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Abstract. We propose a decentralised variant of Monte Carlo tree search
(MCTS) that is suitable for a variety of tasks in multi-robot active per-
ception. Our algorithm allows each robot to optimise its own individ-
ual action space by maintaining a probability distribution over plans in
the joint-action space. Robots periodically communicate a compressed
form of these search trees, which are used to update the locally-stored
joint distributions using an optimisation approach inspired by variational
methods. Our method admits any objective function defined over robot
actions, assumes intermittent communication, and is anytime. We extend
the analysis of the standard MCTS for our algorithm and characterise
asymptotic convergence under reasonable assumptions. We evaluate the
practical performance of our method for generalised team orienteering
and active object recognition using real data, and show that it com-
pares favourably to centralised MCTS even with severely degraded com-
munication. These examples support the relevance of our algorithm for
real-world active perception with multi-robot systems.

1 Introduction

Information gathering is a fundamentally important family of problems in robot-
ics that plays a primary role in a wide variety of tasks, ranging from scene un-
derstanding to manipulation. Although the idea of exploiting robot motion to
improve the quality of information gathering has been studied for nearly three
decades [3], most real robot systems today (both single- and multi-robot) still
gather information passively. The motivation for an active approach is that sen-
sor data quality (and hence, perception quality) relies critically on an appropri-
ate choice of viewpoints [17]. One way to efficiently achieve an improved set of
viewpoints is through teams of robots, where concurrency allows for scaling up
the number of observations in time and space. The key challenge, however, is to
coordinate the behaviour of robots as they actively gather information, ideally
in a decentralised manner. This paper presents a new, decentralised approach



for active perception that allows a team of robots to perform complex infor-
mation gathering tasks using physically feasible sensor and motion models, and
reasonable communication assumptions.

Decentralised active information gathering can be viewed, in general, as a
partially observable Markov decision process (POMDP) in decentralised form
(Dec-POMDP) [1]. There are several known techniques for solving this class
of problems, but policies are usually computed in advance and executed in a
distributed fashion. There are powerful approximation algorithms for special
cases where the objective function is monotone submodular [21]. Unfortunately
this is not always the case, particularly in field robotics applications.

Our approach provides convergence guarantees but does not require sub-
modularity assumptions, and is essentially a novel decentralised variant of the
Monte Carlo tree search (MCTS) algorithm [5]. At a high level, our method al-
ternates between exploring each robot’s individual action space and optimising
a probability distribution over the joint-action space. In any particular round,
we first use MCTS to find locally favourable sequences of actions for each robot,
given a probabilistic estimate of other robots’ actions. Then, robots periodi-
cally attempt to communicate a highly compressed version of their local search
trees which, together, correspond to a product distribution approximation. These
communicated distributions are used to estimate the underlying joint distribu-
tion. The estimates are probabilistic, unlike the deterministic representation of
joint actions typically used in multi-robot coordination algorithms. Optimising
a product distribution is similar in spirit to the mean-field approximation from
variational inference, and also has a natural game-theoretic interpretation [19].

Our algorithm is a powerful new method of decentralised coordination for
any objective function defined over the robot action sequences. Notably, this
implies that our method is suitable for complex perception tasks such as object
classification, which is known to be highly viewpoint-dependent [17]. Further,
communication is assumed to be intermittent, and the amount of data sent
over the network is small in comparison to the raw data generated by typical
range sensors and cameras. Our method also inherits important properties from
MCTS, such as the ability to compute anytime solutions and to incorporate prior
knowledge about the environment. Moreover, our method is suitable for online
replanning to adapt to changes in the objective function or team behaviour.

We evaluate our algorithm in two scenarios: generalised team orienteering
and active object recognition. These experiments are run in simulation, and the
second scenario uses range sensor data collected a priori by real robots. We show
that our decentralised approach performs as well as or better than centralised
MCTS even with a significant rate of message loss. We also show the benefits of
our algorithm in performing long-horizon and online planning.

2 Related work

Information gathering problems can be viewed as sequential decision processes
in which actions are chosen to maximise an objective function. Decentralised



coordination in these problems is typically solved myopically by maximising
the objective function over a limited time horizon [25, 10]. Unfortunately, the
quality of solutions produced by myopic methods can be arbitrarily poor in the
general case. Recently, however, analysis of submodularity [16] has shown that
myopic methods can achieve near-optimal performance [14], which has led to
considerable interest in their application to information gathering with multiple
robots [21]. While these methods provide theoretical guarantees, they require a
submodular objective function, which is not applicable in all cases.

