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Abstract. This paper investigates real-time control strategies for dynamical sys-
tems that involve frictional contact interactions. Hybridness and underactuation
are key characteristics of these systems that complicate the design of feedback
controllers. In this research, we examine and test a novel feedback controller de-
sign on a planar pushing system, where the purpose is to control the motion of a
sliding object on a flat surface using a point robotic pusher.The pusher-slider is
a simple dynamical system that retains many of the challenges that are typical of
robotic manipulation tasks.

Our results show that a model predictive control approach used in tandem
with integer programming offers a powerful solution to capture the dynamic con-
straints associated with the friction cone as well as the hybrid nature of the con-
tact. In order to achieve real-time control, simplifications are proposed to speed
up the integer program. The concept ofFamily of Modes (FOM) is introduced to
solve an online convex optimization problem by selecting a set of contact mode
schedules that spans a large set of dynamic behaviors that can occur during the
prediction horizon. The controller design is applied to stabilize the motion of a
sliding object about a nominal trajectory, and to re-plan its trajectory in real-time
to follow a moving target. We validate the controller designthrough numerical
simulations and experimental results on an industrial ABB IRB 120 robotic arm.

1 INTRODUCTION

Humans manipulate objects within their hands with impressive agility and ease. While
doing so, they also make many and frequent mistakes from which they recover seam-
lessly. The mechanical complexity of the human hand along with its array of sensors
sure play an important role. However, despite recent advances in the design of complex
robotic hands [1–3] and sensory equipment (tactile sensors, vision markers, proximity
sensors, etc. [4, 5]), autonomous robotic manipulation remains far from human skill at
manipulating with their hands or teleoperating robotic interfaces.

We argue that this gap in performance can largely be attributed to robots’ inability
to use sensor information for real-time control purposes. Whereas humans effectively
process and react to information from tactile and vision sensing, robot manipulators are
most often programmed in an open-loop fashion, incapable ofadapting or correcting
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their motion. With the recent development of sensing equipment, the question remains:
how should robots use sensed information?

This work is concerned with the challenges involved in closing the loop through
contact in robotic manipulation. To the knowledge of the authors, a general feedback
controller design methodology is still lacking in the field of robotic manipulation, which
is essential for robots to be aware and reactive to contact. In this article, we focus our
attention on dexterous manipulation tasks, where the manipulated object moves relative
to the robot’s end effector.

In this article we examine and test a feedback controller design for the pusher-
slider system, where the purpose is to control the motion of asliding object on a flat
surface using a point pusher. The pusher-slider system is a simple dynamical system that
incorporates several of the challenges that are typical of robotic manipulation tasks. In
particular, we are concerned with two main challenges:

1. It is ahybrid dynamical system that exhibits different contact modes between the
pusher and slider (e.g. separation, sticking, sliding up, and sliding down). Transi-
tions between these modes result in discontinuities in the dynamics, which compli-
cate controller design.

2. It is anunderactuated system where the contact forces from the pusher acting on
the sliding object are constrained to remain inside the friction cone. These con-
straints on the control inputs lead to a dynamical system where the velocity control
of the pusher is not sufficient to produce an arbitrary acceleration of the slider. Ul-
timately, the controller must reason about finite horizon trajectories and not just
instantaneous actuation.

The purpose of this article is to develop a feedback controller design that can handle
both challenges described above. Our results show that a model predictive control ap-
proach used in tandem with integer programming offers a powerful solution to capture
the dynamic constraints associated with the friction cone as well as the hybrid nature
of contact. In order to achieve real-time control, simplifications are proposed to speed
up the integer program. The concept ofFamily of Modes (FOM) is proposed to solve
an online convex optimization problem by simulating the dynamical system forward
using a set (i.e., family) of mode schedules that are identified as being key. Numerical
simulations and experimental results, performed using an industrial robotic manipula-
tor to push the sliding object and a Vicon system to track its pose, show that the FOM
methodology yields a feedback controller design that can beimplemented in real-time
and stabilize the motion of a slider through a single contactpoint about a nominal tra-
jectory.

