objects, the two boundaries of the motion copgi,ct pointp. If the pusher ve-
are given Aasﬁ,{‘/‘c = —1by + b, and THC = locity lies within the two bound-
—1by + by, with aries of the motion cone, the
) ) pusher will stick to the slider, else,
_ PC” = papy + Upy it will slide.
Tt =5 5 (2)

ce + Py — UPzPy




and

2 _ 2

Yo =
e+ p2 + pupzpy

wherep,, andp, are shown in Fig3andc = fm‘“ . Given the velocity of the pusher re-

solved inF, denotedi = [v,, v]T, the condltlons stated below determine the resulting
contact interaction mode that will arise between the puahdrthe slider.

Sticking When the sliding object is sticking to the pusher, the redatiangential veloc-
ity between the pusher and the object is zero. In order to tiesdehavior, the velocity
vector must lie within the boundaries of the motion cone ig.Bi This constraint,
denoted asi € MC, is defined as

vy < YiUp, (4)

ue MC:
{ UVt 2 YpUn,- (5)

Sliding Up When the pusher is sliding up in the tangential directioatie¢ to the
object, velocity of the pusher must lie above the upper baundf the motion cone.
This constraint is expressed by

u>MC: { v >y, (6)

Sliding Down When the pusher is sliding down in the tangential directiglative to
the object, the velocity of the pusher must lie below the Iola@undary of the motion
cone . This condition is enforced as

u<MC: { v <yup. @)

45 Motion Equations

The motion equations of the pusher-slider system are fatadlin [16] and stated
below. The equations presented in Bg).describe hybrid dynamics, where the contact
interaction mode depends upon the direction of the pusHecite

fi(x,u) if ueMC,
X =4 fa(x,u) if u>MCc, (8)
fa(x,u) if u< MC,

with x = [q] p,]T, u = [v, v:]T denotes the velocity of the pusher resolvedin and

T )
C QP; cosf sinf 1 P2 Paby
fix,uy=1 by ju C=| " Q= 5= 242
o sinf cos 6 c+pz+py | PPy ¢ 1Dy
y (

o —Dy o Py +7VtPa o Py+V6Pa
b, = |:C2+P32C+P§ pm:| , by = |:C2+—P§+py O} bs = |:C2+P2+_py O}
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T T T
_ |0 | _ | _ [tro 10
C = |:O:| , Co = |: 0 :| , C3 = |: 0 :| ) P1_|2><27 P2_ |:’Yt O:|7 P3_ |:7b O:| )

wherej = 1,2, 3 correspond to sticking, sliding up, and sliding down cohiaterac-
tion modes, respectively. For simplicity, we do not consttie case of separation when
the pusher is not in contact with the object. Under the assiompf small forces with
low impact, separation is the least relevant mode to thegousiider system.

4.6 Linearization

This section develops the linearized motion equations agiibm cone constraints de-
veloped in Sectiong.4 and 4.5 about a given nominal trajectory. This linearization
yields linear equations, which can be enforced as linearixniatequalities in an op-
timization program and are computationally tractable fealitime execution of the
controller design presented in SectibnConsider a feasible nominal trajectoy(t)

of the sliding object with nominal control input (¢) of the pusher. The notation)*

is used to evaluate a term at the equilibrium state@ni$ used to denoted a perturba-
tion about the equilibrium state. The linearization of matequations Eq 8} about a
nominal trajectory yields

X =A;(t)X+B;(t)u, with x=x—x*, U=u-—u",
and of of
A = W , B(t) = Y | (9)
X e 1,00 (1) U e yur (1)

Similarly, the constraints enforcing a sticking interactbetween the pusher and the
slider presented in Eqst)and 6) are perturbed about the nominal trajectory as

(vf +00) < (0 + ) (v, +0n), and (vf +01) 2 (5 + %) (v +00),  (10)
respectively. Expanding the perturbatiopsand+, in terms ofx as