Efficient non-myopic solutions can be designed by exploiting problem-specific
characteristics [4, 6]. But in general, the problem is a POMDP, which is noto-
riously difficult to solve. The difficulty of solving Dec-POMDPs is compounded
because the search space grows exponentially with the number of robots. For
our problem, we focus our attention on reasoning over the unknown plans of the
other robots, while assuming other aspects of the problem are fully observable.
The problems we consider here are therefore not Dec-POMDPs, but our algo-
rithm is general enough to be extended to problems with partial observability.

MCTS is a promising approach for online planning because it efficiently
searches over long planning horizons and is anytime [5]. MCTS has also been ex-
tended to partially observable environments [20]. However, MCTS has not been
extended for decentralised multi-agent planning, and that is our focus here.

MCTS is parallelisable [7], and various techniques have been proposed that
split the search tree across multiple processors and combine their results. In the
multi-robot case, the joint search tree interleaves actions of individual robots and
it remains a challenge to effectively partition this tree. A related case is multi-
player games, where a separate tree may be maintained for each player [2];
however, a single simulation traverses all of the trees and therefore this ap-
proach would be difficult to decentralise. We propose a similar approach, except
that each robot performs independent simulations while sampling from a locally
stored probability distribution that represents the other robots’ action sequences.

Coordination between robots is achieved in our method by combining MCTS
with a framework that optimises a product distribution over the joint action
space in a decentralised manner. Our approach is analogous to the classic mean-
field approximation and related variational approaches [26, 19]. Variational meth-
ods seek to approximate the underlying global likelihood with a collection of
structurally simpler distributions that can be evaluated efficiently and indepen-
dently. These methods characterise convergence based on the choice of product
distribution, and work best when it is possible to strike a balance between the
convergence properties of the product distribution and the KL-divergence be-
tween the product and joint distributions. As discussed in the body of work on
probability collectives [22, 24, 23], such variational methods can also be viewed
under a game theoretic interpretation, where the goal is to optimise each agent’s
choice of actions based on examples of the global reward/utility function. The
latter method has been used for solving the multiple-TSP in a decentralised
manner [15]; we propose a similar approach, but we leverage the power of the
MCTS to select an effective and compact sample space of action sequences.



3 Problem statement

We consider a team of R robots {1, 2, ..., R}, where each robot i plans its own
sequence of future actions xi = (xi1, x

i
2, ...). Each action xij has an associated

cost cij and each robot has a cost budget Bi such that the sum of the costs

must be less than the budget, i.e.,
∑
xij∈xi

cij ≤ Bi. This cost budget may be

an energy or time constraint defined by the application, or it may be used to
enforce a planning horizon. The feasible set of actions and associated costs at
each step n are a function of the previous actions (xi1, x

i
2, ..., x

i
n−1). Thus, there

is a predefined set of feasible action sequences for each robot xi ∈ X i. Further,
we denote x as the set of action sequences for all robots x := {x1,x2, ...,xR}
and x(i) as the set of action sequences for all robots except i, i.e., x(i) := x \xi.

The aim is to maximise a global objective function g(x) which is a function
of the action sequences of all robots. We assume each robot i knows the global
objective function g(x), but does not know the actions x(i) selected by the others.
Moreover, the problem must be solved in an online setting.

We assume that robots can communicate to improve coordination. The com-
munication channel may be unpredictable and intermittent, and all communica-
tion is asynchronous. Therefore, each robot will plan based on the information it
has available locally. Bandwidth may be constrained and therefore message sizes
should remain small, even as the plans grow. Although we do not consider ex-
plicitly planning to maintain communication connectivity, this may be encoded
in the objective function g(x) if a reliable communication model is available.

4 Dec-MCTS

In this section we present the Dec-MCTS algorithm. Dec-MCTS runs simulta-
neously and asynchronously on all robots; here we present the algorithm from
the perspective of robot i. The algorithm cycles between three phases (Alg. 1):
1) grow a search tree using MCTS, while taking into account information about
the other robots, 2) update the probability distribution over possible action se-
quences, and 3) communicate probability distributions with the other robots.
These three phases continue regardless of whether or not the communication
was successful, until a computation budget is met.