2 RELATED WORK

Historically, grasping and in-hand dexterous manipulation have been two main focuses
of robotic manipulation research. In grasping, conventional control approaches first
search for the location of grasp contact points that yield some form of geometric closure
on the object [6], then close the gripper either blindly or with force control, and finally
treat the object as a rigid extension of the robotic arm. In-hand dexterous manipulation
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was first explored by Salisbury and Craig [7] for dynamic in-hand motion. The con-
troller design techniques presented in the in-hand dexterous literature typically apply
to complex robotic hands and rely on the gripper and the manipulated objects to stick
together at the contact points.

Dafle et al. [8, 9] demonstrated that simple robotic hands canbe used to perform
fast and effective regrasp strategies by using the robotic arm and the environment as an
external source of actuation. When performing these regrasp strategies, the contact in-
teractions are not limited to sticking contact but also necessarily exploit sliding motion.
The control actions proposed by [8, 9] require offline trajectory planning and rely on
accurate contact models.

Recently, Posa et al. [10] proposed to apply trajectory optimization tools to deter-
mine the motion of the robot and the manipulated object by including contact reaction
forces along with motions as decision variables in a large optimization program. This
method has been shown to be effective for path planning of high degree of freedom
systems undergoing contact interactions. This paper shares the motivation of including
contact forces as decision variables as part of an optimization program.

The application of feedback control strategies to discontinuous contact dynamical
systems is a relatively unexplored field of research. Tassa and al. [11,12] have achieved
remarkable simulation results by using smoothed contact models in an optimal control
framework, and a similar approach has been proposed by Stewart and Anitescu [13].
These methods contrast to the approach explored in this paper, where hybridness of
contact is considered explicitly.

With regard to the pusher-slider system, Mason [14] presented an early study of the
mechanics of planar pushing. This theory has been applied tothe design of controllers
that achieve stable pushing [15], which offers the advantage of operating without sensor
feedback by acting as an effective grasp. In [16], this theory is expanded to a tactile
feedback based controller for the case of a point pusher-slider system.

3 CHALLENGES OF CONTROL THROUGH CONTACT

The aim of this work is to accurately control the motion of objects through contact. Two
major difficulties are typical of these systems: hybridnessand underactuation.

3.1 Hybridness

When in contact, object and manipulator can interact in different manners. For exam-
ple, the object can slip within the fingers of the gripper, thegripper can throw the
object in the air or perform pick and place maneuvers, etc. These manipulation ac-
tions correspond to different contact interaction modes, namely sliding, separation, and
sticking. The hybridness associated with the transitions between modes can result in a
non-smooth dynamical system. This complicates the design of feedback controllers as
the vast majority of standard control techniques rely on smoothness of the dynamical
model.

In many applications involving hybrid dynamical systems, this difficulty is over-
come by setting the mode scheduling of the controller offlineor using on-board sensing
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to detect mode transitions. For example, in the locomotion community, it is common to
transition between two feedback controllers as the robot switches from a stance phase
to an aerial phase [17], as in Fig.1. For robotic manipulation tasks, the mode schedul-

Stance Phase Aerial Phase Stance Phase

Fig. 1: Human running gait adapted from Decker et al. [18]. The periodic nature of human gait
permits to use control strategies that rely on offline mode scheduling.

ing is often not known a priori and can be challenging to predict. In such cases, we
must rely on the controller to decide during execution what interaction mode is most
beneficial to the task. Figure2 illustrates the example of picking a book from a shelf.
The hand interacts with the book in a complex manner. It is difficult to say when fingers
and palm stick or slide, but those transitions not only happen, but are necessary to pick
the book. Likely the hand initially sticks to the book and drags it backwards exploiting
friction. Then, the thumb and fingers swiftly slide to regrasp the book. Finally, the book
is retrieved from the shelf using a stable grasp. For such manipulation tasks where the
motion is not periodic, determining a fixed mode sequencing strategy is not obvious and
likely impractical. Errors during execution will surely require that the mode sequencing
be altered.

Fig. 2:Animation of a simple manipulation task that exploits multiple contact modalities. First,
the hand sticks to the book and drags it backwards exploitingfriction. Second, thumb and fingers
slide to perform a regrasp maneuver. Finally, the book is retrieved from the shelf using a stable
grasp.