X _ On _ o

/}7t = Ctx y Yo = Cb)_(a Ct - - ) Cb — - ) (11)
OX |y (tyu (1) OX (1) (1)
permits to write Eq.10) in matrix form as
E1(t)X +D1(t)u < gu(t), (12)

_ | Ct _ 1 I EH e ;
whereE;, = v}, [ C } D; = { < , 01 = vF — , Where higher order

b
perturbations are neglected. Similarly, the sliding up aliding down constraints in
Egs. 6) and (7) are perturbed about the nominal trajectory as

(7 +00) > (3 + ) (v, +0n), and (vf +0;) < (5 + %) (v +00),  (13)
respectively and can be rearranged in matrix form as

E2(t)x + D2(t)u < g2(¢), and (14)
Es(t)x + Ds()u < gs(t), (15)



with E, = ’U:;Ct, E3 = —U;Cb, D, = [’7; —1},D3 = [—’}/Z; 1},92 = [U: — ’}/Z(U;; — 6],
andgs = [—vf + vy — e], where higher order perturbations are neglected,a
small scalar value, and, andC, are given by Eq.X1).

5 MODEL PREDICTIVE CONTROL

In this section, we present a feedback controller desigthimotion of the slider that
minimizes perturbations from a desired trajectory. Theppezd controller determines
the desired pusher velocity at each time step based on tksedg@ose of the slider. A
successful feedback controller must: 1) address hybridmed underactuation 2) allow
for sliding at contact 3) be fast enough to solve online 4yalgerturbations from the
nominal trajectory to zero. To satisfy these requirementsuse a Model Predictive
Control (MPC) formulation, which takes the form of an optnation program over
the control inputs during a finite time horizag, ..., tx. The decision variables of
the optimization program include the perturbed states efstfstem forV time steps
X1, ..., Xy and the perturbed control inpulg, . .., Uy _1. The goal is represented by
a finite-horizon cost-to-go function that we will minimizelgect to the constraints on
the control inputs and the dynamics of the system detail&ktiond. We express the
cost-to-go forN time steps as:

N—-1
J(Xnv un) = XIVQNXN + Z (XIJFIQXnJrl + GIRDn) . (16)

n=0

The termQ, Qu, andR denote weights matrices associated with the error statd, fin
error state, and control input, respectively. We subjeetdbarch for optimal control
inputs to the constraints describing the motion equatioscantact dynamics of the
system. Due to the hybridness of the dynamical equatioagdhstraints to be enforced
depend on the contact moglat play at each iteration of the prediction finite horizon:

0 X1 = fjo -+ hB,olo, (Dynamics) a7
hn=0: D;olo < Gjo, (Motion Cone) (18)

Xn+1 = [| + hA,] Xn, + hB;, Uy, (Linearized Dynamics)  (19)
E;jnXn + Djnln < Qjn, (Linearized Motion Cone) (20)

ifn>0: {

where the term#.;,,, B, D;», E;,, are developed in Eqs9), (12), (14), and (L5), and

the subscript: is used to denote the time stamp at which each expressioalisated
(e.9.A;, = Aj(t,)). The constraints Eqnsl{) and (L9) describe the dynamical mo-
tion equations while Eqns18) and Q0) represent the motion cone constraints. Note
that for the special case (= 0), the nonlinear dynamical and contact constraint equa-
tions given by Egs.4), (5), (6), (7), and @) reduce to linear form due to the knowledge
of the statex. In this case, the expressioBs,, D;o, andg;, are evaluated &, rather
thanx*(to), and the terni;, is defined as

fj0 = Xo + I [Bjou*(to) — f(X*(to), u*(to))] -
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The constraints in Egs1y), (18), and (L9), and @0) depend on the contact mode
which complicates the search for optimal control inputsn@ot modes and control in-
puts must be chosen simultaneously. As illustrated inF;ithis problem takes the form
of a tree of optimization programs witiY possible contact schedules, each yielding a
convex optimization program, which is too computationabyensive to solve online.

n=>0
@ Sticking

@ Sliding up n=1
@ Sliding down m n=2

Seclicliddiddidds i i il n=nN

Fig. 5: Tree of optimization programs for a MPC program withprediction steps. Scales expo-
nentially due to contact hybridness.