4.1 Local utility function

The global objective function g is optimised by each robot i using a local utility
function f i. We define f i as the difference in utility between robot i taking
actions xi and a default “no reward” sequence xi∅, assuming fixed actions x(i)

for the other robots, i.e., f i(x) := g(xi ∪ x(i)) − g(xi∅ ∪ x(i)). In practice, this
improves the performance compared to optimising g directly since f i is more
sensitive to robot i’s plan and the variance of f i is less affected by the uncertainty
of the other robots’ plans [23].



Algorithm 1 Overview of Dec-MCTS for robot i.

input: global objective function g, budget Bi, feasible action sequences and costs
output: sequence of actions xi for robot i

1: T ← initialise MCTS tree
2: while not converged or computation budget not met do
3: X̂ i

n ← SelectSetOfSequences(T )
4: for fixed number of iterations do
5: T ← GrowTree(T , X̂ (i)

n , q(i), Bi)

6: qi ← UpdateDistribution(X̂ i
n, q

i, X̂ (i)
n , q(i), β)

7: CommunicationTransmit(X̂ i
n, q

i)

8: (X̂ (i)
n , q(i))← CommunicationReceive

9: β ← cool(β)

10: return xi ← arg maxxi∈X̂ in

[
qi(xi)

]

4.2 Monte Carlo tree search

The first phase of the algorithm is the MCTS update shown in Alg. 2. A single
tree is maintained by robot i which only contains the actions of robot i. Co-
ordination occurs implicitly by considering the plans of the other robots when
performing the rollout policy and evaluation of the global objective function.
This information about the other robots’ plans comes from the distributed op-
timisation of probability distributions detailed in the following subsection. We
use MCTS with a novel bandit-based node selection policy.

Standard MCTS incrementally grows a tree by iterating through four phases:
selection, expansion, simulation and backprogation [5]. In each iteration t, a
new leaf node is added, where each node represents a sequence of actions and
contains statistics about the expected reward. The selection phase begins at the
root node of the tree and recursively selects child nodes sj until an expandable
node is reached. For selecting the next child, we propose an extension of the
UCT policy [13], detailed later, to balance exploration and exploitation. In the
expansion phase, a new child is added to the selected node, which extends the
parent’s action sequence with an additional action.

In the simulation phase, the expected utility E[gj ] of the expanded node sj is
estimated by performing and evaluating a rollout policy that extends the action
sequence represented by the node until a terminal state is reached. This rollout
policy could be a random policy or a heuristic for the problem. The objective is
evaluated for this sequence of actions and this result is saved as E[gj ].

For our problem, the objective is a function of the action sequence xi as well
as the unknown plans of the other robots x(i). To compute the rollout score,

we first sample x(i) from a probability distribution q
(i)
n over the plans of the

other agents (defined later). A heuristic rollout policy extended from sj defines
xi, which should be a function of x(i) to simulate coordination. Additionally,
we optimise xi using the local utility f i (defined in Sec. 4.1) rather than g. The
rollout score is then computed as the utility of this joint sample f i(xi ∪ x(i)),



Algorithm 2 Grow the tree using Monte Carlo Tree Search for robot i.

1: function GrowTree(T , X̂ (i)
n , q(i), Bi)

input: partial tree T , distributions for other robots (X̂ (i)
n , q(i))

output: updated partial tree T
2: for fixed number of samples τ do
3: sj ← NodeSelectionD-UCT(T ) . Find the next node to expand
4: s+j ← ExpandTree(sj) . Add a new child to sj

5: x(i) ← Sample(X̂ (i)
n , q(i)) . Sample the policies of the other robots

6: xi ← PerformRolloutPolicy(s+j ,x
(i), Bi)

7: score← f i(xi ∪ x(i)) . Local utility function
8: T ← Backpropagation(s+j , score) . Update scores

9: return T

which is an estimate for Eqn [f i | xi]. Thus, we define the reward Ft(s, sj) as the
rollout score when child sj was expanded from node s at sample t.