5

3.2 Underactuation

Underactuation is due to the fact that contact interactionscan only transmit a limited
set of forces and torques to the object. As such, the controller must reason only among
the forces that can physically be realized. For example, thenormal forces commanded
should be positive, as contact interactions can only “push”and cannot “pull.” In order
to achieve this, it is required to explicitly integrate the physical constraints associated
with contact interactions in the controller design. A second important consequence of
underactuation is that the controller must be capable of reasoning about future not just
instantaneous actuation since the forces required to drivethe task in the direction of the
goal might not be feasible at the current instant. The controller must reason on a finite
horizon.

4 PUSHER-SLIDER SYSTEM

In this article, we study the pusher-slider system, a simplenonprehensile manipulation
task where the goal is to control the motion of a sliding object (slider) through a single
frictional contact point (pusher). The pusher-slider system is a useful test case dynami-
cal system for controller design where actuation arises from friction.

4.1 Kinematics

âx

ây

b̂x

b̂y

dm

b

p

a

−→r pb

−→r dm

px

py

Fig. 3: Kinematics of a slider subject to
contact interactions with a single point of
contact robotic pusher.

Consider the system in Fig.3. The pose of the

slider isqs =
[

x y θ
]T

wherex andy denote
the cartesian coordinates of the center of mass
of the slider andθ its orientation relative to
the inertial reference frameFa. The position
of the pusher relative to pointb resolved inFb

is rpbb =
[

px py
]T

. Figure3 shows the kine-
matics of the slider subject to contact inter-
actions with a single point of contact robotic
pusher.

4.2 Quasi-Static Approximation

During contact interactions, two external forces are exerted on the slider: the general-
ized frictional force applied by the pusher on the slider (denotedfP ) and the general-
ized frictional force applied by the ground on the sliding object (denotedfG). Applying
Newton’s second law in thêax - ây plane yields the motion equations

Hq̈s = fG + fP , (1)

whereH denotes the inertia matrix of the system. The quasi-static assumption suggests
that at low velocities, frictional contact forces dominateand inertial forces do not have
a decisive role in determining the motion of the slider. Under this assumption, the ap-
plied frictional force by the pusher is of equal magnitude and opposite direction to the
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ground planar frictional force (i.e.,fP = −fG). This quasi-static assumption leads to
a simplified analysis of the motion of a sliding object using asingle point of contact
robotic pusher. Note that including the termHq̈s does not complicate the controller de-
sign and could easily be integrated into the control formulation presented in Section5.
The resulting controller from a dynamic analysis yields a mapping between the motion
of the slider to the reaction forces applied on the object. Incontrast, the quasi-static
assumption leads to a direct mapping between the motion of the slider and the motion
of the pusher. This proved desirable from an experimental implementation standpoint
using a position controlled robotic manipulator.

The motion equations of the pusher-slider system are formulated in [16] assuming a
quasi-static formulation with a uniform pressure distribution. Prior to presenting these
motion equations, it is necessary to review two important concepts of frictional contact
interactions: the limit surface and the motion cone.

4.3 Limit Surface

The limit surface is a useful geometric representation which, under the quasi-static as-
sumption, maps the applied frictional force on an object to its resulting velocity. First
introduced in [19], the limit surface is defined as a convex surface which bounds the set
of all possible frictional forces and moments that can be sustained by frictional inter-
face. In this paper, we use the ellipsoidal approximation tothe limit surface [20], where
the semi-principal axes are given byfmax, fmax, andmmax defined byfmax = µgmg

andmmax =
µgmg

A

∫

A

∥

∥

−→r dmb
∥

∥ dA, whereµg is the coefficient of friction between the
object and the ground,m is the mass of the object,g is the gravitational acceleration,A
is the surface area of the object exposed to friction, and−→r dmb denotes the position of
dm relative to the origin ofFb.

4.4 Motion Cone

atan(γ
b)

−→
v

MC
t

−→
v

MC
b

atan(γt)

p

Fig. 4: Motion cone (MC) at
contact pointp. If the pusher ve-
locity lies within the two bound-
aries of the motion cone, the
pusher will stick to the slider, else,
it will slide.