5.1 Mixed-Integer Quadratic Program

The combinatorial hybrid nature of the pusher-slider dyitancan be modeled by
adding integer decision variables into the optimizatiargpam, as is commonly done in
Mixed-Integer programming. The resulting Mixed-Integera@ratic Program (MIQP)
can be solved rather efficiently using numerical tools, ascGurobi [21]. In the case of
the pusher-slider system, we introduce the integer va$abl,, € {0, 1}, z2,, € {0,1},
andzs, € {0, 1}, wherezy,, = 1, z9,, = 1, 0r z3,, = 1 indicate that the contact interac-
tion mode at step is either sticking, sliding up, or sliding down, respeclv&Ve will
use the big-M formulation [22] to write down the problem, wié/ is a large scalar
value used to activate and deactivate the contact mode depetonstraints, through a
set of linear equations. The mode dependent constraintsfamenulated as

1

1
if n=0: -1 -1

Djolo < gjo + laxi M (1 — zjy)

L,
ifn>0:¢ =1~ |21

Ejnxn + Djnun < gjn + 12><1M(1 - Zjn)a

wherel,,.; = [1 1 ... 1]7. Finally, the constraint,,, + 2o, + 23, = 1 is enforced to
ensure that only one mode can be activated at a time.

i

1>

‘| {fj() + th()UQ} + 18><1M(1 — Zjn)

{[1+ hA;] Xy + hB;jUL} + Lsx 1 M (1 — 2j,)

5.2 Family of Modes (FOM) Scheduling

The MIQP formulation greatly reduces the computational associated with the opti-
mization program in Eq.16). With an efficient implementation, it can be solved in al-
most real-time for the low dimensional pusher-slider gystdowever it does not scale
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Sliding Up Sticking Sliding Down Sticking

Fig. 6: Example of optimal mode schedule for the pusher-slideesystonverging to a straight
horizontal trajectory.

well for systems with more degrees of freedom or additionatact points. The method
presented in this section is motivated by the observatiahrttany of the branches of
the tree in Fig5 will give very good solutions, even if not exactly optimabrithe
pusher-slider system, it is reasonable to expect the optimde schedule will follow
a certain predictable structure. For example, we can inéljt expect that when the
object is located in the direction above the reference straight line trajectorynasg.

6, the pusher will likely slide up to correct the orientatiditloe object followed by a
downward sliding motion as the object converges to the ddgnajectory. This push-
ing strategy represents one possible mode schedule. Thly fafitmodes algorithm
consists in determining a fixed set of probable mode schediié span a large range
of primitive behaviors of the system. Each mode schedulbeérfamily specifies a se-
quence ofN contact modes to be imposed during the finite predictionzioorin the
MPC formulation. By doing so, the combinatorial problemuees to solvingn convex
optimization programs, where is the number of mode sequences in the family. A key
challenge is in determining a small number of mode schedhig¢spans a “significant”
set of dynamic behaviors. For the pusher-slider systemcounkl consider a family of
three mode sequences:

M: the pusher slides up relative to the object followed by ekstg phase,
M: the pusher slides down relative to the object followed biickimg phase,
M3: the pusher sticks to the object for the full length of thedicgon horizon.

Even though this family of mode sequences only contains v smaall fraction of all
the possible contact mode combinations in the tree in &ig. spans a very large set
of dynamic behaviors between the pusher and the slider.oPére reason is that the
controller will re-optimize the selection of optimal modiesreal-time. Solving Eq.
(16) for each mode schedule leads to the finite horizon césts. ., J,,,. Given that all
possible contact modes are predetermined, all combimh&spects disappear, and each
mode schedule in the family leads to a computationally dé/quadratic problem. The
controller then chooses the optimal among the “m” mode salesdThe control input
is selected at each time step by choosing the first elemeieo$eéquence of control
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inputs asu = uj + Uy, where the ternu, is obtained from the optimization program
with minimum cost andi* denotes the nominal control input.