In the backpropagation phase, the rollout evaluation is added to the statistics
of all nodes along the path from the expanded node back to the root of the tree.
Typically, each rollout t is treated as equally relevant and therefore E[gj ] is an
unbiased average of the rollout evaluations. However, our algorithm alternates
between growing the tree for a fixed number of rollouts τ and updating the
probability distributions for other robots at each iteration n, where n = bt/τc.
Therefore the most recent rollouts are more relevant since they are obtained by
sampling the most recent distributions. Thus, we use a variation on the standard
UCT algorithm, which we term D-UCT after discounted UCB [11]. This policy
accounts for non-stationary reward distributions by biasing each sample by a
weight γ which increases at each rollout.

Specifically, we propose a node selection policy (Alg. 2 line 3) that maximises
a UCB F̄t(·)+ct(·) for the discounted expected reward, i.e., for parent node s and
sample t, D-UCT selects the child node s+t = arg maxsj [F̄t(γ, s, sj)+ct(γ, s, sj)].
This continues recursively until a node with unvisited children is reached. The
discounted empirical average F̄t is given by

F̄t(γ, s, sj) =
1

Nt(γ, s, sj)

t∑
u=1

γt−uFu(s, sj)1{s+u=sj}, (1)

Nt(γ, s, sj) =

t∑
u=1

γt−u1{s+u=sj},

and the discounted exploration bonus ct is given by

ct(γ, s, sj) = B

√
ξ logNt(γ, s)

Nt(γ, s, sj)
, Nt(γ, s) =

K∑
j=1

Nt(γ, s, sj). (2)

In this context, Nt(γ, s) is the discounted number of times the current (parent)
node s has been visited, and Nt(γ, s, sj) is the discounted number of times child



node sj has been visited. The constants γ ∈ (1/2, 1), ξ > 0.5, and B is the
maximum reward. This D-UCT selection policy guarantees a rate of regret in
the bandit case with abruptly changing distributions, which we discuss in Sec. 5.

4.3 Decentralised product distribution optimisation

The second phase of the algorithm updates a probability distribution qi over
the set of possible action sequences for robot i (Alg. 3). These distributions are
communicated between robots and used for performing rollouts during MCTS.
To optimise these distributions in a decentralised manner for improving global
utility, we adapt a type of variational method originally proposed in [22]. This
method can be viewed as a game between independent robots, where each robot
selects their action sequence by sampling from a distribution.

One challenge is that the set of possible action sequences is typically of ex-
ponential size. We obtain a sparse representation by selecting the sample space
X̂ in ⊂ X i as the most promising action sequences {xi1,xi2, ...} found by MCTS.
We select a fixed number of nodes with the highest E[f i] obtained so far. X̂ in
is the action sequences used during the initial rollouts when the selected nodes
were first expanded.

The set X̂ in has an associated probability distribution qi such that qi(xi) de-
fines the probability that robot i will select xi ∈ X̂ in. The distributions for differ-
ent robots are independent and therefore define a product distribution, such that
the probability of a joint action sequence selection x is q(x) :=

∏
i∈{1:R} q

i(xi).
The advantage of defining q as a product distribution is so that each robot selects
its action sequence independently, and therefore allows decentralised execution.

Consider the general class of joint probability distributions p that are not
restricted to product distributions. Define the expected global objective function
for a joint distribution p as Ep[g], and let Γ be a desired value for Ep[g]. According
to information theory, the most likely p that satisfies E[g] = Γ is the p that
maximises entropy. The most likely p can be found by minimising the maxent
Lagrangian: L(p) := λ (Γ − Ep[g]) − H(p), where H(p) is the Shannon entropy
and λ is a Lagrange multiplier. The intuition is to iteratively increase Γ and
optimise p. A descent scheme for p can be formulated with Newton’s method.

For decentralised planning and execution, we are interested in optimising the
product distribution q rather than a more general joint distribution p. We can
approximate q by finding the q with the minimum pq KL-divergence DKL(p ‖ q).
This formulates a descent scheme with the update policy for qi shown in Alg. 3
line 5, and where we use f i rather than g. Intuitively, this update rule increases
the probability that robot i selects xi if this results in an improved global utility,
while also ensuring the entropy of qi does not decrease too rapidly.

Pseudocode for this approach is in Alg. 3. We require computing two ex-
pectations (lines 3 and 4) to evaluate the update equation (line 5). It is often
necessary to approximate these expectations by sampling x, since it is intractable
to sum over the enumeration of all x ∈ X̂n. Parameter β should slowly decrease
and α remain fixed. For efficiency purposes, in our implementation qi is set to a
uniform distribution when X̂ in changes (Alg. 1 line 3).