Depending on the direction of motion of the pusher,
different contact interaction modes can arise between
the pusher and the slider. The motion cone [14], shown
in Fig. 4, is useful to determine if a given velocity of
the pusher will result in sticking or sliding behavior
between the pusher and the slider. Each boundary of
the motion cone is constructed by mapping the result-
ing velocity of the slider at the contact pointp when
subject to a frictional force that lies on a boundary
of the friction cone. It can be shown using the ellip-
soidal approximation to the limit surface, that for flat
faced objects, the two boundaries of the motion cone
are given as−→v MC

t = −1b̂x + γtb̂y and−→v MC
b =

−1b̂x + γbb̂y, with

γt =
µc2 − pxpy + µp2x
c2 + p2y − µpxpy

(2)
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and

γb =
−µc2 − pxpy − µp2x
c2 + p2y + µpxpy

, (3)

wherepx andpy are shown in Fig.3 andc = fmax

mmax
. Given the velocity of the pusher re-

solved inFb, denotedu = [vn vt]
T, the conditions stated below determine the resulting

contact interaction mode that will arise between the pusherand the slider.

Sticking When the sliding object is sticking to the pusher, the relative tangential veloc-
ity between the pusher and the object is zero. In order to havethis behavior, the velocity
vector must lie within the boundaries of the motion cone in Fig. 4. This constraint,
denoted asu ∈ MC, is defined as

u ∈ MC :

{

vt ≤ γtvn, (4)

vt ≥ γbvn. (5)

Sliding Up When the pusher is sliding up in the tangential direction relative to the
object, velocity of the pusher must lie above the upper boundary of the motion cone.
This constraint is expressed by

u > MC : { vt > γtvn. (6)

Sliding Down When the pusher is sliding down in the tangential direction relative to
the object, the velocity of the pusher must lie below the lower boundary of the motion
cone . This condition is enforced as

u < MC : { vt < γbvn. (7)

4.5 Motion Equations

The motion equations of the pusher-slider system are formulated in [16] and stated
below. The equations presented in Eq. (8) describe hybrid dynamics, where the contact
interaction mode depends upon the direction of the pusher velocity.

ẋ =











f1(x, u) if u ∈ MC,

f2(x, u) if u > MC,

f3(x, u) if u < MC,

(8)

with x = [qT

s py]
T, u = [vn vt]

T denotes the velocity of the pusher resolved inFb, and

fj(x, u) =





CTQPj

bj

cj



u, C =

[

cos θ sin θ
− sin θ cos θ

]

, Q =
1

c2 + p2x + p2y

[

c2 + p2x pxpy
pxpy c2 + p2y

]

,

b1 =
[

−py

c2+p2
x+p2

y
px

]

, b2 =
[

−py+γtpx

c2+p2
x+p2

y
0
]

, b3 =
[

−py+γbpx

c2+p2
x+p2

y
0
]

,
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c1 =

[

0
0

]T

, c2 =

[

−γt
0

]T

, c3 =

[

−γb
0

]T

, P1 = I2×2, P2 =

[

1 0
γt 0

]

, P3 =

[

1 0
γb 0

]

,

wherej = 1, 2, 3 correspond to sticking, sliding up, and sliding down contact interac-
tion modes, respectively. For simplicity, we do not consider the case of separation when
the pusher is not in contact with the object. Under the assumption of small forces with
low impact, separation is the least relevant mode to the pusher-slider system.

4.6 Linearization

This section develops the linearized motion equations and motion cone constraints de-
veloped in Sections4.4 and 4.5 about a given nominal trajectory. This linearization
yields linear equations, which can be enforced as linear matrix inequalities in an op-
timization program and are computationally tractable for real-time execution of the
controller design presented in Section5. Consider a feasible nominal trajectoryx⋆(t)
of the sliding object with nominal control inputu⋆(t) of the pusher. The notation(·)⋆

is used to evaluate a term at the equilibrium state and(̄·) is used to denoted a perturba-
tion about the equilibrium state. The linearization of motion equations Eq. (8) about a
nominal trajectory yields

˙̄x = Aj(t)x̄ + Bj(t)ū, with x̄ = x − x⋆, ū = u − u⋆,

and

Aj(t) =
∂fj(x, u)

∂x

∣

∣

∣

∣

x⋆(t),u⋆(t)

, Bj(t) =
∂fj(x, u)

∂u

∣

∣

∣

∣

x⋆(t),u⋆(t)

. (9)

Similarly, the constraints enforcing a sticking interaction between the pusher and the
slider presented in Eqs. (4) and (5) are perturbed about the nominal trajectory as