Table 1: Physical parameters of pusher-slider system.

Property Symbol Value
coefficient of friction (pusher-slidep), 0.3
coefficient of friction (slider-table) p, 0.35
mass of sliderkg m 1.05
length of sliderm a 0.09
width of slider,m b 0.09

6 RESULTS

The controller design based on the Family of Modegs
approach is implemented in this section as describeg
in Section5. Two test scenarios are considered. Sec*®
tion6.1considers a trajectory tracking problem, where
an external perturbation is applied to the system. Sec-
tion 6.2adapts the controller design to a target tracking
problem, where the pusher guides the slider thratigh
successive targets. We evaluate the performance of the
controller design in both test scenarios through numer-
ical simulations and experiments. The experiments are
conducted using an ABB IRB 120 industrial robotic
manipulator along with a Vicon system to track the
pose of the slider. The experimental setup is depict
in Fig. 7, where a metallic rod (pusher) attached to t
robot is used to push an aluminum object (slider) ona
flat surface (plywood). The physical parameters of the ™

system are reported in Table Fig.7: Experimental setup. A
metallic rod (pusher) is attached
to an ABB IRB 120 industrial
robotic arm to push an aluminum

Consider the problem of tracking a straight Iing:?ggt iS';?aeg(éghjsiﬂgsz (\);Ct:r?

nominal trajectory at a constant velocity, defined Ry, ara system.
x*(t) = [0.05¢ 0 0 0]T andu* = [0.05 0]T.

, Pusher

Slider

6.1 Straight Line Tracking

M3 = Stick,

Stick  ifn>0" " 27 )sStick ifn>0"

{Slide up ifn=0 {Slide down ifn =0
My =

as detailed in Sectiob.2 The controller design parameters used in the numerical sim
ulations in Fig.?? and the experiments in Fig(b) are set taV = 35 steps,h = 0.03
secondsQ = 10 diag{1, 3,.1,0}, 200 diag{1, 3,.1,0}, andR = 0.5 diag{1, 1}. To
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(a) Simulation results.

0.05 M —

-0.05

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
x(m)

(b) Experimental results.

Fig. 8: Tracking of a straight line trajectory at a constant velpdioth simulated and experi-
mental trajectories of the sliding object recover from atemal lateral perturbation. The pusher
quickly reacts to stabilize the slider about the nomingettory.

limit the maximum velocity of the pusher, we include the doaists|v,| < 0.1 m/s
and|v;| < 0.1 m/s to the optimization program.

In Fig. 8, an impulsive force is applied in thg direction to perturb the system
about its nominal trajectory and evaluate the performaffitteedfeedback controller. In
Fig.8(a) the simulated response of the slider to a state perturb&tio [0 0.01 % 0"
applied atx = 0.075 m is compared to the experimental response of the slider in
Fig. 8(b)to an external impulsive force applied using a hand held p&ath simulated
and experimental responses show that the feedback centi@buccessful in driving
the perturbations from the nominal trajectory to zero. THitgal motion of the pusherin
Fig. 8(b)is trying to correct the non-zero initial conditions of tHieler, which was im-
perfectly placed by hand. The experimental performanckefdéedback controller de-
sign to a variety of external perturbations can be visudl@ét t ps: / / ncube. mi t . edu/ vi deos.