Algorithm 3 Probability distribution optimisation for robot i.

1: function UpdateDistribution(X̂ i
n, q

i, X̂ (i)
n , q(i), β)

input: action sequence set for each robot X̂n := {X̂ 1
n , X̂ 2

n , ..., X̂R
n }

with associated probability distributions {q1, q2, ..., qR},
update parameter β

output: updated probability distribution qi for robot i
2: for each xi ∈ X̂ i

n do

3: Eq[f i]←
∑

x∈X̂n

[
f i(x)

∏
i′∈{1:R} q

i′(xi′)
]

4: Eq[f i | xi]←
∑

x(i)∈X̂ (i)
n

[
f i(xi ∪ x(i))

∏
i′∈{1:R}\i q

i′(xi′)
]

5: qi(xi)← qi(xi)− αqi(xi)

[
Eq[f i]− Eq[f i | xi]

β
+ H(qi) + ln

(
qi(xi)

)]
6: qi ← Normalise(qi)

7: return qi

4.4 Message passing

At each iteration n, robot i communicates its current probability distribution
(X̂ in, qin) to the other robots. If robot i receives any updated distributions then
this replaces its stored distribution. The updated distribution is used during
the next iteration. If no new messages are received from a robot, then robot i
continues to plan based on its most recently received distribution. If robot i is
yet to receive any messages from a robot then it may assume a default policy.

4.5 Online replanning

The best action is selected as the first action in the highest probability action
sequence in X̂ in. The search tree may then be pruned by removing all children of
the root except the selected action. Planning may then continue while using the
sub-tree’s previous results. If the objective function changes, e.g. as a result of
a new observation, then the tree should be restarted. In practice, if the change
is minor then it may be appropriate to continue planning with the current tree.

5 Analysis

We characterise the convergence properties of the two key algorithmic com-
ponents of our approach: tree search (Sec. 4.2) and sample space contraction
(Sec. 4.3). Our first aim is to show that, with the D-UCT algorithm (Alg. 2), we
maintain an exploration-exploitation trade-off for child selection while the distri-
butions qin are changing (and converging). Then we characterise the convergence
of Alg. 3 given a contracted sample space of distributions X̂ in ⊂ X i.

We analyse the D-UCT algorithm by considering a particular type of non-
stationary (adversarial) multi-armed bandit (MAB) problem [13, 11]. That is, we
consider a unit-depth tree where the reward distributions can change abruptly
at a given epoch, such that a previously optimal arm becomes suboptimal.



Theorem 1. Suppose we restrict T to a unit-depth tree in Alg. 1. Then, Alg. 2
will sample suboptimal actions x̃i, where x̃i is suboptimal w.r.t. Eqn [f i], at a
rate of O(n(1+ϕτ,β)/2 log n) for some ϕτ,β ∈ [0, 1).

Proof. Observe that the problem of action selection for a unit-depth tree is
equivalent to an MAB problem [13]. Denote by ΥT the number of switching
points (breakpoints) of the reward distribution up until some sample horizon T .
In the context of Sec. 4.2, these are sample rounds when a previously optimal
child sj becomes suboptimal (i.e., Ft(s, sj) changes abruptly). Under the D-UCB
policy applied to the MAB problem, given a known number of breakpoints ΥT ,
we can minimise the number of times a suboptimal action is taken by setting
the discount factor to γ = 1 − (4B)−1

√
ΥT /T . Selecting this discount factor

upper bounds the expected number of times a suboptimal action is taken to
O(
√
TΥT log T ) [11]. Depending on the rate of increasing β, the expected utility

will converge asymptotically. Without loss of generality, we can therefore assume
the reward distributions Ft(s, sj) (and thus ΥT ) converges at a rate O(nϕτ,β ),
where ϕτ,β ∈ [0, 1), depending on the (sample) epoch length τ and β. Given that
an iteration can be calculated as n = bT/τc for a given sample horizon T , the
number of suboptimal action selections is upper bounded by O(n(1+ϕτ,β)/2 log n)
for some fixed (τ, β). ut

Remark 1. Although Theorem 1 analyses Alg. 1 in the MAB setting, we believe
it is possible to extend to arbitrary depth trees. This could be achieved in a
similar way to [13] by showing drift and breakpoint conditions are satisfied at
all levels of the tree and proving regret bounds by induction.