(v⋆t + v̄t) ≤ (γ⋆
t + γ̄t) (v

⋆
n + v̄n) , and (v⋆t + v̄t) ≥ (γ⋆

b + γ̄b) (v
⋆
n + v̄n) , (10)

respectively. Expanding the perturbationsγ̄t andγ̄b in terms ofx̄ as

γ̄t = Ctx̄ , γ̄b = Cbx̄, Ct =
∂γt

∂x̄

∣

∣

∣

∣

x⋆(t),u⋆(t)

, Cb =
∂γb

∂x̄

∣

∣

∣

∣

x⋆(t),u⋆(t)

, (11)

permits to write Eq. (10) in matrix form as

E1(t)x̄ + D1(t)ū ≤ g1(t), (12)

whereE1 = v⋆n

[

−Ct

Cb

]

, D1 =

[

−γ⋆
t 1

γ⋆
b −1

]

, g1 =

[

−v⋆t + γ⋆
t v

⋆
n

v⋆t − γ⋆
b v

⋆
n

]

, where higher order

perturbations are neglected. Similarly, the sliding up andsliding down constraints in
Eqs. (6) and (7) are perturbed about the nominal trajectory as

(v⋆t + v̄t) > (γ⋆
t + γ̄t) (v

⋆
n + v̄n) , and (v⋆t + v̄t) < (γ⋆

b + γ̄b) (v
⋆
n + v̄n) , (13)

respectively and can be rearranged in matrix form as

E2(t)x̄ + D2(t)ū ≤ g2(t), and (14)

E3(t)x̄ + D3(t)ū ≤ g3(t), (15)
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with E2 = v⋆nCt, E3 = −v⋆nCb, D2 =
[

γ⋆
t −1

]

, D3 =
[

−γ⋆
b 1

]

, g2 =
[

v⋆t − γ⋆
t v

⋆
n − ǫ

]

,
andg3 =

[

−v⋆t + γ⋆
b v

⋆
n − ǫ

]

, where higher order perturbations are neglected,ǫ is a
small scalar value, andCt andCb are given by Eq. (11).

5 MODEL PREDICTIVE CONTROL

In this section, we present a feedback controller design forthe motion of the slider that
minimizes perturbations from a desired trajectory. The proposed controller determines
the desired pusher velocity at each time step based on the sensed pose of the slider. A
successful feedback controller must: 1) address hybridness and underactuation 2) allow
for sliding at contact 3) be fast enough to solve online 4) drive perturbations from the
nominal trajectory to zero. To satisfy these requirements,we use a Model Predictive
Control (MPC) formulation, which takes the form of an optimization program over
the control inputs during a finite time horizont0, . . . , tN . The decision variables of
the optimization program include the perturbed states of the system forN time steps
x̄1, . . . , x̄N and the perturbed control inputsū0, . . . , ūN−1. The goal is represented by
a finite-horizon cost-to-go function that we will minimize subject to the constraints on
the control inputs and the dynamics of the system detailed inSection4. We express the
cost-to-go forN time steps as:

J(x̄n, ūn) = x̄T

NQN x̄N +

N−1
∑

n=0

(

x̄T

n+1Qx̄n+1 + ūT

nRūn

)

. (16)

The termsQ, QN , andR denote weights matrices associated with the error state, final
error state, and control input, respectively. We subject the search for optimal control
inputs to the constraints describing the motion equations and contact dynamics of the
system. Due to the hybridness of the dynamical equations, the constraints to be enforced
depend on the contact modej at play at each iterationn of the prediction finite horizon:

if n = 0 :

{

x̄1 = fj0 + hBj0ū0, (Dynamics) (17)

Dj0ū0 ≤ gj0, (Motion Cone) (18)

if n > 0 :

{

x̄n+1 = [I + hAjn] x̄n + hBjnūn, (Linearized Dynamics) (19)