6.2 Trajectory Tracking

In this section, the controller design developed in Sestiband6 is adapted to the
problem of tracking a moving target position. The objects/@ control the motion of
the robotic pusher such that the sliding object reachegettér,, y.). At each instant,
an intermediate reference franke is defined where the unit vectéy points from the
center of mass of the sliding object to the target positidme &ngled. in Fig. 9 is
the orientation of, relative to the horizontat, and the anglé,.., = 0 — 6. is the
orientation of the slider relative .. The tracking of a target position is converted into
a trajectory tracking problem where the objective is tokrthe straight line between the
current position of the slider and the target. Assuming a&taot desired velocity of the
sliding object, the nominal trajector}; () and control inputi’ (%), defined relative to
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A/ ey Je iq X(T(D = xf(D + X(,(D
Cy (T , y,) Cy u['({) _ u(*(ﬂ i uv({)
‘-_9:(;\\.__“ (Te, Ye)
ay Cy "
Qg Fig. 10: A desired trajectory? () is

] ) ) defined from the center of the object to
Fig.9: The intermediate reference  the goal position along the directiép

frame 7. is defined such that, points with nominal control input sequence
in the direction of the target. uz ().

the intermediate reference franfe, arex;(¢) = [v,£ 00 O}T andu’(t) = [v, O}T,
with v, the desired velocity. The tertdenotes the prediction horizon time, which is
reinitialized at each time step &s-= 0. The controller design parameters used in Eiy.
are identical to those presented in Secpwith the exception that the max tangential
velocity is set tojv;| < 0.3 m/s. The target tracking results are performed from zero
initial conditions with the target positioris. y.]" given by

1023 .10.23 .| 03
Target 1: {—0.11] (m), Target2: {0.11] (m), Target3: [0.08} (m)

The simulation begins with the position tracking of TargetWhen the slider falls
within a distance 0f).01 meters of a target, the position is updated to the next target
position and so on until the final position is reached. Bothusated and experimental
trajectories achieve target tracking within the specif@drance (video of experiments
available atht t ps: // ncube. mi t. edu/ vi deos). The trajectories in Figl1 de-
pict the robotic pusher favoring a sliding behavior whenrtiative angle of the sliding
object is large relative to the target position. The comdratlects to slide the pusher
relative to the object to rotate it and then favors a stickingtact mode to push the
object in a straight line towards the target position. Thaatool strategy is intuitive
and is in line with the way in which humans manipulate objerggg a single fin-
ger. It is observed that the simulated trajectory resultSiin 11(a)achieves slightly
more aggressive turns than the experimental trajectonjteds Fig.11(b) Despite the
unmodeled aspects of the problem, such as delay in the raisdtqn control, quasi-
static assumption, imprecise nature of friction, etc. féeelback controller makes good
control decisions which drive the system in the right di@ttowards the desired tra-
jectory.

7 CONCLUSION

In this work we present a feedback controller design for ipalaition tasks where con-
trol acts through contact. Using a model predictive corapgroach combined with an
integer programming formulation permits for the integyatof the physical constraints
associated with the dynamics of contact as well as explicahsider the hybrid nature
of the interactions. We describe two methodologies to stiieeoptimization program,
namely Mixed-Integer Quadratic Programming and Family afdés, which we pro-
pose to speed up the integer program for real-time contrigdqaes. The Family of
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(a) Simulation results. (b) Experimental results.

Fig. 11:Control of a sliding object through a single point roboticspar. Both simulation and
experimental results successfully reach3athrgets within the specified tolerance.

Modes method is validated through numerical simulatiortsexperiments, where the
feedback controller successfully stabilizes the motioa sliding object through single
point contact.

Following the success of the Family of Modes approach in thehpr-slider system,
a natural question raised is: “How does the Family of Modgs@gch extend to more
complex manipulation tasks?” For large set of manipulatimblems involving multi-
ple contact locations, key mode sequences can be readilfffidd either using physical
insight of by investigating solutions to offline planningatithms. Moreover, for many
manipulation tasks, such as those involving parallel japggrs, there is a natural sym-
metry of the problem that can be leveraged to deduce imparmade sequences. The
application of the Family of Modes approach to multiple @mtproblems, such as
in-hand manipulation with extrinsic dexterity [8, 9], is mettion of future work.
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