As a consequence of Theorem 1 and Remark 1, during abrupt changes to qn, the
child selection policy in the tree search balances exploration and exploitation.

Importantly, note that nearer to the root node of the tree the breakpoints will
decay faster than the leaf nodes. Thus, toward the root node, as n becomes large,
γ → 1 and the number of breakpoints ΥT remain constant with high probabil-
ity. For these nodes, the D-UCT algorithm becomes equivalent to UCT (setting
ξ = 2C2

p = 2 and B = 1 to satisfy the tail conditions in [13]). As per Theorem 2
of [13], the bias of the estimated utility then converges polynomially. This is rea-
sonable since, given that we will typically want to adaptively replan (Sec. 4.5), it
should be sufficient to guarantee optimal short-term action sequences. Moreover,
note that γ can be optimally set given bounds on the convergence rate of these
distributions (i.e., ϕτ,β , which is dependent on τ and β).

We now consider the effect of contracting the sample space X̂n ⊂ X on the
convergence of Alg. 3. Recall that the pq KL-divergence is the divergence from
a product distribution q to the optimal joint distribution p. We then have the
following proposition:

Proposition 1. Alg. 3 asymptotically converges to a distribution that locally
minimises the pq KL-divergence, given an appropriate subset X̂n ⊂ X .

Proposition 1 relies on growing β slowly. Consider the situation where, at each
iteration n, we randomly choose a subset X̂ in ⊂ X i for each robot. This approach



is equivalent to Monte Carlo sampling of the expected utility and thus the bi-
ased estimator is consistent (asymptotically converges to E[f i]). For tractable
computation, in our algorithm we modify the random selection by choosing a
sparse set of strategies X̂n with the highest expected utility (Sec. 4.3). Although
this does not ensure we sample the entire domain X asymptotically, in practice
qn(X̂n) is a reasonably accurate representation of qn(X ), and therefore this gives
us an approximation to importance sampling [24].

The analyses above show separately that the tree search of Alg. 2 balances
exploration and exploitation and that, under reasonable assumptions, Alg. 3 con-
verges to the product distribution that best optimises the joint action sequence.
These two components do not immediately yield a characterisation of optimality
for Alg. 1. To prove global convergence rates, we would need to characterise the
co-dependence between the evolution of the reward distributions Eqn [f i | xi] and

the contraction of the sample space X̂n. The following experiments show that
the algorithm converges rapidly to a high-quality solution.

6 Experiments: Generalised team orienteering

In this section we evaluate the performance of our algorithm in an abstract multi-
robot information gathering problem (Fig. 1). We show convergence, robustness
to intermittent communication and a comparison to centralised MCTS.

The problem is motivated by tasks where a team of Dubins robots maximally
observes a set of features of interest in an environment, given a travel budget [4].
Each feature can be viewed from multiple viewpoints and each viewpoint may
be in observation range of multiple features. This formulation generalises the
orienteering problem [12] by combining the set structure of the generalised trav-
elling salesman problem with the budget constraints of the orienteering problem
with neighbourhoods [9] extended for multi-agent scenarios [4].

Robots navigate within a graph representation of an environment with ver-
tices vi ∈ V, edges eij := 〈vi, vj〉 ∈ E and edge traversal costs cij . Each vertex
vi represents a location and orientation (x, y, θ) within a square workspace with
randomly placed obstacles. The action sequences of each robot are defined as
paths through the graph from a fixed start vertex unique to each robot to a free
destination vertex. The edge costs are defined as the distance of the Dubins path
between the two configurations. All edges are connected within a fixed distance.

For the objective function, we have a collection of sets S = (S1, S2, ...), where
each Si ⊆ V. These sets may represent a set of features of interest, where a vertex
is an element of a set only if the associated feature can be observed from the
vertex location. We assume each set is a disc, however the formulation could
extend to more complex models [4]. The vertices vj ∈ V are randomly placed
within the sets. A set Si is visited if ∃vj ∈ x, vj ∈ Si and each visited set yields
an associated reward wi. There is no additional reward for revisiting a set. The
objective is defined as the sum of the rewards of all visited sets.