Ejnx̄n + Djnūn ≤ gjn, (Linearized Motion Cone) (20)

where the termsAjn, Bjn, Djn, Ejn are developed in Eqs. (9), (12), (14), and (15), and
the subscriptn is used to denote the time stamp at which each expression is evaluated
(e.g.Ajn = Aj(tn)). The constraints Eqns. (17) and (19) describe the dynamical mo-
tion equations while Eqns. (18) and (20) represent the motion cone constraints. Note
that for the special case (n = 0), the nonlinear dynamical and contact constraint equa-
tions given by Eqs. (4), (5), (6), (7), and (8) reduce to linear form due to the knowledge
of the statex0. In this case, the expressionsBj0, Dj0, andgj0 are evaluated atx0 rather
thanx⋆(t0), and the termfj0 is defined as

fj0 = x̄0 + h [Bj0u⋆(t0)− f(x⋆(t0), u⋆(t0))] .
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The constraints in Eqs. (17), (18), and (19), and (20) depend on the contact modei,
which complicates the search for optimal control inputs. Contact modes and control in-
puts must be chosen simultaneously. As illustrated in Fig.5, this problem takes the form
of a tree of optimization programs with3N possible contact schedules, each yielding a
convex optimization program, which is too computationallyexpensive to solve online.

...

. . .

n = 0

n = 1

n = 2

n = N

Sticking

Sliding up

Sliding down

Fig. 5:Tree of optimization programs for a MPC program withN prediction steps. Scales expo-
nentially due to contact hybridness.

5.1 Mixed-Integer Quadratic Program

The combinatorial hybrid nature of the pusher-slider dynamics can be modeled by
adding integer decision variables into the optimization program, as is commonly done in
Mixed-Integer programming. The resulting Mixed-Integer Quadratic Program (MIQP)
can be solved rather efficiently using numerical tools, suchas Gurobi [21]. In the case of
the pusher-slider system, we introduce the integer variables:z1n ∈ {0, 1}, z2n ∈ {0, 1},
andz3n ∈ {0, 1}, wherez1n = 1, z2n = 1, or z3n = 1 indicate that the contact interac-
tion mode at stepn is either sticking, sliding up, or sliding down, respectively. We will
use the big-M formulation [22] to write down the problem, whereM is a large scalar
value used to activate and deactivate the contact mode dependent constraints, through a
set of linear equations. The mode dependent constraints arereformulated as

if n = 0:











[

1

−1

]

x̄1 ≤

[

1

−1

]

{fj0 + hBj0ū0}+ 18×1M(1− zjn)

Dj0ū0 ≤ gj0 + 12×1M(1− zjn)

if n > 0:











[

1

−1

]

x̄n+1 ≤

[

1

−1

]

{[1 + hAj ] x̄n + hBj ūn}+ 18×1M(1− zjn)

Ejnx̄n + Djnūn ≤ gjn + 12×1M(1− zjn),

where1m×1 = [1 1 . . . 1]T. Finally, the constraintz1n+ z2n+ z3n = 1 is enforced to
ensure that only one mode can be activated at a time.

5.2 Family of Modes (FOM) Scheduling

The MIQP formulation greatly reduces the computational cost associated with the opti-
mization program in Eq. (16). With an efficient implementation, it can be solved in al-
most real-time for the low dimensional pusher-slider system. However it does not scale
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Sliding Up Sliding Down Sticking

âx

ây

Sticking

Fig. 6: Example of optimal mode schedule for the pusher-slider system converging to a straight
horizontal trajectory.

well for systems with more degrees of freedom or additional contact points. The method
presented in this section is motivated by the observation that many of the branches of
the tree in Fig.5 will give very good solutions, even if not exactly optimal. For the
pusher-slider system, it is reasonable to expect the optimal mode schedule will follow
a certain predictable structure. For example, we can intuitively expect that when the
object is located in they direction above the reference straight line trajectory, asin Fig.
6, the pusher will likely slide up to correct the orientation of the object followed by a
downward sliding motion as the object converges to the desired trajectory. This push-
ing strategy represents one possible mode schedule. The family of modes algorithm
consists in determining a fixed set of probable mode schedules that span a large range
of primitive behaviors of the system. Each mode schedule in the family specifies a se-
quence ofN contact modes to be imposed during the finite prediction horizon in the
MPC formulation. By doing so, the combinatorial problem reduces to solvingm convex
optimization programs, wherem is the number of mode sequences in the family. A key
challenge is in determining a small number of mode schedulesthat spans a “significant”
set of dynamic behaviors. For the pusher-slider system, onecould consider a family of
three mode sequences:

M1: the pusher slides up relative to the object followed by a sticking phase,
M2: the pusher slides down relative to the object followed by a sticking phase,
M3: the pusher sticks to the object for the full length of the prediction horizon.