Fig. 1. The generalised team orienteering problem. The 8 robots (coloured paths) aim
to collectively visit a maximal number of goal regions (green circles, weighted by im-
portance). The robots follow Dubins paths, are constrained by distance budgets and
must avoid obstacles (black).

6.1 Experiment setup

We compare our algorithm (Dec-MCTS) to centralised MCTS (Cen-MCTS),
which consists of a single tree where robot i’s actions appear at tree depths (i, i+
R, i + 2R, ...). Intermittent communication is modelled by randomly dropping
messages. Messages are broadcast by each robot at 4 Hz and a message has a
probability of being received by each individual robot.

Experiments were performed with 8 simulated robots running in separate
ROS nodes on an 8-core computer. Each random problem instance (Fig. 1)
consisted of 200 discs with rewards between 1 and 10, 4000 graph vertices and 5
obstacles. Each iteration of Alg. 1 performs 10 MCTS rollouts, and X̂ in consists
of 10 paths that are resampled every 10 iterations. The MCTS rollout policy
recursively selects the next edge that does not exceed the travel budget and
maximises the ratio of the increase of the weighted set cover to the edge cost.

6.2 Results

The first experiments (Fig. 2(a)) show that Dec-MCTS achieved a median 7 %
reward improvement over Cen-MCTS after 120 s, and a higher reward in 91 % of
the environments. Dec-MCTS typically converged after ∼60 s. A paired single-
tailed t-test supports the hypothesis (p < 0.01) that Dec-MCTS achieves a higher
reward than Cen-MCTS for time > 7 s. Cen-MCTS performs well initially since
it performs a centralised greedy rollout that finds reasonable solutions quickly.
Dec-MCTS soon reaches deeper levels of the search trees, though, which allows
it to outperform Cen-MCTS. Dec-MCTS uses a collection of search trees with
smaller branching factors than Cen-MCTS, but still successfully optimises over
the joint-action space.
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Fig. 2. (a) Comparison of Dec-MCTS with varying computation time to Cen-MCTS
(120 s). (b) Performance of Dec-MCTS with intermittent communication (60 s com-
putation time). (a,b) Vertical axes show percentage additional reward achieved by
Dec-MCTS compared to Cen-MCTS. Error bars show 0, 25, 50, 75 and 100 percentiles
(excluding outliers) of 100 random problem instances.

The second experiments analysed the effect of communication degradation.
When the robots did not communicate, the algorithm achieved a median 31 %
worse than Cen-MCTS, but with full communication achieves 7 % better than
centralised, which shows the robots can successfully cooperate by using our pro-
posed communication algorithm. Fig. 2(b) shows the results for partial commu-
nication degradation. When half of the packets are lost, there is no significant
degradation of performance. When 97 % of packets are lost the performance is
degraded but still performs significantly better than with no communication.

7 Experiments: Active object recognition

This section describes experiments in the context of online active object recog-
nition, using point cloud data collected from an outdoor mobile robot in an
urban scene (Fig. 3). We first outline the problem and experiment setup, and
then present results that analyse the value of online replanning and compare
Dec-MCTS to a greedy planner.

A team of robots aim to determine the identity of a set of static objects in an
unknown environment. Each robot asynchronously executes the following cycle:
1) plan a path that is expected to improve the perception quality, 2) execute the
first planned action, 3) make a point cloud observation using onboard sensors,
and then 4) update the belief of the object identities. The robots have the same
motion model and navigation graph as Sec. 6. Each graph edge has an additional
constant cost for the observation processing time.

The robots maintain a belief of the identity of each observed object, repre-
sented as the probability that each object is an instance of a particular object
from a given database. The aim is to improve this belief, which is achieved by
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Fig. 3. Experiment setup for the point cloud dataset. (a) Environment with labelled
locations, (b) picnic table (PT), (c) barbecue (BQ), (d) wheelie bin (WB), (e) motorbike
(MB), (f) street light (ST), (g) tree (TR), (h) palm tree (PT).

maximising the mutual information objective proposed in [18]. The posterior
probability distribution for each object after a set of observations is computed
using recursive Bayes’ rule. The observation likelihood is computed as the sym-
metric residual error of an iterative closest point (ICP) alignment [8] with each
model in the database. Objects may merge or split after each observation if the
segmentation changes. Observations are fused using decentralised data fusion or
a central processor and shared between all robots. While planning, the value of
future observations are estimated by simulating observations of objects in the
database for all possible object identities, weighted by the belief.

7.1 Experiment setup

The experiments use a point cloud dataset [18] of Velodyne scans of outdoor
objects in a 30×30 m2 park (Fig. 3(a)). The environment consisted of 13 objects
from 7 different model types as shown in Figs. 3(b)-(h). The dataset consists
of single scans from 50 locations and each scan was split into 8 overlapping
observations with different orientations. Each observation had a 180° field of view
and 8 m range. These locations and orientations form the roadmap vertices with
associated observations. Each object was analysed from separate data to generate
the model database. The robots are given a single long-range observation from
the start location to create an initial belief of most object locations.

The experiments simulate an online mission where each robot asynchronously
alternates between planning and perceiving. Three planners were trialled: our
Dec-MCTS algorithm with 120 s replanning after each action, Dec-MCTS with-
out replanning, and a decentralised greedy planner that selects the next action
that maximises the mutual information divided by the edge cost. The recogni-
tion score of an executed path was calculated as the belief probability that each
object matched the ground-truth object type, averaged over all objects.
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Fig. 4. (a) Task performance over mission duration for 10 trials (maximum possible
score is 0.62). (b) Overlay of 2 example missions with 3 robots. Blue paths denote online
Dec-MCTS (score 0.53). Orange paths denote greedy policy (score 0.42). Objects are
green point clouds where shading indicates height. Robots observe at black dots in
direction of travel. Start location top right.

7.2 Results

Overall, results validate the coordination performance of Dec-MCTS. Fig. 4(a)
shows the recognition score (task performance) over the duration of the mission
for 10 trials with 3 robots. The maximum possible recognition score subject to
the perception algorithm and dataset was 0.62. Dec-MCTS outperformed greedy
halfway through the missions since some early greedy decisions and poor coor-
dination reduced the possibility of making subsequent valuable observations. By
the end of the missions some greedy plans successfully made valuable observa-
tions, but less often than Dec-MCTS. The no-replanning scenario achieved a
similar score as the online planner in the first half, showing that the initial plans
are robust to changes in the belief. For the second half, replanning improved
the recognition score since the belief had changed considerably since the start.
This shows that while the generated plans are reasonable for many steps into the
future, there is also value in replanning as new information becomes available.

Fig. 4(b) shows two example missions using online Dec-MCTS (blue) and
greedy (orange) planners, and their score over the mission duration. Greedy
stayed closer to the start location to improve the recognition of nearby objects,
and consequently observed objects on the left less often; reaching this part of
the environment would require making high cost/low immediate value actions.
On the other hand, Dec-MCTS achieved a higher score since the longer planning
horizon enabled finding the high value observations on the left, and was better
able to coordinate to jointly observe most of the environment.



8 Discussion and future work

We have presented a novel approach to decentralised coordination with conver-
gence properties. The performance (i.e., solution quality) of our approach is as
good or better than its centralised counterpart in real-world applications with
sensor data, and shows that our approach can effectively optimise a joint-action
space even with intermittent communication. A key conceptual feature of our
approach is its generality in representing joint actions probabilistically rather
than deterministically. This facilitates the decentralisation of a variety of tasks
while maintaining convergence properties drawn from statistics and game theory.

One interesting aspect of our work is that it is straightforward to extend
it to problems that have partial observability. That is, we can replace MCTS
with POMCP [20] and apply the same general framework. For example, this
provides a convenient decentralised approach to problems in active perception,
such as active classification. An interesting question is whether the same or
similar convergence properties to the fully observable case can be maintained.

Another interesting line of inquiry is to incorporate coalition forming into our
approach. As formulated, static coalitions of agents can be formed by generalising
the product distributions in our framework to be partial joint distributions.
The product distribution described in Sec. 4.3 would be defined over groups of
robots rather than individuals. Each group acts jointly, with a single distribution
modelling the joint actions of its members, and coordination between groups is
conducted as in our algorithm. A natural field robotics application would be
mobile robots, each with multiple manipulators, for weeding and harvesting in
agriculture. Just as our current approach corresponds to mean-field methods, this
approach maps nicely to region-based variational methods [26] and guarantees
from these approaches may be applicable. It would also be interesting to study
dynamic coalition forming, where the mapping between agents and robots is
allowed to change, and to develop convergence guarantees for this case.
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