Even though this family of mode sequences only contains a very small fraction of all
the possible contact mode combinations in the tree in Fig.5, it spans a very large set
of dynamic behaviors between the pusher and the slider. Partof the reason is that the
controller will re-optimize the selection of optimal modesin real-time. Solving Eq.
(16) for each mode schedule leads to the finite horizon costsJ1, . . ., Jm. Given that all
possible contact modes are predetermined, all combinatorial aspects disappear, and each
mode schedule in the family leads to a computationally solvable quadratic problem. The
controller then chooses the optimal among the “m” mode schedules. The control input
is selected at each time step by choosing the first element of the sequence of control
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inputs asu = u⋆
0 + ū0, where the term̄u0 is obtained from the optimization program

with minimum cost andu⋆ denotes the nominal control input.

Table 1: Physical parameters of pusher-slider system.

Property Symbol Value
coefficient of friction (pusher-slider)µp 0.3
coefficient of friction (slider-table) µg 0.35
mass of slider,kg m 1.05
length of slider,m a 0.09
width of slider,m b 0.09

6 RESULTS

Fig. 7: Experimental setup. A
metallic rod (pusher) is attached
to an ABB IRB 120 industrial
robotic arm to push an aluminum
object (slider). The pose of the
slider is tracked using a Vicon
camera system.

The controller design based on the Family of Modes
approach is implemented in this section as described
in Section5. Two test scenarios are considered. Sec-
tion 6.1considers a trajectory tracking problem, where
an external perturbation is applied to the system. Sec-
tion6.2adapts the controller design to a target tracking
problem, where the pusher guides the slider through3
successive targets. We evaluate the performance of the
controller design in both test scenarios through numer-
ical simulations and experiments. The experiments are
conducted using an ABB IRB 120 industrial robotic
manipulator along with a Vicon system to track the
pose of the slider. The experimental setup is depicted
in Fig. 7, where a metallic rod (pusher) attached to the
robot is used to push an aluminum object (slider) on a
flat surface (plywood). The physical parameters of the
system are reported in Table1.

6.1 Straight Line Tracking

Consider the problem of tracking a straight line
nominal trajectory at a constant velocity, defined by
x⋆(t) = [0.05t 0 0 0]T andu⋆ = [0.05 0]T.

M1 :=

{

Slide up ifn = 0

Stick if n > 0
, M2 :=

{

Slide down ifn = 0

Stick if n > 0
, M3 := Stick,

as detailed in Section5.2. The controller design parameters used in the numerical sim-
ulations in Fig.?? and the experiments in Fig.8(b) are set toN = 35 steps,h = 0.03
seconds,Q = 10 diag{1, 3, .1, 0}, 200 diag{1, 3, .1, 0}, andR = 0.5 diag{1, 1}. To
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(a) Simulation results.

(b) Experimental results.

Fig. 8: Tracking of a straight line trajectory at a constant velocity. Both simulated and experi-
mental trajectories of the sliding object recover from an external lateral perturbation. The pusher
quickly reacts to stabilize the slider about the nominal trajectory.

limit the maximum velocity of the pusher, we include the constraints|vn| ≤ 0.1 m/s
and|vt| ≤ 0.1 m/s to the optimization program.

In Fig. 8, an impulsive force is applied in they direction to perturb the system
about its nominal trajectory and evaluate the performance of the feedback controller. In
Fig.8(a), the simulated response of the slider to a state perturbationδ = [0 0.01 15π

180 0]T

applied atx = 0.075 m is compared to the experimental response of the slider in
Fig.8(b)to an external impulsive force applied using a hand held poker. Both simulated
and experimental responses show that the feedback controller is successful in driving
the perturbations from the nominal trajectory to zero. The initial motion of the pusher in
Fig. 8(b) is trying to correct the non-zero initial conditions of the slider, which was im-
perfectly placed by hand. The experimental performance of the feedback controller de-
sign to a variety of external perturbations can be visualized athttps://mcube.mit.edu/videos.

6.2 Trajectory Tracking

In this section, the controller design developed in Sections 5 and6 is adapted to the
problem of tracking a moving target position. The objectiveis to control the motion of
the robotic pusher such that the sliding object reaches a target (xc, yc). At each instant,
an intermediate reference frameFc is defined where the unit vectorĉx points from the
center of mass of the sliding object to the target position. The angleθc in Fig. 9 is
the orientation of̂cx relative to the horizontal̂ax and the angleθrel = θ − θc is the
orientation of the slider relative tôcx. The tracking of a target position is converted into
a trajectory tracking problem where the objective is to track the straight line between the
current position of the slider and the target. Assuming a constant desired velocity of the
sliding object, the nominal trajectoryx⋆

c(t̄) and control inputu⋆
c(t̄), defined relative to

https://mcube.mit.edu/videos
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ĉx

âx

ây

θrel

ĉy

θc

(x, y)

(xc, yc)

Fig. 9: The intermediate reference
frameFc is defined such that̂cx points
in the direction of the target.

θrel

xc(t̄) = x
⋆
c
(t̄) + x̄c(t̄)

uc(t̄) = u
⋆
c
(t̄) + ūc(t̄)

ĉx

ĉy

(xc, yc)

Fig. 10: A desired trajectoryx⋆

c
(t̄) is

defined from the center of the object to
the goal position along the direction̂cx
with nominal control input sequence
u⋆

c
(t̄).

the intermediate reference frameFc, arex⋆
c(t̄) =

[

vxt̄ 0 0 0
]T

andu⋆
c(t̄) =

[

vx 0
]T

,

with vx the desired velocity. The term̄t denotes the prediction horizon time, which is
reinitialized at each time step ast̄ = 0. The controller design parameters used in Fig.11
are identical to those presented in Section8, with the exception that the max tangential
velocity is set to|vt| ≤ 0.3 m/s. The target tracking results are performed from zero
initial conditions with the target positions[xc yc]

T given by

Target 1:

[

0.23
−0.11

]

(m), Target 2:

[

0.23
0.11

]

(m), Target 3:

[

03
0.08

]

(m)

The simulation begins with the position tracking of Target1. When the slider falls
within a distance of0.01 meters of a target, the position is updated to the next target
position and so on until the final position is reached. Both simulated and experimental
trajectories achieve target tracking within the specified tolerance (video of experiments
available athttps://mcube.mit.edu/videos). The trajectories in Fig.11 de-
pict the robotic pusher favoring a sliding behavior when therelative angle of the sliding
object is large relative to the target position. The controller elects to slide the pusher
relative to the object to rotate it and then favors a stickingcontact mode to push the
object in a straight line towards the target position. This control strategy is intuitive
and is in line with the way in which humans manipulate objectsusing a single fin-
ger. It is observed that the simulated trajectory results inFig. 11(a)achieves slightly
more aggressive turns than the experimental trajectory results in Fig.11(b). Despite the
unmodeled aspects of the problem, such as delay in the robot position control, quasi-
static assumption, imprecise nature of friction, etc., thefeedback controller makes good
control decisions which drive the system in the right direction towards the desired tra-
jectory.

7 CONCLUSION

In this work we present a feedback controller design for manipulation tasks where con-
trol acts through contact. Using a model predictive controlapproach combined with an
integer programming formulation permits for the integration of the physical constraints
associated with the dynamics of contact as well as explicitly consider the hybrid nature
of the interactions. We describe two methodologies to solvethe optimization program,
namely Mixed-Integer Quadratic Programming and Family of Modes, which we pro-
pose to speed up the integer program for real-time control purposes. The Family of

https://mcube.mit.edu/videos
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(a) Simulation results. (b) Experimental results.

Fig. 11:Control of a sliding object through a single point robotic pusher. Both simulation and
experimental results successfully reach all3 targets within the specified tolerance.

Modes method is validated through numerical simulations and experiments, where the
feedback controller successfully stabilizes the motion ofa sliding object through single
point contact.

Following the success of the Family of Modes approach in the pusher-slider system,
a natural question raised is: “How does the Family of Modes approach extend to more
complex manipulation tasks?” For large set of manipulationproblems involving multi-
ple contact locations, key mode sequences can be readily identified either using physical
insight of by investigating solutions to offline planning algorithms. Moreover, for many
manipulation tasks, such as those involving parallel jaw grippers, there is a natural sym-
metry of the problem that can be leveraged to deduce important mode sequences. The
application of the Family of Modes approach to multiple contact problems, such as
in-hand manipulation with extrinsic dexterity [8,9], is a direction of future work.
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